ПРОГНОЗ КРИСТАЛЛИЗУЮЩИХСЯ ФАЗ И ОПИСАНИЕ ХИМИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ В СИСТЕМЕ Al₂O₃-TiO₂-MgO

© 2022 г. И. К. Гаркушин¹, О. В. Лаврентьева^{1, *}, А. М. Штеренберг¹

¹Самарский государственный технический университет, ул. Молодогвардейская, 244, Самара, 443100 Россия *e-mail: olavolga1965@gmail.com

> Поступила в редакцию 01.07.21 г. После доработки 30.07.21 г. Принята к публикации 06.08.21 г.

Оксидные системы имеют важное значение для получения различных керамических материалов. Теоретической основой прогноза кристаллизующихся фаз и описания химического и фазового взаимодействия является построение древа фаз трехкомпонентной системы Al_2O_3 — TiO_2 —MgO, исследованной ранее, на основе разбиения которой выявлены вторичные фазовые треугольники и стабильные секущие. Разветвленное древо фаз представлено шестью стабильными треугольниками, соединяющимися между собой пятью стабильными секущими. Выполнен прогноз кристаллизующихся фаз на основе древа фаз. Только с участием MgO и MgAl₂O₄ образуются граничные твердые растворы. Описаны основные реакции, протекающие в системе, для эквивалентных количеств нестабильных веществ в точках пересечения стабильных и нестабильных секущих, а также для любых тройных смесей. На основании проведенных термодинамических расчетов дана оценка возможности протекания реакций.

Ключевые слова: трехкомпонентная система, оксиды, двойные оксиды, древо фаз, разбиение, стабильные треугольники, стабильные секущие, твердые растворы, прогноз DOI: 10.31857/S0132665121060123

ВВЕДЕНИЕ

Фазовые соотношения в оксидных системах, включающих оксиды алюминия, титана и магния исследованы во многих работах [1–13]. Прикладное значение эти системы имеют для моделирования процессов шлакообразования, а также для получения керамики с различными свойствами [14, 15]. Кроме фазовых реакций в указанных системах возможно протекание реакций обмена, так как на смежных сторонах треугольников составов образуются бинарные соединения [16, 17].

В солевых взаимных системах для прогнозирования кристаллизующихся фаз, а также для описания химического взаимодействия применяется древо фаз [18–26]. В тройных системах возможно построение древ фаз, осуществление прогноза кристаллизующихся фаз, а также описание химического взаимодействия, которое возможно при образовании как минимум двух двойных соединений на смежных сторонах треугольника состава [20, 21].

В данной работе предложено построение древа фаз трехкомпонентной системы Al_2O_3 -TiO₂-MgO на основе известного разбиения, выполнен прогноз кристаллизующихся фаз на основе древа фаз, а также проведено описание химического взаимодействия и фазовых превращений.

Рис. 1. Стабильный фазовый комплекс системы [26].

Построение древа фаз и прогноз кристаллизующихся фаз. На фазовый треугольник (рис. 1) наносятся данные по температурам плавления индивидуальных веществ и соединений, а также состав соединений в молярных концентрациях эквивалентов веществ (экв. %) [26] (табл. 1). Термические и термодинамические данные, приведенные в табл. 1, взяты из [27]. В справочной базе [28] приведены некоторые экспериментальные данные для выборочных изотермических сечений данной системы.

Используя данные рис. 1, построено древо фаз (рис. 2), которое имеет разветвленное строение и включает 6 стабильных треугольников, соединяющихся между собой пятью стабильными секущими. Древо фаз позволяет провести прогноз кристаллизующихся фаз с учетом данных по ограняющим двойным системам: граничные твердые растворы образуются в системе MgO-Al₂O₃ на основе MgO (ГР₁) и MgAl₂O₄ (ГР₂) (табл. 2). Стабильные секущие MgAl₂O₄-Mg₂TiO₄ и Al₂TiO₅-MgTi₂O₅ по данным [29] представлены непрерывными рядами твердых растворов – HPTP1 и HPTP2.

Соединение	Стандартные значения		Температура фазовых переходов	
	$\Delta_{f}H_{298}^{\circ}$, кДж/моль	$\Delta_{f}G^{\circ}_{298},$ кДж/моль	плавления, °С	полиморфизма, °С
Al ₂ O ₃	-1675.692 ± 1.255	-1582.271	2053 ± 4	
MgO	-601.491 ± 0.292	-569.254	2825 ± 25	—
TiO ₂	-943.868 ± 0.962	-888.610	1870 ± 15	рутил 893—1373 К анатаз брукит
Al ₂ TiO ₅	-2607.209	-2461.028	1860 ± 20	$\alpha/\beta - 1820$
$MgAl_2O_4$	-2300.781 ± 2.092	-2175.897	2115 ± 15	—
Mg_2TiO_4	-2164 ± 1.631	-2047.444	1750 ± 15	—
MgTiO ₃	-1571.927 ± 1.464	-1483.587	1660 ± 20	—
MgTi ₂ O ₅	-2507.889 ± 2.928	-2367.470 ± 3.472	1650 ± 20	_

Таблица 1. Характеристика исходных веществ и соединений [27]

Рис. 2. Древо фаз системы Al₂O₃-TiO₂-MgO.

Описание химического взаимодействия. Основные реакции химического взаимодействия, как показано в работах Курнакова [29], Радищева [30] и др. [22–25], записываются в тройных и тройных взаимных системах для солей, отвечающих пересечениям стабильных и нестабильных секущих. Поэтому нанесем на фазовый комплекс, изображенный на рис. 1, нестабильные секущие и обозначим точки пересечения со стабильными секущими (K_1 – K_{13}) (рис. 3).

Точка	Секущие			
диаграммы	нестабильные	стабильные	четырехугольники	
K ₁	MgO–Al ₂ TiO ₅	MgTi ₂ O ₅ -MgAl ₂ O ₄	Al ₂ TiO ₅ -MgAl ₂ O ₄ -MgO-MgTi ₂ O ₅	
K ₂	MgO-Al ₂ TiO ₅	MgTiO ₃ -MgAl ₂ O ₄	Al ₂ TiO ₅ -MgAl ₂ O ₄ -MgO-MgTiO ₃	
K ₃	MgO-Al ₂ TiO ₅	$Mg_2TiO_4 - MgAl_2O_4$	Al ₂ TiO ₅ -MgAl ₂ O ₄ -MgO-Mg ₂ TiO ₄	
K ₄	TiO ₂ -MgAl ₂ O ₄	MgTi ₂ O ₅ -Al ₂ TiO ₅	Al ₂ TiO ₅ -TiO ₂ -MgTi ₂ O ₅ -MgAl ₂ O ₄	
K ₅	Al ₂ O ₃ -MgTiO ₃	MgTi ₂ O ₅ -MgAl ₂ O ₄	Al ₂ O ₃ -MgAl ₂ O ₄ -MgTiO ₃ -Al ₂ TiO ₅	
K ₆	Al ₂ O ₃ -Mg ₂ TiO ₄	MgTiO ₃ -MgAl ₂ O ₄	Al ₂ O ₃ -MgAl ₂ O ₄ -Mg ₂ TiO ₄ -MgTiO ₃	
K ₇	Al ₂ O ₃ -Mg ₂ TiO ₄	MgTi ₂ O ₅ -MgAl ₂ O ₄	Al ₂ O ₃ -MgAl ₂ O ₄ -Mg ₂ TiO ₄ -MgTi ₂ O ₅	
K ₈	Al ₂ O ₃ -MgTi ₂ O ₅	Al ₂ TiO ₅ -MgAl ₂ O ₄	Al ₂ O ₃ -MgAl ₂ O ₄ -MgTi ₂ O ₅ -Al ₂ TiO ₅	
K9	Al ₂ O ₃ -MgTiO ₃	Al ₂ TiO ₅ -MgAl ₂ O ₄	Al ₂ O ₃ -MgAl ₂ O ₄ -MgTiO ₃ -Al ₂ TiO ₅	
K ₁₀	Al ₂ TiO ₅ -MgTiO ₃	MgTi ₂ O ₅ -MgAl ₂ O ₄	Al ₂ TiO ₅ -MgAl ₂ O ₄ -MgTiO ₃ -MgTi ₂ O ₅	
K ₁₁	Al ₂ TiO ₅ -Mg ₂ TiO ₄	MgTi ₂ O ₅ -MgAl ₂ O ₄	Al ₂ TiO ₅ -MgAl ₂ O ₄ -Mg ₂ TiO ₄ -MgTi ₂ O ₅	
K ₁₂	Al ₂ TiO ₅ -Mg ₂ TiO ₄	MgTiO ₃ -MgAl ₂ O ₄	Al ₂ TiO ₅ -MgAl ₂ O ₄ -Mg ₂ TiO ₄ -MgTiO ₃	
K ₁₃	Al ₂ O ₃ -Mg ₂ TiO ₄	Al ₂ TiO ₅ -MgAl ₂ O ₄	Al ₂ O ₃ -Mg ₂ TiO ₄ -MgAl ₂ O ₄ -Al ₂ TiO ₅	

Таблица 2. Элементы диаграмм, в которых протекают реакции химического взаимодействия

Таблица 3. Уравнения реакций для смесей, отвечающих точкам эквивалентности К

Уравнение реакции (номер)	Тепловой эффект реак- ций $\Delta_r H_{298}^{\circ}$, кДж	Энергия Гиббса реак- ций Δ _r G ₂₉₈ , кДж	Кристалли- зующиеся фазы
$3MgO + 2Al_2TiO_5 = MgTi_2O_5 + 2MgAl_2O_4(1)$	-90.560	-89.446	MgTi ₂ O ₅ , ГР2
$2MgO + Al_2TiO_5 = MgTiO_3 + MgAl_2O_4(2)$	-62.517	-59.948	MgTiO ₃ , ΓP2
$3MgO + Al_2TiO_5 = Mg_2TiO_4 + MgAl_2O_4 (3)$	-53.099	-54.551	HPTP1
$3\text{TiO}_2 + \text{MgAl}_2\text{O}_4 = \text{MgTi}_2\text{O}_5 + \text{Al}_2\text{TiO}_5$ (4)	+17.287	+13.229	HPTP2
$Al_2O_3 + 2MgTiO_3 = MgTi_2O_5 + MgAl_2O_4 (5)$	+10.876	+6.078	MgTi ₂ O ₅ , ГР2
$Al_2O_3 + Mg_2TiO_4 = MgTiO_3 + MgAl_2O_4 (6)$	-33.016	-29.769	MgTiO ₃ , ΓP2
$3Al_2O_3 + 3Mg_2TiO_4 = MgTi_2O_5 + 3MgAl_2O_4(7)$	-55.156	-53.460	MgTi $_2O_5$, $\Gamma P2$
$3Al_2O_3 + MgTi_2O_5 = Al_2TiO_5 + MgAl_2O_4$ (8)	+19.766	+16.330	Al ₂ TiO ₅ , Γ P2
$2Al_2O_3 + MgTiO_3 = Al_2TiO_5 + MgAl_2O_4 (9)$	+15.32	+12.040	Al ₂ TiO ₅ , Γ P2
$Al_{2}TiO_{5} + 3MgTiO_{3} = 2MgTi_{2}O_{5} + MgAl_{2}O_{4} (10)$	+6.431	+0.952	MgTi ₂ O ₅ , ГР2
$Al_2TiO_5 + Mg_2TiO_4 = MgTi_2O_5 - MgAl_2O_4 (11)$	-37.461	-34.895	MgTi ₂ O ₅ , ГР2
$Al_{2}TiO_{5} + 2Mg_{2}TiO_{4} = 3MgTiO_{3} + MgAl_{2}O_{4}$ (12)	-81.353	-70.742	MgTiO ₃ , ΓP2
$3Al_2O_3 + Mg_2TiO_4 = Al_2TiO_5 + 2MgAl_2O_4$ (13)	-17.695	-18.565	Al ₂ TiO ₅ , Γ P2
	Уравнение реакции (номер) $3MgO + 2Al_2TiO_5 = MgTi_2O_5 + 2MgAl_2O_4 (1)$ $2MgO + Al_2TiO_5 = MgTiO_3 + MgAl_2O_4 (2)$ $3MgO + Al_2TiO_5 = Mg_2TiO_4 + MgAl_2O_4 (3)$ $3TiO_2 + MgAl_2O_4 = MgTi_2O_5 + Al_2TiO_5 (4)$ $Al_2O_3 + 2MgTiO_3 = MgTiO_3 + MgAl_2O_4 (5)$ $Al_2O_3 + Mg_2TiO_4 = MgTiO_3 + MgAl_2O_4 (6)$ $3Al_2O_3 + 3Mg_2TiO_4 = MgTiO_5 + 3MgAl_2O_4 (7)$ $3Al_2O_3 + MgTiO_3 = Al_2TiO_5 + MgAl_2O_4 (8)$ $2Al_2O_3 + MgTiO_3 = Al_2TiO_5 + MgAl_2O_4 (9)$ $Al_2TiO_5 + 3MgTiO_3 = 2MgTi_2O_5 - MgAl_2O_4 (10)$ $Al_2TiO_5 + Mg2TiO_4 = MgTiO_3 - MgAl_2O_4 (11)$ $Al_2TiO_5 + 2Mg_2TiO_4 = 3MgTiO_3 + MgAl_2O_4 (12)$ $3Al_2O_3 + Mg_2TiO_4 = Al_2TiO_5 + 2MgAl_2O_4 (13)$	Уравнение реакции (номер)Тепловой эффект реак- ций $\Delta_r H_{298}^{\circ}$, кДж3MgO + 2Al2TiO5 = MgTi2O5 + 2MgAl2O4 (1)-90.5602MgO + Al2TiO5 = MgTiO3 + MgAl2O4 (2)-62.5173MgO + Al2TiO5 = MgTiO4 + MgAl2O4 (3)-53.0993TiO2 + MgAl2O4 = MgTi2O5 + Al2TiO5 (4)+17.287Al2O3 + 2MgTiO3 = MgTiO5 + MgAl2O4 (5)+10.876Al2O3 + Mg2TiO4 = MgTi2O5 + MgAl2O4 (6)-33.0163Al2O3 + Mg2TiO4 = MgTi2O5 + 3MgAl2O4 (7)-55.1563Al2O3 + MgTiO5 = Al2TiO5 + MgAl2O4 (8)+19.7662Al2O3 + MgTiO3 = Al2TiO5 + MgAl2O4 (9)+15.32Al2TiO5 + 3MgTiO3 = 2MgTi2O5 + MgAl2O4 (10)+6.431Al2TiO5 + Mg2TiO4 = MgTi2O5 - MgAl2O4 (10)+6.431Al2TiO5 + Mg2TiO4 = MgTi2O5 - MgAl2O4 (11)-37.461Al2TiO5 + 2Mg2TiO4 = 3MgTiO3 + MgAl2O4 (12)-81.3533Al2O3 + Mg2TiO4 = Al2TiO5 + 2MgAl2O4 (13)-17.695	Уравнение реакции (номер)Тепловой эффект реак- ций $\Delta_r H_{298}^{\circ}$, кДжЭнергия Гиббса реак- ций $\Delta_r G_{298}^{\circ}$, кДж3MgO + 2Al_2TiO_5 = MgTi_2O_5 + 2MgAl_2O_4 (1)-90.560-89.4462MgO + Al_2TiO_5 = MgTiO_3 + MgAl_2O_4 (2)-62.517-59.9483MgO + Al_2TiO_5 = Mg2TiO_4 + MgAl_2O_4 (3)-53.099-54.5513TiO_2 + MgAl_2O_4 = MgTi_2O_5 + Al_2TiO_5 (4)+17.287+13.229Al_2O_3 + 2MgTiO_3 = MgTiO_3 + MgAl_2O_4 (5)+10.876+6.078Al_2O_3 + Mg2TiO_4 = MgTiO_5 + MgAl_2O_4 (6)-33.016-29.7693Al_2O_3 + 3Mg_2TiO_4 = MgTiO_5 + MgAl_2O_4 (7)-55.156-53.4603Al_2O_3 + MgTiO_3 = Al_2TiO_5 + MgAl_2O_4 (8)+19.766+16.3302Al_2O_3 + MgTiO_3 = Al_2TiO_5 + MgAl_2O_4 (10)+6.431+0.952Al_2TiO_5 + 3MgTiO_3 = 2MgTi_2O_5 - MgAl_2O_4 (10)+6.431+0.952Al_2TiO_5 + Mg2TiO_4 = MgTiO_3 + MgAl_2O_4 (12)-81.353-70.742Al_2TiO_5 + 2Mg_2TiO_4 = 3MgTiO_3 + MgAl_2O_4 (13)-17.695-18.565

В табл. 2 приведены четырехугольники, в которых пересекаются стабильные и нестабильные секущие.

В табл. 3 представлены основные уравнения для смесей, отвечающих точкам пересечения нестабильных и стабильных секущих тройной системы.

Рассмотрим описание химического взаимодействия для любых смесей из 3—8 оксидов аналогично описанию химического взаимодействия во взаимных солевых системах [20, 21]. Отличие состоит в том, что неизвестные коэффициенты в правой части уравнений реакций уравнивают по числу атомов элементов в левой части, пока исход-

Рис. 3. Совмещение стабильного и нестабильного комплексов системы Al_2O_3 -Ti O_2 -MgO.

ная смесь после расплавления и кристаллизации не попадет на стабильную секущую или в стабильный треугольник.

Пример 1. Возьмем исходную смесь из трех веществ $Al_2O_3 + 2TiO_2 + 3MgO$ и запишем правую часть для симплекса $Al_2O_3 - Al_2TiO_5 - MgAl_2O_4$:

$$Al_2O_3 + 2TiO_2 + 3MgO \rightarrow xAl_2O_3 + yAl_2TiO_5 + zMgAl_2O_4.$$

Составим и решим систему уравнений:

$$\begin{cases} 2x + 2y + 2z = 2 = Al & 2x + 2 \times 2 + 2 \times 3 = 2 \\ y = 2 = Ti & x = -4 \\ z = 3 = Mg \end{cases}$$

x < 0, сплав после кристаллизации не попадает в выбранный симплекс.

Рассмотрим стабильную секущую MgAl₂O₄-MgTiO₃.

$$Al_2O_3 + 2TiO_2 + 3MgO \rightarrow xMgAl_2O_4 + yMgTiO_3$$

$$\begin{cases} 2x = 2 = Al & x = 1; y = 2 \\ x + y = 3 = Mg & . \\ y = 2 = Ti & . \end{cases}$$

Коэффициенты в правой части уравнения положительные. Общее уравнение запишется в виде:

$$Al_2O_3 + 2TiO_2 + 3MgO = MgAl_2O_4 + 2MgTiO_3$$

 $(\Delta_r H_{298}^{\circ} = -76.734 \text{ кДж}; \quad \Delta_r G_{298}^{\circ} = -75.818 \text{ кДж}).$

После расплавления и кристаллизации смесь принадлежит стабильной секущей $MgAl_2O_4-MgTiO_3$.

Пример 2. Рассмотрим исходную смесь также из трех веществ:

 $2Al_2O_3 + 3Al_2TiO_5 + 4MgTiO_3 \rightarrow xAl_2TiO_5 + yMgAl_2O_4 + zMgTi_2O_5.$ Решаем систему уравнений:

$$\begin{cases} 2x + 2y = 10 = \text{Al } 2y = 7 - x \\ y + z = 4 = \text{Mg} & 2x + 7 - x = 10 \\ x + 2y = 7 = \text{Ti} & x = 3; \ y = 2; \ z = 2 \end{cases}$$

Все коэффициенты положительные. Общее уравнение имеет вид:

 $2Al_2O_3 + 3Al_2TiO_5 + 4MgTiO_3 \rightarrow 3Al_2TiO_5 + 2MgAl_2O_4 + 2MgTi_2O_5.$

Смесь после расплавления и кристаллизации попадает в фазовый треугольник Al_2TiO_5 -Mg Al_2O_4 -Mg Ti_2O_5 . Таким образом, химическое взаимодействие возможно протекает по реакции

$$2Al_2O_3 + 4MgTiO_3 = 2MgAl_2O_4 + 2MgTi_2O_5$$

$$(\Delta_r H_{298}^\circ = +21.752 \text{ кДж}; \quad \Delta_r G_{298}^\circ = +12.016 \text{ кДж}),$$

а Al_2TiO_5 не участвует в реакции.

Пример 3. Возьмем исходную смесь из четырех веществ:

$$2Al_2TiO_5 + 3TiO_2 + 4MgTiO_3 + 3MgAl_2O_4 \rightarrow \dots$$

Рассмотрим симплекс 1.

C1. $2Al_2TiO_5 + 3TiO_2 + 4MgTiO_3 + 3MgAl_2O_4 \rightarrow xAl_2O_3 + yAl_2TiO_5 + zMgAl_2O_4.$

$$\begin{cases} 2x + 2y + 2z = 10 = AI \ y = 9; \ z = 7\\ y = 9 = Ti \ 2x = -22; \ x = -11 < 0\\ z = 7 = Mg \end{cases}$$

Состав не принадлежит симплексу С1 после расплавления и кристаллизации. Рассмотрим симплекс 2.

C2. $2Al_2TiO_5 + 3TiO_2 + 4MgTiO_3 + 3MgAl_2O_4 \rightarrow xAl_2TiO_5 + yMgTi_2O_5 + zMgAl_2O_4$.

$$\begin{cases} 2x + 2z = 10 = AI \quad x + z = 5\\ x + 2y = 9 = Ti \quad x = 5/3; \ y = 11/3; \ z = 10/3\\ y + z = 7 = Mg \end{cases}$$

Окончательное уравнение имеет вид:

 $2Al_2TiO_5 + 3TiO_2 + 4MgTiO_3 + 3MgAl_2O_4 = 5/3Al_2TiO_5 + 11/3MgTi_2O_5 + 10/3MgAl_2O_4.$ Смесь после расплавления принадлежит стабильному треугольнику Al_2TiO_5 -MgTi_2O_5-

MgAl₂O₄. В реакции:

 $1/3Al_2TiO_5 + 3TiO_2 + 4MgTiO_3 = 11/3MgTi_2O_5 + 1/3MgAl_2O_4$

$$(\Delta_r H_{298}^{\circ} = +25.250 \text{ кДж}; \Delta_r G_{298}^{\circ} = +14.416 \text{ кДж}).$$

В реакции полностью участвуют TiO_2 , MgTiO₃ и частично Al₂TiO₅. В результате реакции происходит накопление MgAl₂O₄ (1/3 моль).

Примеры с исходными пятью и более веществами и продукты взаимодействия приведены в табл. 4.

Исходная смесь	Продукты реакции – симплексы
(левая часть уравнения реакции)	(правая часть уравнения реакции)
Пример 4.	1/3Al ₂ TiO ₅ + 10/3MgTi ₂ O ₅ + 5/3MgAl ₂ O ₄ (C2),
$Al_2O_3 + 2TiO_2 + 3MgO + Al_2TiO_5 + 2MgTi_2O_5$	$\Delta_r H_{298}^{\circ} = -72.447 $ кДж; $\Delta_r G_{298}^{\circ} = -75.176 $ кДж
Пример 5.	2MgAl ₂ O ₄ + 2MgTi ₂ O ₅ + MgTiO ₃ (C4),
Al ₂ TiO ₅ + MgAl ₂ O ₄ + MgTi ₂ O ₅ + MgTiO ₃ + $+$ Mg ₂ TiO ₄	$\Delta_r H_{298}^{\circ} = -37.461$ кДж; $\Delta_r G_{298}^{\circ} = -34.895$ кДж
Пример 6.	Al ₂ TiO ₅ + 2MgTi ₂ O ₅ + 2MgAl ₂ O ₄ (C2),
Al ₂ O ₃ + TiO ₂ + MgO + Al ₂ TiO ₅ + MgTi ₂ O ₅ + +MgTiO ₃ + MgAl ₂ O ₄	$\Delta_r H_{298}^{\circ} = -15.692 \kappa \exists x; \Delta_r G_{298}^{\circ} = -19.645 \kappa \exists x$
$\begin{array}{l} \label{eq:linear_states} \textit{IIpumep 7.} \\ \text{Al}_2\text{O}_3 + 2\text{Ti}\text{O}_2 + 3\text{MgO} + \text{Al}_2\text{Ti}\text{O}_5 + 2\text{MgTi}_2\text{O}_5 + \\ + 3\text{MgTi}\text{O}_3 + 2\text{Mg}_2\text{Ti}\text{O}_4 + + 3\text{MgAl}_2\text{O}_4 \end{array}$	2Al ₂ TiO ₅ + 8MgTi ₂ O ₅ + 5MgAl ₂ O ₄ (C2), $\Delta_r H_{298}^{\circ} = -158.087 $ кДж; $\Delta_r G_{298}^{\circ} = -146.660 $ кДж

Таблица 4. Исходные смеси веществ и продуктов реакций

Таблица 5. Кристаллизующиеся фазы в стабильных и секущих элементах системы $Al_2O_3-MgO-TiO_2$

Стабильная секущая	Фазы	Стабильный треугольник	Фазы
MgTi ₂ O ₅ -MgAl ₂ O ₄	ΓΡ2, Al_2TiO_5	Al ₂ O ₃ -Al ₂ TiO ₅ -MgAl ₂ O ₄	Al ₂ O ₃ , Al ₂ TiO ₅ , ΓP2
Al ₂ TiO ₅ -MgTi ₂ O ₅	HPTP2	Al ₂ TiO ₅ -MgAl ₂ O ₄ -MgTi ₂ O ₅	ГР2, НРТР2
MgAl ₂ O ₄ -MgTi ₂ O ₅	ΓP2, MgTi ₂ O ₅	Al ₂ TiO ₅ -MgTi ₂ O ₅ -TiO ₂	HPTP2, TiO ₂
MgAl ₂ O ₄ -MgTiO ₃	ΓP2, MgTiO ₃	MgAl ₂ O ₄ -MgTi ₂ O ₅ -MgTiO ₃	ΓP2, MgTi ₂ O ₅ , MgTiO ₃
MgAl ₂ O ₄ -Mg ₂ TiO ₄	HPTP1	MgAl ₂ O ₄ -MgTiO ₃ -Mg ₂ TiO ₄	$\Gamma P2$, MgTiO ₃ , Mg ₂ TiO ₄
		MgAl ₂ O ₄ -Mg ₂ TiO ₄ -MgO	Γ P2, Mg ₂ TiO ₄ , ΓP1

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Древо фаз системы позволило провести прогноз фаз, кристаллизующихся после расплавления смесей (табл. 5).

Стабильным секущим может отвечать несколько нестабильных секущих (табл. 6).

Две стабильных секущих Al₂TiO₅-MgTi₂O₅(K₄) и MgAl₂O₄-Mg₂TiO₄(K₃) имеют по одной нестабильной секущей MgAl₂O₄-TiO₂ и Al₂TiO₅-MgO соответственно.

Стабильные секущие	Соответствующие нестабильные секущие	Соотношение исходных веществ
$Al_2TiO_5 - MgAl_2O_4(K_8, K_9, K_{13})$	$\begin{array}{l} Al_2O_3-Al_2TiO_5\\ Al_2O_3-MgTiO_3\\ Al_2O_3-Mg_2TiO_4 \end{array}$	(3:1) (2:1) (3:1)
$MgAl_2O_4 - MgTi_2O_5(K_{10}, K_{11}, K_5, K_1, K_7)$	$\begin{array}{l} Al_2 TiO_5 - MgTiO_3\\ Al_2 TiO_5 - Mg_2 TiO_4\\ Al_2 O_3 - MgTiO_3\\ Al_2 TiO_5 - MgO\\ Al_2 O_3 - Mg_2 TiO_4 \end{array}$	(1:3)(1:1)(1:2)(2:3)(3:2)
$MgAl_2O_4 - MgTiO_3 (K_{12}, K_6, K_2)$	$\begin{array}{l} Al_2TiO_5-Mg_2TiO_4\\ Al_2O_3-Mg_2TiO_4\\ Al_2TiO_5-MgO \end{array}$	(1:2) (1:1) (1:2)

Таблица 6. Стабильные и нестабильные секущие

Для стабильной секущей $MgAl_2O_4-MgTi_2O_5$ максимальное число нестабильных секущих равно пяти. Также необходимо отметить, что в результате взаимодействия различного соотношения нестабильных оксидов получаются различные соотношения (для смесей точек K) на стабильных секущих.

Анализ энергий Гиббса ($\Delta_r G_{298}^{\circ}$) реакций, приведенных в табл. 3, показывает, что взаимодействие исходных смесей, отвечающих точкам K₄, K₅, K₈, K₉, K₁₀ маловероятны при стандартной температуре ($\Delta_r G_{298}^{\circ} > 0$).

Анализ энергий Гиббса реакций, приведенных в табл. 4, а также примеров 1–3 показывает, что реакции в примерах 2 и 3 имеют $\Delta_r G_{298}^{\circ} > 0$, поэтому маловероятны для стандартной температуры.

Применение метода атомного баланса позволяет определить принадлежность продуктов взаимодействия в симплексе треугольника составов для 3–8 исходных смесей при их расплавлении и кристаллизации. Однако не все возможные пересечения стабильного и нестабильного комплексов, а также произвольно выбранные смеси оксидов и двойных оксидов из примеров 3–7, могут быть описаны соответствующими реакциями взаимодействия. Необходимо термодинамическое подтверждение протекания химических реакций.

ЗАКЛЮЧЕНИЕ

Построено древо фаз системы $Al_2O_3-MgO-TiO_2$, которое представлено шестью стабильными треугольниками, соединяющимися между собой пятью стабильными секущими. С учетом данных по двойным системам и секущим $Al_2TiO_5-MgTi_2O_5$ и $MgAl_2O_4-Mg_2TiO_4$ выполнен прогноз кристаллизующихся фаз.

Описаны реакции обмена (метатезиса) для смесей, отвечающих составам точек пересечения стабильных и нестабильных секущих. Смеси на стабильных секущих могут быть получены из нескольких нестабильных секущих.

Методом атомного баланса описано взаимодействие для любых смесей веществ от 3 до 8, входящих в тройную систему. Используя этот метод, можно корректировать исходную шихту из оксидов и двойных оксидов при определении смеси после расплавления и кристаллизации в соответствующем фазовом вторичном треугольнике.

Работа выполнена при финансовой поддержке Минобрнауки РФ в рамках проектной части государственного задания № 0778-2020-0005.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ilatovskaia M., Saenko I., Savinykh G., Fabrichnaya O.* Experimental study of phase equilibria in the Al₂O₃−MgO−TiO₂ system and thermodynamic assessment of the binary MgO−TiO₂ system // J. Am. Ceram. Soc. 2018. V. 101. № 11. P. 5198–5218.
- Shi J.J., Sun L.F., Qiu J.Y., Zhang B., Jiang M.F. Phase equilibria of CaO–SiO₂–5 wt % MgO– 10 wt % Al₂O₃–TiO₂ system at 1300 degrees C and 1400°C relevant to Ti-bearing furnace slag // J. Alloys and Compd. 2017. V. 699. P. 193–199.
- 3. Sun L.F., Shi J.J., Zhang B., Qiu J.Y., Wang Z.Y., Jiang M.F. Liquidus and phase equilibria in CaO– SiO₂−5% MgO-20% Al₂O₃−TiO₂ system // J. Cent. South Univ. 2017. V. 24. № 1. P. 48–55.
- 4. Shi J.J., Sun L.F., Qiu J.Y., Wang Z.Y., Zhang B., Jiang M.F. Experimental Determination of the Phase Diagram for CaO–SiO₂–MgO–10% Al₂O₃–5TiO₂ // ISIJ International. 2016. V. 56. № 7. P. 1124–1131.
- 5. *Guo C.H., Zhang Y.X.* Multicomponent diffusion in silicate melts: SiO₂-TiO₂-Al₂O₃-MgO-CaO-Na₂O-K₂O system // Geochimica et Cosmochimica Acta. 2019. V. 259. P. 412-412.
- 6. Sun L.F, Shi J.J., Yu Z., Jiang M.F. Phase equilibria and liquidus surface of CaO–SiO₂–5 wt % MgO–Al₂O₃–TiO₂ slag system // Ceramics International. 2019. V. 45. № 1. P. 481–487.
- 7. Shi J.J., Sun L.F., Qiu J.Y., Jiang M.F. Phase Equilibrium Investigation for CaO–SiO₂–5 wt % MgO–20 wt % Al₂O₃–TiO₂ System Relevant to Ti-bearing Slag System // ISIJ International. 2018. V. 58. № 3. P. 431–438.

- Shi J.J., Chen M., Santoso I., Sun L.F., Jiang M.F., Taskinen P., Jokilaakso A. 1250°C liquidus for the CaO-MgO-SiO₂-Al₂O₃-TiO₂ system in air // Ceramics International. 2020. V. 46. № 2. P. 1545-1550.
- 9. *Shi J.J., Chen M., Wan X.B., Taskinen P., Jokilaakso A.* Phase Equilibrium Study of the CaO– SiO₂-MgO–Al₂O₃-TiO₂ System at 1300 degrees C and 1400°C in Air // JOM. 2020. V. 72. № 9. P. 3204–3212.
- 10. Gao Y.H., Liang Z.Y., Liu Q.C., Bian L.T. Effect of TiO₂ on the Slag Properties for CaO-SiO₂-MgO-Al₂O₃-TiO₂ System // Asian J. Chemistry. 2012. V. 24. № 11. P. 5337–5340.
- Ma X.D., Zhang D.W., Zhao Z.X., Evans T., Zhao B.J. Phase Equilibria Studies in the CaO-SiO₂-Al₂O₃-MgO System with CaO/SiO₂ Ratio of 1.10 // ISIJ International. 2016. V. 56. № 4. P. 513– 519.
- 12. Ma X.D., Wang G., Wu S.L., Zhu J.M., Zha B.J. Phase Equilibria in the CaO-SiO₂-Al₂O₃-MgO System with CaO/SiO₂ Ratio of 1.3 Relevant to Iron Blast Furnace Slags // ISIJ International. 2015. V. 55. № 11. P. 2310-2317.
- Yao Z., Ma X.D., Lyu S. Phase equilibria of the Al₂O₃-CaO-SiO₂-(0%, 5%, 10%) MgO slag system for non-metallic inclusions control // Calphad-Computer Coupling of Phase Diagrams and Thermochemistry. 2021. V. 72. N Article 102227.
- Masahiro F, Toshinobu Y, Masahide T. Decomposition Free Al₂TiO₅-MgTi₂O₅ Ceramics with Low-Thermal Expansion Coefficient // New Journal of Glass and Ceramics. 2013. V. 3. P. 111–115.
- 15. Xirouchakis D., Smirnov A., Woody K., Lindsley D.H., Andersen F.J. Thermodynamics and stability of pseudobrookite-type MgTi₂O₅ (karrooite) // American Mineralogist. 2002. V. 87. № 5–6. P. 658–667.
- 16. Афиногенов Ю.Н., Гончаров Е.Г., Семенова Г.В., Зломанов В.П. Физико-химический анализ многокомпонентных систем: Учеб. пособ. 2-е изд., перераб. и доп. М.: МФТИ, 2006. 332 с. ISBN 5-89981-438-1.
- Гаркушин И.К., Истомова М.А., Демина М.А., Колядо А.В. Курс физико-химического анализа: Учеб. пособ. Самара: Самар. гос. техн. ун-т, 2013. 352 с.
- 18. *Краева А.Г.* Определение комплексов триангуляции *п*-мерных полиэдров // Прикладная многокомпонентная геометрия. Сб. трудов МАИ. М.: МАИ, 1969. Вып. 187. С. 76–82.
- Краева А.Г., Давыдова Л.С., Первикова В.Н. Методы разбиения (триангуляции) диаграмм состава многокомпонентных взаимных систем с комплексным соединением с применением графов и ЭВМ // Докл. АН СССР, 1972. Т. 202. Вып. 4. С. 850–853.
- 20. Сечной А.И., Гаркушин И.К., Трунин А.С. Дифференциация четырехкомпонентной системы из шести солей Na, K, Ca || Cl, MoO₄ и схема описания химического взаимодействия // Журн. неорг. химии. 1988. Т. 33. Вып. 3. С. 752–755.
- 21. Сечной А.И., Гаркушин И.К. Фазовый комплекс многокомпонентных систем и химическое взаимодействие: Учеб. пособие. Самара: Самар. гос. техн. ун-т, 1999. 116 с.
- 22. Посыпайко В.И., Штер Г.Е., Васина Н.А. Практическое применение конверсионного метода анализа при исследовании пятикомпонентной взаимной системы из девяти солей Na, K, Ba ∥ F, MoO₄,WO₄ // Докл. АН СССР. Т. 28. Вып. 3. С. 613–618.
- Посыпайко В.И., Тарасевич С.А., Алексеева Е.А. Прогнозирование химического взаимодействия в системах из многих компонентов. М.: Наука, 1984. 216 с.
- Штер Г.Е., Трунин А.С. К вопросу о выявлении фазовых ячеек во взаимных системах с комплексообразованием // Многокомпонентные системы. Физ.-хим. анализ. Геометрия. Новосибирск, 1977. С. 29–35.
- 25. Посыпайко В.И. Методы исследования многокомпонентных систем. М.: Наука, 1978. 255 с.
- 26. Бережной А.С. Многокомпонентные системы окислов. Киев: Наукова думка, 1970. 544 с.
- 27. Термические константы веществ. Под ред. Глушко В.П. М.: ВИНИТИ, 1965-1981. Вып. І-Х.
- ACerS-NIST. Phase Equilibria Diagrams. CD-ROM Database. Version 3.1.0. American Ceramic Society. National Institute of Standards and Technology. Режим доступа: http://ceramics.org// Дата: 12.05.2021.
- 29. Курнаков Н.С. Избранные труды, в 3- томах. М.: Изд-во АН СССР, 1960.
- 30. *Радищев В.П.* Многокомпонентные системы. М., 1963. 502 с. Рукопись деп. в ВИНИТИ № 15616-63-Деп.