КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ ИНТЕРМЕТАЛЛИЧЕСКИХ СИСТЕМ: НОВЫЕ ЧЕТЫРЕХСЛОЙНЫЕ КЛАСТЕРЫ *К*339 = Tb@18@42@86@192 И ТРЕХСЛОЙНЫЕ КЛАСТЕРЫ *К*147 = Tb@18@42@86) И *К*124 = 0@8@26@90 В КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ Tb₁₁₇Fe₅₂Ge₁₁₂-*cF*1124

© 2022 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин³

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

² Межвузовский научно-исследовательский центр по теоретическому материаловедению, Самарский технический университет, ул. Молодогвардейская, 244, г. Самара, 443011 Россия

³Федеральный научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр., 59, Москва, 119333 Россия

*e-mail: shevchenko@isc.nw.ru

Поступила в редакцию 11.03.2021 г. После доработки 30.11.2021 г. Принята к публикации 06.12.2021 г.

С помощью компьютерных методов (пакета программ ToposPro) осуществлен геометрический и топологический анализ кристаллической структуры интерметаллида $Tb_{117}Fe_{52}Ge_{112}$ -*cF*1124 с гигантскими значениями параметров кубической ячейки a = 28.580 Å, V = 23344.61 Å³, и пр. группой *Fm*-3*m*. Установлены 575 вариантов кластерного представления 3D атомной сетки с числом структурных единиц от 3 до 8. Рассмотрены два варианта самосборки кристаллической струкчетырехслойных кластеров-прекурсоров туры ИЗ *K*339 = Tb@18(Fe₁₂Ge₆)@42(Ge₁₈Tb₂₄)@86(Ge₃₂Tb₅₄)@192(Ge₇₂Fe₄₈Tb₇₂), и двух трехслойных кластеров $K147 = Tb@18(Fe_{12}Ge_6)@42(Ge_{18}Tb_{24})@86(Ge_{32}Tb_{54})$ и K124 = $= 0@8Fe@26(Fe_8Tb_{18})@90(Ge_{42}Tb_{48})$. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из новых кластеров-прекурсоров в виде: первичная цепь \rightarrow слой \rightarrow каркас.

Ключевые слова: интерметаллид $Tb_{117}Fe_{52}Ge_{112}$ -*cF*1124, самосборка кристаллической структуры, четырехслойные нанокластеры-прекурсоры *K*339 = Tb@18@42@86@192, трехслойные нанокластеры-прекурсоры *K*147 = Tb@18@42@86 и *K*124 = 0@8@26@90 **DOI:** 10.31857/S0132665122020068

ВВЕДЕНИЕ

В двойных системах А–В [1, 2] наиболее кристаллохимически сложными структурами с гигантским числом атомов в элементарной кубической ячейке, превышающим 1000, являются кубические интерметаллиды, известные как фазы Camcona NaCd₂-cF1157 [3, 4], Cu₄Cd₃-cF1124 [5], Mg₂Al₃-cF1227 [6].

В работах [7–9] с помощью компьютерных методов (пакета программ ToposPro [10]) проведен геометрический и топологический анализ указанных структур и установлено, что их образование происходит с участием двух различных наноразмерных кластеров. Для интерметаллидов NaCd₂ и Mg₂Al₃ установлены икосаэдрический нанокластер *K*63 = 1@12@50 и нанокластер с внутренним полиэдром Фриауфа *K*61 = = 1@16@44 [7, 8]. Каркасная структура интерметаллида Cu₄Cd₃ формируется с участием трехслойного нанокластера $K139 = 1@16@52@70_{c}$ внутренним полиэдром Фриауфа, и 86-атомного супраполиэдрического кластера K86 из восьми связанных по вершинам икосаэдров [9].

Среди тройных интерметаллидов кристаллическая структура с гигантским числом атомов в элементарной ячейке, превышающим 1000, впервые была установлена в 1987 г. для Tb₁₁₇Fe₅₂Ge₁₁₂-*cF*1124 [11] и затем в 1991 г. для изоструктурного Pr₁₁₇Co₅₂Ge₁₁₂-*cF*1124 [12]. В работе [13] осуществлен синтез и приведены кристаллохимические данные новых интерметаллидов семейства $TR_{117}Fe_{52}Ge_{112}$ (TR = Gd, Dy, Ho, Er, Tm) и интерметаллида Sm₁₁₇Cr₅₂Ge₁₁₂. В настоящее время известны 5 кристаллохимических семейств $TR_{117}Cr_{52}Ge_{112}$ (TR = Nd и Sm), $TR_{117}Fe_{52}Ge_{112}$ (TR = Y, Pr, Sm, Gd, Dy, Ho, Er, Tm, Lu), $TR_{117}Co_{52}Ge_{112}$ (TR = Pr и Sm), $TR_{117}Ni_{53-y}Sn_{112-z}$ (TR = Gd, Tb, Dy) и $TR_{117}Co_{52-x}Sn_{112-y}$ (TR = Pr, Sm, Gd, Tb, Dy) [1, 2].

В настоящей работе проведен геометрический и топологический анализ кристаллической структуры Tb_{117} Fe₅₂Ge₁₁₂-cF1124. Рассмотрены два варианта самосборки кристаллической структуры с участием четырехслойных нанокластеров-прекурсоров *К*339 и трехслойных кластеров-прекурсоров *К*147 и *К*124. Реконструирован симметрийный и топологический код процессов самосборки 3D структуры из кластеров-прекурсоров в виде: первичная цепь \rightarrow слой \rightarrow каркас.

Работа продолжает исследования [7–9, 14–20] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [10]. Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число атомов в k-ой координационной сфере данного атома. Полученные значения координационных последовательностей атомов в 3D-сетках приведены в табл. 1, в которой также даны число и типы соседних атомов в ближайшем окружении, т.е. в первой координационной сфере атома.

Алгоритм разложения в автоматическом режиме структуры интерметаллида, представленного в виде свернутого графа на кластерные единицы, приведен в работах [7–9].

САМОСБОРКА КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ Тb₁₁₇Fe₅₈Ge₁₁₂-*cF*1124

Использованный нами метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографическом пространстве [14–20]. На первом уровне самоорганизации системы определяется механизм формирования первичной цепи структуры из нанокластеров 0-уровня, сформированных на темплатной стадии химической эволюции системы, далее – механизм самосборки из цепи микрослоя (2-ой уровень) и затем из микрослоя – трехмерного микрокаркаса структуры (3-й уровень).

Кристаллографические данные Tb₁₁₇Fe₅₈Ge₁₁₂-cF1124

Пространственная группа *Fm*-3*m* (по. 225) характеризуется позициями с симметрией: *m*-3*m* (4*a*, 4*b*), -43m (8*c*), *mmm* (24*d*) и др.

Атом	Окружение	Координационные последовательности N ₁ -N ₅
Fe1	2Fe + 5Ge + 5Tb	12 51 107 195 341
Fe2	1Fe + 3Ge + 6Tb	10 43 103 202 362
Fe3	4Fe + 3Ge + 5Tb	12 41 95 200 333
Fe4	4Fe + 6Tb	10 51 137 248 409
Gel	1Fe + 8Tb	9 49 115 218 337
Ge2	1Ge + 9Tb	10 51 112 218 355
Ge3	1Ge + 9Tb	10 57 145 226 378
Ge4	3Fe + 3Ge + 4Tb	10 46 98 189 319
Ge5	1Fe + 2Ge + 7Tb	10 50 116 203 346
Ge6	4Fe + 1Ge + 5Tb	10 38 93 189 321
Ge7	4Fe + 2Ge + 5Tb	11 47 99 191 320
Ge8	1Fe + 1Ge + 7Tb	9 50 113 221 375
Ge9	3Fe + 3Ge + 6Tb	12 49 107 186 334
Tb1	3Fe + 7Ge + 7Tb	17 51 119 229 381
Tb2	2Fe + 7Ge + 5Tb	14 51 121 218 344
Tb3	2Fe + 6Ge + 6Tb	14 52 125 225 364
Tb4	7Ge + 8Tb	15 58 131 240 388
Tb5	4Fe + 5Ge + 6Tb	15 53 127 253 387
Tb6	4Fe + 5Ge + 8Tb	17 61 146 270 414
Tb7	12Fe + 10Ge	22 40 100 202 286
Tb8	12Fe + 6Ge6	18 42 86 192 344

Таблица 1. Локальное окружение атомов Fe, Ge, Tb в структуре $Tb_{117}Fe_{52}Ge_{112}$ и значения их координационных последовательностей

Для атомов Tb установлены значения координационных чисел KU = 14 (2 атома), 15 (2 атома), 17 (2 атома), 18 и 22, для атомов Fe = 10 (2 атома) и 12 (2 атома) и атомов Ge = 9 (2 атома), 10 (5 атомов) и 11 (табл. 1).

Метод полного разложения 3D фактор-графа структуры на кластерные подструктуры был использован для определения каркас-образующих нанокластеров кристаллической структуры. Установлены 575 вариантов кластерного представления 3D атомной сетки с числом структурных единиц от 3 до 8 (табл. 2). Число вариантов разложения на кластерные подструктуры с числом выделенных кластеров, равным 3, 4, 5, 6, 7 и 8, составило 11, 33, 92, 156, 170, 114.

Рассмотрим два основных варианта самосборки кристаллической структуры: первый — из четырехслойных кластеров-прекурсоров K339 = Tb@18@42@86@192 (рис. 1, табл. 3) и второй — из трехслойных кластеров K147 = Tb@18@42@86 (рис. 1, табл. 4) и трехслойных кластеров K124 = 0@8@26@90 (рис. 2, табл.5) с максимальной симметрией *m*-3*m*. **Таблица 2.** Варианты кластерного представления кристаллической структуры Tb₁₁₇Fe₅₂Ge₁₁₂. Указан центральный атом полиэдрического кластера, число его оболочек (в первой скобке) и количество атомов в каждой оболочке (во второй скобке). Кристаллографические позиции, соответствующие центрам пустот полиэдрических кластеров обозначены ZA1 и ZA2

Три структурные единицы
Tb8(4)(1@18@42@86@192) Tb7(1)(1@22) Fe2(0)(1)
Tb8(4)(1@18@42@86@192) Tb7(1)(1@22) Fe2(1)(1@10)
Tb8(4)(1@18@42@86@192) Fe2(0)(1) Ge4(1)(1@10)
Tb8(4)(1@18@42@86@192) Fe2(1)(1@10) Ge4(1)(1@10)
Tb8(3)(1@18@42@86) Tb7(1)(1@22) Tb5(1)(1@15)
Tb8(2)(1@18@42) Tb7(2)(1@22@40) Tb5(1)(1@15)
Tb8(3)(1@18@42@86) Tb7(2)(1@22@40) Tb5(1)(1@15)
Tb8(3)(1@18@42@86) Ge4(1)(1@10) Tb5(1)(1@15)
Tb8(3)(1@18@42@86) Ge7(1)(1@11) Tb5(1)(1@15)
ZA1(4b)(3)(0@8@26@90) Tb8(2)(1@18@42) Tb7(2)(1@22@40)
4 структурных единицы
Tb8(1)(1@18) Tb7(2)(1@22@40) Fe2(1)(1@10) Tb4(1)(1@15)
Tb8(2)(1@18@42) Tb7(2)(1@22@40) Fe2(1)(1@10) Tb4(1)(1@15)
Tb8(2)(1@18@42) Tb7(1)(1@22) Ge9(1)(1@12) Tb5(1)(1@15)
Tb8(2)(1@18@42) Tb7(1)(1@22) Tb5(1)(1@15) Ge5(1)(1@10)
Tb8(2)(1@18@42) Ge4(1)(1@10) Ge9(1)(1@12) Tb5(1)(1@15)
Tb8(2)(1@18@42) Ge4(1)(1@10) Tb5(1)(1@15) Ge5(1)(1@10)
Tb8(2)(1@18@42) Ge9(1)(1@12) Ge7(1)(1@11) Tb5(1)(1@15)
Tb8(2)(1@18@42) Ge7(1)(1@11) Tb5(1)(1@15) Ge5(1)(1@10)
ZA1(4b)(3)(0@8@26@90) Tb8(2)(1@18@42) Tb7(1)(1@22) Ge9(1)(1@12)
ZA1(4b)(3)(0@8@26@90) Tb8(2)(1@18@42) Tb7(1)(1@22) Ge5(1)(1@10)
ZA1(4b)(3)(0@8@26@90) Tb8(2)(1@18@42) Ge4(1)(1@10) Ge9(1)(1@12)
ZA1(4b)(3)(0@8@26@90) Tb8(2)(1@18@42) Ge4(1)(1@10) Ge5(1)(1@10)
ZA1(4b)(3)(0@8@26@90) Tb8(2)(1@18@42) Ge9(1)(1@12) Ge7(1)(1@11)
8 структурных единиц
ZA2(24d)(1)(0@12) ZA1(4b)(2)(0@8@26) Tm8(1)(1@18) Tm7(1)(1@22) Ge3(1)(1@10) Ge9(1)(1@12) Ge1(1)(1@9) Ge8(0)(1)
ZA2(24d)(1)(0@12) ZA1(4b)(2)(0@8@26) Tm8(1)(1@18) Tm7(1)(1@22) Ge3(1)(1@10) Ge9(1)(1@12) Ge1(0)(1) Ge8(0)(1)
ZA2(24d)(1)(0@12) ZA1(4b)(2)(0@8@26) Tm8(1)(1@18) Tm7(1)(1@22) Ge3(0)(1) Ge9(1)(1@12) Ge1(1)(1@9) Ge8(0)(1)
ZA2(24d)(1)(0@12) ZA1(4b)(2)(0@8@26) Tm8(0)(1) Tm7(1)(1@22) Ge3(1)(1@10) Ge9(1)(1@12) Ge1(1)(1@9) Ge8(0)(1)
ZA2(24d)(1)(0@12) ZA1(4b)(2)(0@8@26) Tm8(1)(1@18) Tm7(1)(1@22) Ge3(1)(1@10) Ge9(1)(1@12) Ge1(0)(1) Ge8(1)(1@9)
ZA2(24d)(1)(0@12) ZA1(4b)(2)(0@8@26) Tm8(1)(1@18) Tm7(1)(1@22) Ge3(1)(1@10) Ge9(0)(1) Ge1(0)(1) Ge8(1)(1@9)
ZA2(24d)(1)(0@12) ZA1(4b)(1)(0@8) Tm8(1)(1@18) Tm7(1)(1@22) Ge3(1)(1@10) Ge9(0)(1) Ge1(0)(1) Ge8(1)(1@9)
ZA2(24d)(1)(0@12) ZA1(4b)(2)(0@8@26) Tm8(1)(1@18) Tm7(1)(1@22) Ge3(0)(1) Ge9(1)(1@12) Ge1(0)(1) Ge8(1)(1@9)
ZA2(24d)(1)(0@12) ZA1(4b)(1)(0@8) Tm8(1)(1@18) Tm7(1)(1@22) Ge3(0)(1) Ge9(1)(1@12) Ge1(0)(1) Ge8(1)(1@9)
ZA2(24d)(1)(0@12) ZA1(4b)(1)(0@8) Tm8(1)(1@18) Tm7(1)(1@22) Ge3(1)(1@10) Ge9(1)(1@12) Ge1(0)(1) Ge8(1)(1@9)

Рис. 1. Кластерные структуры К19, К61, К147 и К339. Здесь и далее длины связей указаны в Å.

Вариант 1. Четырехслойный кластер-прекурсор K339 с центром в позиции 4*a* характеризуется внутренним 19-атомным полиэдром Tb@18(Fe₁₂Ge₆), 42 атомами Ge₁₈Tb₂₄ во второй оболочке, 86 атомами в третьей оболочке Ge₃₂Tb₅₄ и 192 атомами в четвертой оболочке Ge₇₂Fe₄₈Tb₇₂ (табл. 3). Кластеры-прекурсоры *K*339 формируют слой, в пустотах которого расположены атомы-спейсеры Fe и Tb (рис. 3).

Вариант 2. Трехслойный нанокластер K124 = 0@8Fe@26(Fe₈Tb₁₈)@90(Ge₄₂Tb₄₈) с центром в позиции 4*b* характеризуется внутренним 8-атомным полиэдром 0@8Fe, 26 атомами Fe₈Tb₁₈ во второй оболочке и 90 атомами в третьей оболочке Ge₄₂Tb₄₈ (рис. 2). Другой трехслойный нанокластер $K147 = Tb@18(Fe_{12}Ge_6)@42(Ge_{18}Tb_{24})@86(Ge_{32}Tb_{54})$ с центром в позиции 4*a* характеризуется внутренним 19-атомным полиэдром Tb@18(Fe₁₂Ge₆), 42 атомами Ge₁₈Tb₂₄ во второй оболочке и 86 атомами в третьей оболочке Ge₃₂Tb₅₄ (рис. 4). В пустотах каркаса из связанных кластеров K124 и K147 расположены полиэдрические кластеры $K23 = Tb@22(Fe_{12}Ge_{10})$ в позиции 8*c* с симметрией *m*-3*m*.

Нанокластер К339					
Полиэдр 1@18	42-атомная оболочка	86-атомная оболочка	192-атомная оболочка		
1 Tb8	12 Ge1	24 Ge5	24 Fe1		
12 Fe3	6 Ge3	8 Ge9	24 Fe4		
6 Ge6	24 Tb3	24 Tb2	24 Ge2		
		24 Tb4	24 Ge7		
		6 Tb6	24 Ge8		
			48 Tb1		
			24 Tb5		
18 вершин, 48 ребер, 32 граней	42 вершины, 120 ребер, 80 граней	86 вершин, 228 ребер, 144 грани	192 вершин, 492 ребер, 302 граней		

Таблица 3. Нанокластер К339. Атомы, формирующие внутренний полиэдр 1@18, 42-, 86- и 192атомную оболочку

Всего 339 атомов

Таблица 4.	Нанокластер	<i>K</i> 124. Атомь	, формирующие	внутренний	полиэдр	0@8, 26-	и 90-атом-
ную оболоч	іку						

Полиэдр 0@8	26-атомная оболочка	90-атомная оболочка
1 ZA1 (4b)	8 Fe2	12 Ge2
8 Fe4	12 Tb5	6 Ge3
	6 Tb6	24 Ge8
		24 Tb1
		24 Tb4
8 вершин, 12 ребер, 6 граней	26 вершины, 48 ребер, 24 граней	90 вершин, 240 ребер, 152 граней

Всего 124 атома

Таблица 5.	Трехслойный кластер	<i>K</i> 147. Атомы,	формирующие	внутренний	полиэдр	1@18,	42-и
86-атомну	ю оболочку						

Кластер К147						
Полиэдр 1@18	42-атомная оболочка	86-атомная оболочка				
1 Tb8	12 Ge1	24 Ge5				
12 Fe3	6 Ge3	8 Ge9				
6 Ge6	24 Tb3	24 Tb2				
		24 Tb4				
		6 Tb6				
18 вершин, 48 ребер, 32 граней	42 вершины, 120 ребер, 80 граней	86 вершин, 228 ребер, 144 грани				

Всего 147 атомов

Рис. 2. Кластерные структуры *К*8, *К*34, и *К*124.

Рис. 3. Слой из четырехслойных кластеров КЗЗ9. В пустотах расположены атомы-спейсеры Fe и Tb.

Самосборка кристаллической структуры Tb₁₁₇Fe₅₈Ge₁₁₂-cF1148 из кластеров K147 и K124

Первичная цепь. Самосборка первичных цепей происходит при связывании кластеров *K*147 с *K*124 в направлении [100] (рис. 4). Расстояние между центрами кластеров соответствует половине длины вектора трансляции a/2 = 28.58 Å/2 = 14.29 Å.

Самосборка слоя. Образование микрослоя S_3^2 происходит при связывании параллельно расположенных первичных цепей в плоскости (001). На этой стадии в пустотах микрослоя происходит локализация кластеров $K23 = Tb@22(Fe_{12}Ge_{10})$ (рис. 4). Расстояние между центрами кластеров из соседних цепей в направлениях [100] и [010] соответствует длинам векторов a/2 = b/2 = 14.29 Å.

Самосборка каркаса. Микрокаркас структуры S_3^3 формируется при связывании двух микрослоев в направлении [001]. Расстояние между микрослоями определяет длину вектора трансляции c/2 = 14.29 Å.

Рис. 4. Слой из трехслойных кластеров *K*124 и *K*147. В пустотах расположены полиэдры-спейсеры K23 = Tb@22 (Fe₁₂Ge₁₀).

ЗАКЛЮЧЕНИЕ

Осуществлен геометрический и топологический анализ кристаллической структуры интерметаллида $Tb_{117}Fe_{58}Ge_{112}$ -cF1148. Рассмотрены два варианта самосборки кристаллической структуры из четырехслойных кластеров-прекурсоров K339 = Tb@18@42@86@192, и трехслойных кластеров-прекурсоров K147 = Tb@18@42@86 и K124 = 0@8@26@90. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из нанокластеров-прекурсоров в виде: первичная цепь \rightarrow слой \rightarrow каркас.

Нанокластерный анализ и моделирование самосборки кристаллических структур выполнено при поддержке Российского фонда фундаментальных исследований (РФФИ № 19-02-00636) и Минобрнауки РФ в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, топологический анализ выполнен при поддержке Минобрнауки РФ в рамках государственного задания № 0778-2020-0005.

СПИСОК ЛИТЕРАТУРЫ

- 1. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- 2. *Villars P., Cenzual K.* Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- 3. Samson S. Crystal structure of NaCd₂ // Nature (London). 1962. V. 195. № 4838. P. 259–262.
- 4. *Samson S.* A method for the determination of complex cubic metal structures and its application to the solution of the structure of NaCd₂ //Acta Cryst. 1964. V. 17. P. 491–495.
- 5. *Samson S*. The crystal structure of the intermetallic compound Cu₄Cd₃ // Acta Cryst. 1967. V. 23 P. 586–600.
- 6. Samson S. The crystal structure of the phase β -Mg₂Al₃ // Acta Cryst. 1965. V. 19. P. 401–413.
- Blatov V.A., Ilyushin G.D., Proserpio D. M. Nanocluster model of intermetallic compounds with giant unit cells: β, β'-Mg₂Al₃ polymorphs // Inorg. Chem. 2010. V. 49. № 4. P. 1811–1818.
- 8. Shevchenko V.Ya., Blatov V.A., Ilyushin G.D. Intermetallic compounds of the NaCd₂ family perceived as assemblies of nanoclusters // Struct. Chem. 2009. V. 20. № 6. P. 975–982.
- Blatov V.A., Ilyushin G.D. New Method for Computer Analysis of Complex Intermetallic Compounds and Nanocluster Model of the Samson Phase Cd₃Cu₄// Crystallogr. Rep. 2010. V. 55. № 7. P. 1100–1105.
- 10. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.
- Печарский В.Л., Бодак О.И., Бельский В.К. Кристаллическая структура Tb₁₁₇Fe₅₂Ge₁₁₂ // Кристаллография. 1987. Т. 32. С. 334–338.
- 12. Федина М.Ф., Бодак О.И., Печарский В.К. Взаимодействия в системе Pr-Co-Ge system // Известия АН. Неорганические материалы. 1991. Т. 27. С. 918–920.
- Morozkin A.V., Seropegin Y.D., Portnoy V.K., Sviridov I.A., Leonov A.V. New ternary compounds R₁₁₇Fe₅₂Ge₁₁₂ (R = Gd, Dy, Ho, Er, Tm) and Sm₁₁₇Cr₅₂Ge₁₁₂ of the Tb₁₁₇Fe₅₂Ge₁₁₂-type srtucture // Materials Research Bulletin. 1998. V. 33. № 6. P. 903–908.
- 14. Shevchenko V.Ya., Blatov V.A., Ilyushin G.D. Cluster Self-Organization of Intermetallic Systems: New Two-Layer Nanocluster Precursors K64 = 0@8(Sn4Ba4)@56(Na4Sn52) and K47 = Na@Sn16@Na30 in the Crystal Structure of Na52Ba4Sn80-cF540 // Glass Physics and Chemistry. 2020. V. 46. P. 448–454.
- Ilyushin G.D. Intermetallic Compounds K_nM_m (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 7. P. 1095–1105.
- 16. Ilyushin G.D. Intermetallic Compounds Na_kM_n (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 4. P. 539–545.
- 17. Shevchenko V.Ya., Blatov V.A., Ilyushin G.D. Cluster Self-Organization of Intermetallic Systems: New Three-Layer Cluster Precursor K136 = 0@Zn12@32(Mg₂₀Zn₁₂)@92(Zr₁₂Zn₈₀) and a New Two-Layer Cluster Precursor K30 = 0@Zn₆@Zn₂₄ in the Crystal Structure of Zr₆Mg₂₀Zn₁₂₈-cP154 // Glass Physics and Chemistry. 2020. V. 46. № 6. P. 455–460.
- 18. Ilyushin G.D. Intermetallic Compounds Li_kM_n (M = Ag, Au, Pt, Pd, Ir, Rh): Geometrical and Topological Analysis, Tetrahedral Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 2. P. 202–210.
- Ilyushin G.D. Cluster Self-Organization of Intermetallic Systems: 124-Atom Cluster 0@12@32@80 and 44-Atom Cluster 0@12@32 for the Self-Assembly of Li₄₈Na₈₀Ga₃₃₂-oF920 Crystal Structure // Crystallography Reports. 2019. V. 64. № 6. P. 857–861.
- 20. *Ilyushin G.D.* Symmetry and Topology Code of Cluster Crystal Structure Self-Assembly for Metal Oxides: $Cs_{11}O_3$ -mP56, $Rb(Cs_{11}O_3)$ -oP30, $Cs(Cs_{11}O_3)$ -oP60, $Rb_3(Rb_4)$ $Cs_{11}O_3$)-oP84, $(Cs4)(Cs6)(Cs_{11}O_3)$ -*hP*24, Rb_9O_2 -mP22, $(Rb_3)(Rb_9O_2)$ -*hP*28, and $(Rb_2O)_3(Rb_{13})$ -*cF*176 // Russian J. Inorganic Chemistry. 2018. V. 63. № 12. P. 1590–1598.