ВЛИЯНИЕ ДОБАВОК ИНДИЯ НА КИНЕТИКУ И МЕХАНИЗМ ИЗОТЕРМИЧЕСКОЙ ОБЪЕМНОЙ КРИСТАЛЛИЗАЦИИ СТЕКЛА As₂Se₃

© 2022 г. Е. В. Школьников*

Санкт-Петербургский государственный лесотехнический университет им. С.М. Кирова, Институтский пер., 5, Санкт-Петербург, 194021 Россия

*e-mail: eshkolnikov@yandex.ru

Поступила в редакцию 16.09.2021 г. После доработки 05.10.2021 г. Принята к публикации 06.12.2021 г.

Выполнен анализ кинетики ступенчатой объемной кристаллизации стекол AsSe_{1.5}In_{0.01} при температурах 200, 220, 240 и 260°С и AsSe_{1.5}In_{0.025} при 240°С по данным измерения плотности закаленных материалов с использованием обобщенного уравнения Колмогорова–Аврами, результатов дифференциального термического и количественного рентгенофазового анализа и микроскопических наблюдений. Установлено значительное ускорение объемного гетерогенного зарождения пластичатых кристаллов основной фазы As₂Se₃ первичной микрофазой In₂Se₃, выделяющейся равномерно по всему объему монолитного стекла при изотермической кристаллизации в интервале 200–260°С. Исследованы параметры удельной электропроводности и микротвердость закаленных полупроводниковых ситаллов на различных этапах термообработки.

Ключевые слова: объемная изотермическая кристаллизация стекол, обобщенное уравнение Колмогорова—Аврами, кинетические параметры массовой объемной кристаллизации, зарождение и рост кристаллов

DOI: 10.31857/S0132665122020081

введение

Чистое полупроводниковое стекло As_2Se_3 при термообработке значительно выше температуры стеклования T_g (174 ± 2°C) кристаллизуется преимущественно с поверхности в изотермических [1] и неизотермических условиях [2], как и многие халькогенидные [3] и оксидные [4] стекла. При легировании стекла As_2Se_3 оловом [5], свинцом [6], висмутом [7], индием или другими специально подобранными добавками [8, 9] наблюдается объемная кристаллизация полученных стекол при оптимальной термообработке. Небольшие добавки индия способны значительно изменять физико-химические свойства, механизм и скорость кристаллизации халькогенидных стекол [8, 10] и пленок [11].

Влияние малых добавок индия на характер и кинетические параметры кристаллизации стекла As₂Se₃ изучено недостаточно.

Цель работы — сравнительный анализ кинетики и механизма массовой изотермической кристаллизации стекол $AsSe_{1.5}In_x$ (x = 0.01 и 0.025, что соответствует 0.4 и 1 ат. % In) в интервале температур 200–260°С с использованием данных [8] и дополнительного экспериментального исследования кристаллизации стекла As_2Se_3 , легированного индием.

МЕТОДИКА ЭКСПЕРИМЕНТА

Синтез монолитных стекол $AsSe_{1.5}In_{0.01}$ (состав I) и $AsSe_{1.5}In_{0.025}$ (состав II) с концентрацией индия, близкой к предельной (~1.2 ат. %), выполняли методом вакуумной плавки из особо чистых элементных веществ общей массой 7 г в интервале 700-950°C с последующей жесткой закалкой кварцевых ампул с расплавами от 900°С соответственно в потоке воздуха и в холодной воде. Для контроля стеклообразного состояния и однородности закаленных сплавов использовали инфракрасный микроскоп МИК-1 и металлографический микроскоп МИМ-8. Концентрацию индия в стеклах проверяли методом эмиссионного спектрального анализа с градуировкой по эталонным порошковым смесям и фотометрией аналитической линии 3258.6 А. Кинетику объемной изотермической кристаллизации стекол, прерываемой закалкой в воздухе, исследовали в форме шлифованных дисков в закрытых бюксах. Микротвердость полированных дисков *Н* измеряли на приборе ПМТ-3, эффективную плотность *d* кристаллизующихся стекол определяли при комнатной температуре гидростатическим взвешиванием в толуоле. Дифференциальный термический анализ (ДТА) порошков проводили в вакуумированных кварцевых ампулах на дериватографе системы F. Paulik, J. Paulik, L. Erdey, а качественный и количественный рентгенофазовый анализ (РФА) — на дифрактометре УРС-50ИМ и ДРОН-2 в Си K_{α} -излучении с никелевым фильтром. Измерение удельной электропроводности о полупроводниковых сплавов выполняли в изотермических условиях в интервале 20-100°С или 20-200°С с помощью моста постоянного тока Р4060.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Температурный интервал кристаллизации стекол выбирали с учетом результатов ДТА для стекол AsSe_{1.5}In_{0.01} ($T_g = 172 \pm 2$ °C) и AsSe_{1.5}In_{0.025} ($T_g = 178 \pm 2$ °C). При нагревании стеклопорошков со скоростью 1–11°C/мин наблюдали экзотермический эффект кристаллизации при 280–353°C и эндотермический эффект плавления основной стабильной фазы α -As₂Se₃ при 370–388°C. На термограммах нагревания стекла AsSe_{1.5}In_{0.025} отмечали еще заметный экзотермический эффект кристаллизации при 262 ± 5°C (рис. 1). Согласно данным РФА [12], в стеклокристаллических материалах AsSe_{1.5}In_x ($x \le 0.3$) кристаллической фазой является селенид индия In₂Se₃ [12].

Соединение In_2Se_3 — слоистый фоточувствительный, термо- и сегнетоэлектрический материал, применяемый в полупроводниковой электронике и оптоэлектронике [13] и образующий несколько полиморфных модификаций с близким строением и трудно различимых методами рентгенографии и электронографии [14, 15]. Наиболее изучены и востребованы низкотемпературные полуметаллические ромбоэдрическая и гексагональная α -модификации, переходящие при температуре ~200°C в ромбоэдрическую полупроводниковую β -модификацию (200–520°C) с уменьшением параметров элементарной ячейки на 0.8–1.8%. При охлаждении фаза β -In₂Se₃ медленно трансформируется в α -In₂Se₃, а порошки и пленки β -In₂Se₃ длительно сохраняются при комнатной температуре [16].

Кристаллические анизотропные структуры α - и β -In₂Se₃ различаются укладкой атомных слоев внутри пятислойных пакетов Se–In–Se с преимущественно ковалентными прочными связями In–Se внутри слоев (длина 0.251 нм, энергия 246 ± 2 кДж/моль, согласно структурно-термодинамическому расчету автора) и весьма слабыми силами Ван дер Ваальса между слоями. Электрические и другие физические свойства кристаллов In₂Se₃ сушественно различаются [17, 18] из-за дефектной структуры с вакансиями в подрешетке индия и полиморфизма: при фазовом переходе $\alpha \rightarrow \beta$ часть атомов In смещается из октаэдрических пустот в тетраэдрические с сильным (на 6–7 поряд-

Рис. 1. Кривые кристаллизации и плавления стеклопорошка AsSe_{1.5}In_{0.025} при скорости нагревания 9°С/мин.

ков) падением электропроводности и повышением микротвердости (45 \rightarrow 80 кг/мм²). После закалки в воде расплава In₂Se₃ получается смесь ромбоэдрического и гексагонального α -In₂Se₃ [19].

Кинетика и механизм изотермической объемной кристаллизации стекол AsSe_{1.5}In_x (x = 0.01 и 0.025)

Кинетическое исследование кристаллизации проводили поэтапно в низкотемпературном интервале с повышенной скоростью объемного зарождения и низкой скоростью роста кристаллов [20] с использованием 2–4 образцов разных плавок при каждой температуре. Наблюдали выделение тонкодисперсной сравнительно высокоомной полупроводниковой фазы In₂Se₃ *n*-типа ($\rho_{20^\circ C} = 10^7 - 10^8$ Ом · см [18, 19]) на первой ступени и основной высокоомной фазы As₂Se₃ *p*-типа ($\rho_{20^\circ C} = 3 \times 10^{13}$ Ом · см) на второй ступени. На это указывали результаты измерения электропроводности и РФА закристаллизованных стекол после длительной термообработки при 260°С в вакуумирован-

		1			-			1.5 0.01	1
No	Bnewg	H+3	$-lg\sigma_{20^\circ C}$	$\textrm{lg}\sigma_0\pm0.1$	F + 0.03	d + 0.003	P_d	P_x	Фазовый состав
этапа	ч	и ± 5, кг/мм ²	(Ом ⁻¹	•см ⁻¹)	2 ₆ ± 0.05, ЭВ	и ± 0.005, г/см ³		%	по данным РФА
1	0	145	10.4	3.4	1.62	4.624	0	0	Аморфная
2	170	147	10.4	3.3	1.61	4.624	0	0	фаза
3	185	151	10.1	3.2	1.56	4.632	~50		In ₂ Se ₃
4	200	155	10.0	2.6	1.49	4.639			и аморфная фаза
5	220	154	9.6	2.9	1.52	4.640	~100	$\sim 100(In_2Se_3)$	φασα
6	258	136	9.3	1.8	1.30	4.648	6		In_2Se_{3}
7	275	144	9.0	1.4	1.22	4.656	10		As ₂ Se ₃ и аморфная
8	300	143	8.8	1.6	1.22^{X}	4.666	17		фаза
9	350	146	8.4	1.3	1.13	4.677	24		
10	373	139	8.3	1.7	1.17 ^X	4.693	35	$30(As_2Se_3)$	
11	400	127	8.1	1.7	1.14	4.708	45		
12	430	117	7.9	2.0	1.16 ^X	4.725	57		
13	455	80	7.6	2.0	1.17 ^X	4.743	69		
14	480	75	7.4	2.2	1.13	4.762	81	77	
15	503	72	7.2	2.4	1.12	4.786	97		
16	530	66	7.1	2.3	1.10	4.790	100	$100(As_2Se_3)$	
17	545	64	7.2	2.4	1.11	4.787			

Таблица 1. Экспериментальные данные объемной кристаллизации стекла AsSe_{1.5}In_{0.01} при 200°С

^X в интервале 100-200°С.

ных ампулах (межплоскостные расстояния d(hkl) основных рефлексов, равные 4.71, 3.14, 2.95 и 2.07 Å, близки к приведенным в работе [16] для ромбоэдрического β -In₂Se₃ при 205°C; для α -As₂Se₃ соответственно 4.98, 2.88, 2.84, 1.80, 1.78 Å). Результаты измерения микротвердости и микроскопические наблюдения с увеличением до 1800× свидетельствовали об однородности стеклокристаллических материалов(ситаллов) и высокой дисперсности формирующихся кристаллических фаз. По данным РФА, средний размер кристаллов фазы As₂Se₃ в исследованных ситаллах не превышал 100 нм, согласно определениям по формуле Шерера.

При низкотемпературной медленной кристаллизации стекол состава I наблюдали индукционный период τ_{uhg} (170 ± 28 ч при 200°С), в котором практически не изменялись плотность, микротвердость и параметры удельной электропроводности E_{σ} , σ_0 и lg $\sigma_{20^{\circ}C}$ (табл. 1–3, данные Н.П. Кривенковой и автора) в известном выражении $\sigma = \sigma_0 \exp(-E_{\sigma}/2kT)$ для собственной электропроводности полупроводников. При последующем выделении первичной фазы In₂Se₃ с более высокой плотностью (5.67 г/см³) постепенно возрастала эффективная плотность (в итоге на ~0.4%) закаленных ситаллов с заметным повышением микротвердости (табл. 1–2, этапы 3–5) и удельной электропроводности (табл. 1–2, этапы 3–5; рис. 2, кривые *I* и *2*).

Из-за малого содержания фазы In_2Se_3 в исследованных стеклах характер изменения плотности и микротвердости (рис. 2) определяется расстекловыванием (devitrification) вторичной основной фазы As_2Se_3 . Выделение кристаллической фазы As_2Se_3 постепенно повышало эффективную плотность (в итоге на ~3.9 и 3.1% в стеклах соответствен-

№ этапа	Время, ч	<i>H</i> ±3, кг∕мм²	$-lg\sigma_{20^\circ C}$	$\lg \sigma_0 \pm 0.1$	$E_{\sigma} \pm 0.03, \\ \Im B$	<i>d</i> ±0.002, г/см ³	<i>P</i> _d	Р _х %	Фазовый состав по данным РФА
1	0	146	10.5	3.4	1.63	4.625	0	0	Аморфная фаза
2	20	150	10.5	3.4	1.63	4.624	0	0	
3	40	160	10.5	3.6	1.65	4.627			In ₂ Se ₃
4	75	165	10.3	2.9	1.55	4.632	~50		и аморфная фза
5	90	155	10.1	2.8	1.51	4.640	100	$100(In_2Se_3)$	
6	100	152	9.7	2.4	1.43	4.649	5		In ₂ Se ₃ ,
7	110	150	9.3	1.6	1.28	4.676	22	$17(As_2Se_3)$	As ₂ Se ₃ и
8	120	143	9.1	1.7 2.5 ^x	1.26 1.36 ^x	4.703	40		аморфпал фаза
9	130	120	8.6	1.5 2.7 ^x	1.18 1.36 ^x	4.762	76	72	
10	150	98	8.2	1.8 3.3 ^x	1.17 1.38 ^x	4.770	81		
11	170	89	7.7	1.8	1.12	4.797	98		
12	179	76				4.798	99		
13	191	62	7.7	2.1 3.0	1.14 1.29 ^x	4.800	100	100(As ₂ Se ₃)	
14	239	60	7.7	2.2 2.4	1.19 1.32 ^x	4.795			

Таблица 2. Экспериментальные данные объемной кристаллизации стекла $AsSe_{1.5}In_{0.01}$ при 220°C

X_{В интервале 100-200°С.}

N⁰	Bpe-	$H\pm 3$	$-\lg\sigma_{20^\circ C}$	$\lg \sigma_0 \pm 0.1$	$E_{\sigma} \pm 0.03$,	$d \pm 0.002$,	P_d	P_x	Фазовый
этапа	мя, ч	кг/мм²	(Ом ⁻¹	·см ⁻¹)	эВ	г/см ³		%	данным РФА
1	0	144	10.4	3.4	1.62	4.627	0	0	Аморфная фаза
2	0.5	145	10.4	3.4	1.63	4.628	0	0	
3	4.5	150	10.4	3.4	1.61	4.635	~60		In ₂ Se ₃ и аморф-
4	6.5	147	10.4	3.4	1.62	4.640	~100	~100(In ₂ Se ₃)	ная фаза
5	10.7	144	10.5	3.4	1.63	4.657	9	$13 (As_2Se_3)$	In ₂ Se ₃ ,
6	12.5	147	10.5	3.2	1.60	4.668	15		As_2Se_3
7	13.5	145	10.5	3.4	1.62	4.688	25		и аморфная фа- за
8	14.5	148	10.4	3.6	1.63	4.696	29		
9	16	143	10.5	3.5	1.65	4.709	36	33	
10	17	134	10.5	3.5	1.65	4.720	42		
11	18	129	10.4	3.7	1.65	4.727	46		
12	20	133	10.5	3.5	1.66	4.746	56	52	
13	21.5	125	10.4	3.8	1.66	4.785	76		
14	24	120	10.5	3.8	1.66	4.794	81	77	
15	31	104	10.2	4.2	1.68	4.826	98		
16	39	97	10.0	3.8	1.73	4.827	99		
17	49	95	9.7	4.0	1.61	4.830	100	$100(As_2Se_3)$	
18	54	94	9.5	3.9	1.58	4.829			

Таблица 3. Экспериментальные данные объемной кристаллизации стекла $AsSe_{1.5}In_{0.01}$ при 240°C

Рис. 2. Измеренные при 20°C плотность d и микротвердость H объемно кристаллизующегося стекла AsSe_{1.5}In_{0.01} в зависимости от времени термообработки при 200 (*I*), 220 (*2*), 240 (*3*) и 260°C (*4*). Образцы разных плавок обозначены различными точками.

но I и II) и значительно понижало микротвердость легированных индием стеклокристаллических материалов, как и при кристаллизации чистого стекла As₂Se₃.

На первой и второй ступенях низкотемпературной изотермической кристаллизации эффективная плотность закаленных ситаллов возрастала, приближаясь к предельным значениям (табл. 1–3, рис. 2–3). При увеличении времени или температуры термообработки происходили вторичные процессы агрегации и срастания кристаллов с заметным понижением дисперсности и эффективной плотности материалов (рис. 2, кривые 3 и 4).

Степень завершенности кристаллизации α_d определяли согласно выражению

$$\alpha_d = (d_{\tau} - d_0) / (d_{\infty} - d_0), \tag{1}$$

Рис. 3. Изменение измеренных при 20°C плотности *d*, микротвердости *H* и параметров удельной злектропроводности кристаллизующегося стекла $AsSe_{1.5}In_{0.025}$ в зависимости от времени термообработки при 240°C.

где d_0 , d_{τ} и d_{∞} – плотность материала соответственно в исходном состоянии, на этапе термообработки τ и в конце расстекловывания исследуемой фазы. В табл. 1–3 приведены результаты определения процента кристаллизации $P_d = 100\alpha_d$ для фаз In₂Se₃ и As₂Se₃. Там же для сравнения представлены результаты выборочного определения процента расстекловывания P_x основной фазы As₂Se₃ по данным количественного РФА (данные Э.Ю. Бессоновой и автора).

Для исключения влияния среднего коэффициента поглощения рентгеновских лучей в образцах на интенсивность аналитического дифракционного максимума применяли в основном метод внутреннего стандарта [21]. При постоянстве массовой доли стандартного вещества w_{st} в смеси отношение интенсивностей аналитического максимума определяемой фазы и стандарта прямо пропорционально массовой доле определяемой фазы w'_{x} в смеси после введения стандарта согласно формуле

$$I_x/I_{st} = Kw'_x,\tag{2}$$

где w'_x связана с массовой долей этой фазы в образце w_x простым соотношением w'_x = $w_x(1 - w_{st})$. В качестве стандарта использовали измельченный кристаллический германий (25 мас. %) с дифракционным максимумом сравнения, расположенным вблизи аналитического максимума As₂Se₃ (рис. 4). Интенсивность записанных 4–5 раз на приборе ЭПП-09М дифракционных максимумов измеряли по площади интегрированием с помощью планиметра с погрешностью ±3%. Градуировка проведена по измельченным смесям кристаллических Ge и As₂Se₃ с известными концентрациями. Результаты градуировки и рентгенофазового анализа ситаллов отчасти представлены на рис. 4 и в табл. 4. Найденный методом наименьших квадратов коэффициент пропорциональности *K* в формуле (2) равен (0.869 ± 0.038). Значения процента расстекловывания фазы As₂Se₃ по данным определения плотности *P_d* удовлетворительно согласуются с рентгеновским процентом *P_x* (табл. 1–3) и использованы ниже для определения кинетических параметров кристаллизации.

Изотермы $\alpha_d(\tau)$ в виде *S*-образных кривых с перегибом (рис. 5) анализировали на основе уравнения Колмогорова—Аврами, обобщенного нами на ступенчатые изотермические фазовые превращения в следующем виде

$$\alpha_i = 1 - \exp(-k_i \tau_{\text{KMH}, n_i}), \tag{3}$$

где α_i — степень завершенности кристаллизации анализируемой *i*-фазы; n_i , k_i — соответственно кинетический параметр и константа валовой скорости кристаллизации *i*-фазы; $\tau_{\text{кин}}$ — кинетическое время кристаллизации, определяемое разностью общего времени термообработки τ и индукционного периода $\tau_{\text{инд}}$ кристаллизации *i*-фазы. Индукционный период превращения не предусмотрен при теоретическом выводе уравнения (3), его величина весьма чувствительна к содержанию индия и термической предыстории образцов (см. рис. 5). Ранее [5–7] нами показано, что наличие индукционного периода на экспериментальных изотермах $\alpha(\tau)$ приводит к получению завышенных значений параметра *n* валовой кристаллизации стекол.

При двойном логарифмировании уравнения (3) получаем выражение

$$\lg[-\lg(1-\alpha)] = \lg(k/2.3) + n \lg \tau_{_{\rm KHH}},\tag{4}$$

которому соответствует прямая линия в координатах $lg[-lg(1 - \alpha)] = f(lg\tau_{кин})$. По таким изотермам (см. рис. 6) для каждого образца отдельно методом наименыших квадратов определены с надежностью 95% кинетические параметры *n* и –lgk выделения основной кристаллической фазы As₂Se₃ в стеклах I и II и после усреднения по образцам представлены в табл. 5. Полученные значения кинетического параметра *n* свидетельствуют о преимущественно гетерогенном зарождении и двумерном росте кристаллов As₂Se₃ в исследуемых стеклах I и II. Морфология роста в виде тонких длинных пластинок (plate-like) характерна для монокристаллов As₂Se₃ и растущих индивидуальных кристаллов в стекле As₂Se₃. Вероятно, наноразмерные ассоциаты тригональных структурных единиц InSe_{3/2} в стеклах I и II обеспечили при оптимальной термообработке преимущественно гомогенное зарождение слоистых кристаллов β-In₂Se₃, в которых атомы In образуют с атомами Se три прочные короткие и три более слабые и длинные ионно-ковалентные связи In–Se (степень ионности по Полингу ~18%).

Рис. 4. Рентгеновские дифрактограммы сплавов AsSe_{1.5}In_{0.01} в стеклообразном состоянии (*1*) и после расстекловывания при 240°С фазы As₂Se₃ на 15 (*2*), 56 (*3*), 81 (*4*) и 100% (*5*) по данным измерения плотности. Для съемки в Cu K_{α} излучении использованы смеси измельченных сплавов и поликристаллического Ge (25 мас. %). Дифракционный максимум германия для сравнения при $\theta = 13.40^{\circ}$ отмечен штриховкой, аналитический максимум As₂Se₃ при $\theta = 8.70^{\circ}$ указан стрелкой.

Изотермическое выделение первичной фазы In_2Se_3 в стеклах с 0.4 и 1 ат. % In ускоряет кристаллизацию основной фазы As_2Se_3 , уменьшая по сравнению с кристаллизацией чистого стекла As_2Se_3 при 240°С соответственно в ~2 и 4 раза скрытый период образования фазы As_2Se_3 и в ~4 и 6 раз кинетический период полупревращения $\tau_{0.5, кин}$ (табл. 5). Возможно, это связано с высокой дисперсностью первичной фазы In_2Se_3 , за-

	Граду	ировочные смес	Анализируемые смеси			
мас. %	Интенсивности , максиму	дифракционных мов, см ²	I (As ₂ Se ₃)/	I _{As2Se2}	I _{Ge}	I (As ₂ Se ₃)/ I (Ge)
α-As ₂ Se ₃	$I_{As_2Se_3}$ ($\theta = 8.70^\circ$)	$I_{Ge}(\theta = 13.40^\circ)$	I(Ge)	$(\theta = \hat{8}.70^{\circ})$	$(\theta = 13.40^{\circ})$	
33.3	8.1	31.2	0.25 ± 0.02	1.4	16.2	0.088 ± 0.019
	8.4	32.1		1.6	14.0	
	8.1	31.9		1.3	17.6	
	7.5	32.3		1.4	15.9	
	$I_{cp.} = 8.0 \pm 0.4$	$I_{cp.} = 31.9 \pm 0.3$		$I_{cp.} = 1.4 \pm 0.2$	$I_{cp.} = 15.9 \pm 0.9$	
50	9.6	24.9	0.42 ± 0.04	5.0	13.8	0.34 ± 0.03
	11.1	24.7		4.8	14.7	
	9.7	24.4		4.4	14.8	
	10.4	22.7		4.5	13.0	
	11.8	28.8		$I_{cp.} = 4.8 \pm 0.2$	$I_{cp.} = 14.1 \pm 0.7$	
	$I_{cp.} = 10.5 \pm 0.7$	$I_{cp.} = 25.1 \pm 1.5$				
75	8.5	12.1	0.68 ± 0.05	7.1	11.8	0.50 ± 0.04
	7.5	11.5		6.5	12.4	
	8.9	13.0		6.4	15.2	
	8.2	12.0		6.3	12.9	
	$I_{cp.} = 8.3 \pm 0.4$	$I_{cp.} = 12.2 \pm 0.4$		$I_{cp.} = 6.6 \pm 0.3$	$I_{cp.} = 13.1 \pm 0.7$	

Таблица 4. Данные количественного РФА кристаллизации фазы As_2Se_3 в стекле $AsSe_{1.5}In_{0.01}$ при 240°С

Таблица 5. Кинетические параметры объемной изотермической кристаллизации фазы As_2Se_3 из стекол $AsSe_{1.5}In_x$

Стекло		AsSe _{1.5} In _{0.025}			
T±1°C	200	220	240	260	240
n	2.18 ± 0.04	2.08 ± 0.02	2.10 ± 0.07	2.09 ± 0.05	2.1 ± 0.2
$-\lg k$	13.05 ± 0.05	11.25 ± 0.24	10.16 ± 0.18	8.51 ± 0.19	9.78 ± 0.25
$-n^{-1}\lg k$	5.99	5.46	4.84	4.09	4.66
$\lg \tau_{_{\rm UHJ}}$	5.79 ± 0.08	5.40 ± 0.07	4.40 ± 0.04	3.95 ± 0.06	4.03 ± 0.15
$\lg\tau_{0.5,\rm Kuh}\pm0.09$	5.83	5.30	4.68	3.89	4.46

метным сходством слоистых структур, близостью термического коэффициента линейного расширения (ТКЛР) ~ 1.9×10^{-5} и 2.2×10^{-5} К⁻¹ кристаллов соответственно In₂Se₃ [16] и As₂Se₃ [19]. Изотермическая кристаллизация в стеклах I и II тонкодисперсной первичной фазы In₂Se₃ инициировала гетерогенное объемное зарождение вторичной основной фазы As₂Se₃ с уменьшением термодинамического ΔG^* или кинетического барьера зарождения $\Delta G'_a$ [3, 20] по сравнению с чистым стеклом As₂Se₃.

Проанализируем далее температурную зависимость константы скорости валовой кристаллизации $k(T^{-1})$ для случая гомогенного зарождения и линейного роста кристаллов в изотермических условиях с постоянными скоростями соответственно

Рис. 5. Изотермы степени завершенности $\alpha(0.01 P_d)$ объемной кристаллизации основной фазы As₂Se₃ из стекла AsSe_{1.5}In_{0.01} при 200 (I), 220 (II), 240 (III) и 260°С (IV). Различные обозначения точек соответствуют образцам разных плавок.

Рис. 6. Кинетические кривые изотермической объемной кристаллизации вторичной основной фазы As_2Se_3 из стекла $AsSe_{1.5}In_{0.01}$ при 200 (I), 220 (II), 240 (III) и 260°С (IV). Анализ изотерм $\alpha(\tau)$ на рис. 5 с использованием уравнения (3) и метода наименьших квадратов.

$$I = I_0 \exp\left(-E_a'/RT\right),\tag{5}$$

$$u = u_0 \exp\left(-E_a''/RT\right),\tag{6}$$

где I_0 и u_0 – предэкспоненциальные множители, слабо зависящие от температуры, R –

газовая константа, E'_a и E''_a – экспериментальные энергии (энтальпии) активации соответственно зарождения и роста кристаллов при больших переохлаждениях. При наличии зависимости кинетического параметра *n* в уравнении (3), когда $n \neq f(\alpha)$ и $k \neq f(\alpha)$, влияние отклонений параметра *n* на величину валового параметра *k* (*I*, *u*) можно исключить введением исправленной константы $k^{1/n}$, используя для графического анализа следующее выражение

$$n^{-1}\ln k = n^{-1}\ln A - E_a/RT,$$
(7)

где $A = gI_0 u_0^{n-1}$, g – геометрический фактор роста зародышей, E_a – эффективная энергия активации валовой кристаллизации.

Методом наименьших квадратов из зависимостей $n^{-1} \lg k(T^{-1})$ и $\lg \tau_{\text{инд}} (T^{-1})$ по данным табл. 5 определены эффективная энергия активации E_a (152 ± 9 кДж/моль) массовой объемной кристаллизации фазы As₂Se₃ в стекле I в интервале температур 200–260°С и энтальпия активации E'_a зарождения ($\alpha \sim 0$) кристаллов этой фазы, равная 157 ± 7 кДж/моль и существенно меньшая соответствующей величины (170 ± 9 кДж/моль [6]) при кристаллизации чистого стекла As₂Se₃.

Так как эффективная величина энергии активации E_a в изокинетической области температур (параметр *n* в уравнении (3) постоянен) равна $[E'_a + (n - 1)E''_a]/n$, то при известных величинах E_a и E'_a можно определить энергию активации линейного роста кристаллов E''_a (148 ± 7 кДж/моль для основной фазы As₂Se₃ в стекле I с 0.4 ат. % In). Полученная величина E''_a удовлетворительно согласуется со средним значением энер-

гии активации (146 \pm 6 кДж/моль) на этапах преимущественного роста ($\alpha \ge 0.5$) кристаллов As₂Se₃ в этом стекле (табл. 6), найденным методом сечения кинетических кривых (рис. 6, 7) при постоянных значениях степени кристаллизации α .

Оценим изменение концентрации центров кристаллизации при легировании стекла $As_2Se_3 0.4$ и 1 ат. % In. В соответствии с найденными значениями кинетического параметра *n* (табл. 5) в уравнении (3) при гетерогенном зарождении и двумерном росте кристаллов As_2Se_3 константа валовой скорости кристаллизации описывается известной формулой

$$k = \pi l N u^2, \tag{8}$$

где l — толщина растущей пластинки кристалла (~10⁻⁷ см для As₂Se₃), N — объемная концентрация готовых центров кристаллизации.

Оценка концентрации готовых центров *N* по формуле (8) с использованием данных *k* (табл. 5) при *n* = 2 дает значения ~2 × 10¹⁰ и 4 × 10¹⁰ см⁻³ для объемной гетерогенной кристаллизации фазы As₂Se₃ на второй ступени при 240°C соответственно в стеклах I и II (при допущении постоянства в этих стеклах величины *u* = 2 × 10⁻⁷ см · c⁻¹, согласно нашим данным измерения в стекле As₂Se₃ при 240°C). Для гетерогенной изотермической кристаллизации чистого стекла As₂Se₃ при 240°C концентрация центров *N* равна ~2 × 10⁸ см⁻³, а рассчитанная ранее [7] по скорости гомогенного зарождения и индукционному периоду — на три порядка меньше. Следовательно, можно пренебречь

Степень кристаллизации о	Стекло As ₂ Se ₃ [6]	Стекло AsSe _{1.5} In _{0.01}			
Степень кристаллизации о	E_a , кДж/ моль				
~0	170 ± 9	157 ± 7			
0.25	144 ± 9	148 ± 7			
0.50	140 ± 7	145 ± 6			
0.75	143 ± 8	146 ± 7			
0.95	143 ± 8	145 ± 6			

Таблица 6. Эффективная энергия активации (E) объемной изотермической кристаллизации стекла As_2Se_3 и фазы As_2Se_3 из стекла $AsSe_{1.5}Bi_{0.05}$ в интервале 210–260°C

вкладом гомогенного зарождения (<0.02% при 240°С) кристаллов As_2Se_3 в концентрацию готовых центров *N* в формуле (8).

Анализ известных формул для скорости стационарной нуклеации применительно к пластинчатым кристаллам As_2Se_3 в стеклах $AsSe_{1.5}In_x$ показывает, что при снижении термодинамического барьера зарождения кристаллов ΔG^* на 10% скорость гетерогенного зарождения на нанокристаллах In_2Se_3 превысит скорость гомогенного зарождения кристаллов As_2Se_3 примерно на 2 порядка. Это вполне возможно, как установлено автором [22] прямыми измерениями скорости стационарного зарождения кристаллов дисиликата лития на наночастицах Ag и в объеме чистого стекла Li₂O·2SiO₂.

Влияние температуры и концентрации индия на характер кристаллизации и параметры электропроводности полупроводниковых ситаллов AsSe_{1.5} In_x (x ≤ 0.025)

При постепенном легировании стекла As_2Se_3 индием до 1.17 ат. % плотность повышается на 1.8%, микротвердость возрастает на 11%, удельная электропроводность при 20°С постепенно повышается на 2 порядка, а энергия активации электропроводности E_{σ} уменьшается на 0.2 эВ [12].

Добавки индия 0.4 и 1 ат. % к стеклу As₂Se₃ повышают кристаллизационную способность и изменяют характер массовой изотермической кристаллизации с поверх-

Рис. 7. Влияние температуры на индукционный период (*1*) и время завершения кристаллизации фазы As_2Se_3 из стекла $AsSe_1 {_5In_0 0_1}$ на 25 (2), 50 (3) и 95% (4).

ностно-объемной [1, 6] на равномерную по всему объему стекла с образованием полупроводниковых ситаллов. Характер изменения параметров электропроводности при изотермической кристаллизации стекол AsSe_{1.5}In_x зависит от температуры и концентрации индия.

На этапах выделения первичной слабо проводящей фазы In_2Se_3 с малой объемной долей υ (≤ 0.07) параметры собственной удельной электропроводности E_{σ} , σ_0 и $\sigma_{20^{\circ}C}$ стекол I и II, кристаллизующихся при 260 и 240°С, практически не изменяются (табл. 3, этапы 2–4 и рис. 3, $\tau \leq 10$ ч) и определяются высокоомной стеклообразной фазой, блокирующей нано- и микрокристаллы селенида индия. Параметры электропроводности ситаллов I с 0.4 ат. % In, формирующихся в низкотемпературном интервале (при 200 и 220°С), имеют промежуточные значения между соответствующими параметрами мало чувствительного к примесям полупроводника β-In₂Se₃ (ширина запрещенной зоны $E_g = 1.27 - 1.38$ эВ [15], $\lg \sigma_{20^{\circ}C} \approx -8$ [18]) и остаточной стеклообразной фазы AsSe_{1.48} ($E_{\sigma} = 1.78$ эВ, $\lg \sigma_{20^{\circ}C} = -12.1$), см. табл. 1, 2 (этапы 3–6). Эти микрогетерогенные двухфазные системы не являются матричными и близки к статистическим смесям, эффективная удельная электропроводность σ которых при постоянной тем-пературе удовлетворительно рассчитывается по нашей формуле

$$\sigma = \sigma_1 \upsilon_1 + \sigma_2 \upsilon_2, \tag{9}$$

где σ_1 , σ_2 и υ_1 , υ_2 – соответственно удельная электропроводность и объемная доля остаточной стеклообразной фазы AsSe_{1.48} ($\upsilon_1 = 0.96$) с нарушенной связностью и не связанных между собой нано- и микрокристаллов β -In₂Se₃ ($\upsilon_2 = 0.04$). Рассчитанная эффективная величина –lg $\sigma_{20^{\circ}C}$ равна 9.4, экспериментальные значения равны 9.3 и 9.7 на этапе 6 (табл. 1 и 2), 9.5 (рис. 3, $\tau = 9$ ч).

Длительное расстекловывание основной фазы As_2Se_3 при низкотемпературной кристаллизации стекол I и II сопровождалось вторичными диффузионными процессами агрегации и срастания кристалликов In_2Se_3 с постепенным созданием их связности, понижением дисперсности и микротвердости. При этом параметры проводимости ситаллов (табл. 1, 2, этапы 5–14 и рис. 3, $\tau = 10-20$ ч), приближались к к соответствующим параметрам удельной электропроводности полупроводника β- In_2Se_3 .

При последующей термообработке полупроводниковых ситаллов II с 1 ат. % In (20– 150 ч при 240°С) происходили вторичные процессы агрегации и создания связности основной высокоомной фазы α -As₂Se₃ (энергия активации $E_{\sigma} \approx 2.0$ эВ) с увеличением параметра E_{σ} на 0.5 эВ и понижением проводимости при 20°С на три порядка (рис. 3, кривые θ , ∂).

ЗАКЛЮЧЕНИЕ

Добавки индия 0.4 и 1 ат. % к стеклу As_2Se_3 изменяют характер массовой изотермической кристаллизации в интервале 200–260°С с поверхностно-объемной на равномерную по всему объему стекла с образованием полупроводниковых ситаллов($\sigma_{20^{\circ}C} = 10^{-11} - 10^{-7} \text{ Om}^1 \cdot \text{cm}^1$).

Изотермическое выделение первичной фазы β -In₂Se₃ в стеклах AsSe_{1.5}In_x (x = 0.01 и 0.025) ускоряет кристаллизацию основной фазы As₂Se₃, уменьшая по сравнению с кристаллизацией чистого стекла As₂Se₃ при 240°C соответственно в ~2 и 4 раза скрытый период образования основной фазы As₂Se₃ и в ~4 и 6 раз кинетический период полупревращения.

Ускоряющее влияние добавок индия на изотермическую кристаллизацию стекла As₂Se₃ вызвано в основном снижением термодинамического барьера и энтальпии активации объемного гетерогенного зарождения пластинчатых кристаллов основной фазы As₂Se₃ на зародившихся преимущественно гомогенно слоистых кристаллах β-In₂Se₃.

Эффективная удельная электропроводность ситаллов с 0.4 ат. % In на этапах выделения первичной фазы селенида индия в низкотемпературном интервале (200–220°С) является промежуточной по величине между соответствующими параметрами полупроводника β -In₂Se₃ и остаточной стеклообразной фазы AsSe_{1.48} и удовлетворительно рассчитывается по величинам удельной электропроводности и объемной доли составляющих фаз.

СПИСОК ЛИТЕРАТУРЫ

- Школьников Е.В. Исследование кинетики кристаллизации стеклообразного As₂Se₃ // Сб. Химия твердого тела. Л.: ЛГУ, 1965. С. 187–198.
- Svoboda R.A., Malek J. Non-Isothermal Crystallization Kinetics of As₂Se₃ Glass studied by DSC // Thermochem. Data. 2014. V. 579. № 1. P. 56–63.
- Школьников Е.В. О взаимосвязи структурно-химических особенностей и кинетических параметров кристаллизации стекла // Стеклообразное состояние. Тр. V11 Всес. Совещ. Л.: Наука, 1983. С. 131–135.
- 4. *Калинина А.М., Фокин В.М., Юрицын Н.С., Сычева Г.А.* Объемная и поверхностная кристаллизация силикатных стекол // Неорганические материалы. 1999. Т. 35. № 8. С. 990–995.
- 5. Школьников Е.В. Кинетика и механизм объемной изотермической кристаллизации стекол As₂Se₃Sn_x ($x \le 0.55$) // Неорганические материалы. 2017. Т. 53. № 11. С. 1218–1224.
- 6. Школьников Е.В. Кинетика и механизм изотермической кристаллизации полупроводниковых стекол AsSe_{1.5}Pb_x (x= 0.025, 0.13) // Известия ЛТА. 2020. Вып. 231. С. 222–237.
- 7. Школьников Е.В. Влияние добавок висмута на кинетику и механизм кристаллизации стекла As₂Se₃ // Физ. и хим. стекла. 2021. Т. 47. № 2. С. 150–16328.
- Школьников Е.В. О механизме структурно-химических превращений при расстекловывании халькогенидных полупроводников // Структура и свойства некристаллических полупроводников. Труды Шестой Международной конференции по аморфным и жидким полупроводникам, Ленинград, СССР. 18–24 ноября 1975 г. Л.: Наука, 1976. С. 78–82.
- 9. Аббасова Р.Ф., Ильяслы Т.М., Вейсова С.М. Кинетика растворения и объемная кристаллизация халькогенидных стекол на основе As₂Se₃ и AsSe // Успехи современного естествознания. 2016. № 8. С. 9–14.
- 10. *Kotkata M.F., Monsour Sh.A.* Crystallization process analysis for Se_{0.95}In_{0.05} and Se_{0.90}In_{0.10} chalcogenide glasses using the contemporary isoconversional models // J. Thermal Analysis and Calorimetry. 2011. V. 103. № 3. P. 957–965.
- 11. *Muhaj T.A., Alan S.S.A., Ari A.M.* The Effect of doped indium on the electrical and optical properties of $(Se_{0,7} Te_{0,3})_{1-x} In_x$ thin films // Advances in Materals Physics and Chemistry. 2015. V. 5. No 4. P. 140–149.
- 12. Борисова З.У. Химия стеклообразных полупроводников. Л.: изд. Ленингр. ун-та, 1972. 247 с.
- Qin-Liang Li, Chang-Hai Liu, Yu-Ting Nie, Wen-Hua Chen, Xu Gao, Xu-Hui Sun, Sui-Dong Wang. Phototransistor based on single In₂Se₃ nanosheets // Nanoscale. 2014. V. 6. № 23. P. 14538– 14542.
- 14. Lutz H.D., Fischer M., Baldus H.-P., Blachnik R. Zur Polymorphie des In₂Se₃ // J. Less Common Metals .1988. V. 143. № 1–2. P. 83–92.
- Li W., Sabino F.P., de Lima F.C., Wang T., Miwa R.H.A., Janotti A. Large disparity between optical and fundamental band gaps in layered In₂Se₃ // Phys. Rev. B. 2018. V. 98. P. 165134-1 –165134-7.
- 16. Popovic S., Tonejc A., Grzeta-Plenkovic B., Celustka B.A., Trojko R. Revised and new crystal data for indium selenides // J. Applied Crystallography. 1979. V. 12. № 4. P. 416–420.
- 17. Заслонкин А.В., Ковалюк З.Д., Минтянский И.В. Электрические свойства In₂Se₃ слоистых кристаллов, легированных кадмием, йодом и медью // Неорган. материалы. 2007. Т. 43. № 12. С. 1415–1418.
- 18. Боднарь И.В., Ильчук Г.А., Петрусь Р.Ю., Рудь В.Ю., Рудь Ю.В., Сереинов М. Электрические свойства монокристаллов In₂Se₃ и фоточувствительность барьеров Шоттки Al/In₂Se₃ // Физ. и техн. полупроводников. 2009. Т. 43. № 9. С. 1179–1182.
- 19. Абрикосов Н.Г., Банкина В.Ф., Порецкая Л.В., Скуднова Е.В., Чижевская С.Н. Полупроводниковые халькогениды и сплавы на их основе. М.: Наука, 1975. 220 с.
- 20. Школьников Е.В. Полуэмпирический расчет кривых Таммана для кристаллизации стекол As₂X₃ и TlAsX₂(X−S, Se, Te) // Физ. и хим. стекла. 1980. Т. 6. № 3. С. 282–288.
- 21. Школьников Е.В., Румш М.А., Мюллер Р.Л. Рентгеновское исследование кристаллизации полупроводниковых стекол AsSe_xGe_y // Физ. твердого тела. 1964. Т. 6. № 3. С. 798–800.
- Sycheva G.A. Crystal growth and nucleation in glasses in the lithium silicate system // J. Crystallization Process and Technology. 2016. V. 6. № 10. P. 29–55.