СТРУКТУРНАЯ ХИМИЯ ИНТЕРМЕТАЛЛИДОВ: ГЕОМЕТРИЧЕСКИЙ И ТОПОЛОГИЧЕСКИЙ АНАЛИЗ, КЛАСТЕРНЫЕ ПРЕКУРСОРЫ *К*4, *К*6, *К*21 И САМОСБОРКА КРИСТАЛЛИЧЕСКИХ СТРУКТУР Cs₂Hg₂-*aP*8, Cs₂Hg₄-*oI*12, Cs₁₀Hg₃₈-*tI*48

© 2022 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин³

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

² Международный научно-исследовательский центр по теоретическому материаловедению, Самарский государственный технический университет, ул. Молодогвардейская, 244, Самара, 443100 Россия

³Федеральный научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр., 59, Москва, 119333 Россия

*e-mail: shevchenko@isc.nw.ru

Поступила в редакцию 22.11.2021 г. После доработки 03.02.2022 г. Принята к публикации 07.02.2022 г.

С помощью компьютерных методов (пакет программ ToposPro) осуществлен геометрический и топологический анализ и проведено моделирование самосборки кристаллических структур интерметаллидов Cs_2Hg_2 -*aP*8, Cs_2Hg_4 -*o1*12, $Cs_{10}Hg_{38}$ -*t1*48. Металлокластеры-прекурсоры кристаллических структур определены с использованием алгоритма разложения структурных графов на кластерные структуры и путем построения базисной сетки структуры в виде графа, узлы которого соответствуют положению центров кластеров-прекурсоров S_3^0 . Установлены тетраэдрические металлокластеры *K*4 в Cs_2Hg_2 -*c1*2, октаэдрические металлокластеры *K*6 в Cs_2Hg_4 и новый тип полиэдрического металлокластера *K*21 = $Cs@Cs_4Hg_{16}$ в $Cs_{10}Hg_{38}$ -*t1*48. Реконструирован симметрийный и топологический код процессов самосборки кристаллических структур интерметаллидов Cs_nHg_k из прекурсоров S_3^0 в виде: цепь $S_3^1 \rightarrow$ микрослой $S_3^2 \rightarrow$ микрокаркас S_3^3 .

Ключевые слова: интерметаллиды Cs_2Hg_2-aP8 , Cs_2Hg_4-oI12 , $Cs_{10}Hg_{38}-tI48$, самосборка кристаллических структур, тетраэдрические металлокластеры $K4 = Cs_2Hg_2$, октаэдрические металлокластеры $K6 = Cs_2Hg_4$, металлокластеры $K21 = Cs@Cs_4Hg_{16}$ **DOI:** 10.31857/S013266512203009X

ВВЕДЕНИЕ

В двойных системах A—Hg с большими атомами шелочных металлов A = K, Rb, Cs установлено образование 19 кристаллических структур, из которых 8 – интерметаллиды K_n Hg_m, 6 – интерметаллиды Rb_nHg_m и 5 интерметаллиды Cs_nHg_m [1, 2]. Стехиометрический состав 19 интерметаллидов Hg:A изменяется в широких пределах от 1 до 13.5. Из них три представителя образуют семейство A_2 Hg₄-oI12 (A = K, Rb, Cs [3–5]), по два представителя установлены в пяти семействах A_2 Hg₂-aP8 (A = K [3], Cs [5, 6]), A_2 Hg₇-hP9 (A = K, Rb) [7], A_5 Hg₁₉-tI48 (A =Rb [8], Cs [9]), A_3 Hg₂₀-cP46 (A =Rb, Cs) [9], AHg₁₁-cP36 (A = K, Rb, Ba, Sr) [10], по одному представителю – в шести структурных типах

Интерметаллид	Группа симметрии	Атом	Локальное окружение	Координационные последовательности				
				N_1	<i>N</i> ₂	<i>N</i> ₃	N_4	N_5
Cs ₂ Hg ₂ - <i>aP</i> 8	<i>P</i> -1 (2)	Cs1	6Cs + 7Hg	13	49	106	187	293
		Cs2	6Cs + 8Hg	14	45	106	191	291
		Hg1	8Cs +2Hg	10	46	106	187	296
		Hg2	7Cs + 2Hg	9	43	101	182	295
Cs ₂ Hg ₄ - <i>oI</i> 12	Imma (74)	Cs1	4Cs + 12Hg	16	50	112	204	322
		Hg1	6Cs + 4Hg	10	50	114	197	309
Cs ₁₀ Hg ₃₈ - <i>tI</i> 48	<i>I</i> 4/ <i>m</i> (87)	Cs1	2Cs + 17Hg	19	54	132	241	378
		Cs2	4Cs + 16Hg	20	58	132	234	404
		Hg1	5Cs + 6Hg	11	58	125	227	369
		Hg2	4Cs + 8Hg	12	50	108	230	334
		Hg3	4Cs + 7Hg	11	54	121	230	363
		Hg4	4Cs + 8Hg	12	58	156	218	404

Таблица 1. Кристаллохимические и топологические данные интерметаллидов

Rb₁₅Hg₁₆-*tI*124 [11], K₅Hg₇-*oP*48 [12], K₃Hg₁₁-*oI*28 [9], K₇Hg₃₁-*hP*41 [9], KHg₆-*oP*28 [13], Cs₂Hg₂₇-*cI*174 [14].

В настоящей работе с помощью компьютерных методов (пакет программ ToposPro) [15] осуществлен геометрический и топологический анализ и проведено моделирование самосборки кристаллических структур интерметаллидов семейства A_2 Hg₄-oI12 (A = K, Rb, Cs), A_2 Hg₂-aP8 (A = K, Cs), A_5 Hg₁₉-tI48 (A = Rb, Cs).

Работа продолжает исследования [16–20] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур интерметаллидов с применением компьютерных методов (пакета программ ToposPro).

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [15]. Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число атомов в k-ой координационной сфере данного атома. Полученные значения координационных последовательностей атомов в 3D-сетках приведены в табл. 1, в которой также даны число и типы соседних атомов в ближайшем окружении, т.е. в первой координационной сфере атома.

Алгоритм разложения в автоматическом режиме структуры интерметаллида, представленного в виде свернутого графа, на кластерные единицы приведен в работах [16–20]. Геометрические характеристики кластеров в кристаллических структурах металлов Cs, Rb, K и в кристаллических структурах интерметаллидов Cs_2Hg_2 -aP8, Cs_2Hg_4 -oI12, $Cs_{10}Hg_{38}$ -tI48 приведены на рис. 1 и 2.

СИММЕТРИЙНЫЙ И ТОПОЛОГИЧЕСКИЙ КОД (ПРОГРАММА) САМОСБОРКИ КРИСТАЛЛИЧЕСКИХ СТРУКТУР ИНТЕРМЕТАЛЛИДОВ

При моделировании кристаллической структуры определяется иерархическая последовательность ее самосборки в кристаллографическом пространстве *XYZ*, т.е. восстанавливается симметрийно-топологический код формирования макроструктуры в

Cs1 Cs1 Cs1 Cs1 Cs1	S.697 Rb1 4.934 Rb1 Rb1 Rb1	5.247 K1 K1 K1 K1 K1
Cs, $Im\overline{3}m$	Rb, <i>Im</i> 3 <i>m</i>	K, $Im\overline{3}m$
Cs1 Cs1 Cs1 Cs1 Cs1 Cs1	Rb1 Rb1 Rb1 Rb1 Rb1	кі кі кі кі
Cs-HPr, $Im\overline{3}m$	Rb-HPr, $Im\overline{3}m$	K-HPr, $Im\overline{3}m$

Рис. 1. Кластеры *К*4 в кристаллических структурах металлов. Цифры – длины связей в Å.

Рис. 2. Кластеры-прекурсоры К4, К6, К21 в кристаллических структурах интерметаллидов.

виде последовательности значимых элементарных событий, характеризующих самую короткую (быструю) программу конвергентной кластерной самосборки. Алгоритм самосборки трехмерной структуры происходит по универсальному принципу максимального (комплементарного) связывания кластеров-прекурсоров при переходе на более высокий уровень структурной самоорганизации системы.

Кристаллическая структура Cs₂Hg₂-aP8

Параметры триклинной ячейки Cs_2Hg_2 : a = 7.154 Å, b = 7.470 Å, c = 7.635 Å, $\alpha = 107.82^\circ$, $\beta = 103.34^\circ$, $\gamma = 90.95^\circ$, V = 376.28 Å³, Z = 2 Cs_2Hg_2 . Пространственная группа P-1 с набором из 8 частных позиций Уайкоффа с точечной симметрией g = -1 (от 1a до 1h). В кристаллической структуре в окружении атомов Cs1, Cs2, Hg1, Hg2 находятся 15, 14, 10, 9 атомов (табл. 1).

Рис. 3. Cs₂Hg₂-*aP*8. Димер *K*4 + *K*4 (*a*), тетрамер 2*K*4 + 2*K*4 (*б*).

Кластер-прекурсор *K*4 представляет собой тетраэдр Cs_2Hg_2 . Длины связей атомов в кластере *K*4 приведены на рис. 2. Центр кластера-прекурсора *K*4 находится в позиции 2*i* (0.37, 0.12, 0.26). В элементарной ячейке находятся два кластера-прекурсора *K*4.

Последовательность самосборки кристаллической структуры, моделирующая образование кластерных структур, приведена ниже.

Два связанных кластера $Cs_2Hg_2 + Cs_2Hg_2$ образуют димер с индексом связанности $P_c = 6$ (рис. 3), обладающий симметрией –1 (позиция 1*f*). Связывание димеров приводит к образованию тетрамера $2Cs_2Hg_2 + 2Cs_2Hg_2$. Тетрамер также обладает симметрией –1, сохраняя позицию 1*f*. При связывании двух тетрамеров вдоль оси *X* происходит образование октамера S_3^2 , в котором расстояния между центрами кластеров Cs_2Hg_2 определяет значения векторов трансляций b = 7.470 Å и c = 7.635 Å (рис. 4). При связывании октамеров происходит образование 3D микрокаркаса S_3^3 . Расстояние между слоями в направлении [100] соответствует длине вектора трансляций a = 7.154 Å.

Рис. 4. Cs_2Hg_2 -*аР*8. Слой $S_3^2(a)$, каркас $S_3^3(b)$.

Кристаллическая структура Cs₂Hg₄-oI12

Образование кристаллических структур типа Cs_2Hg_4 -*oI*12 установлено в 42 системах с участием 27 химических элементов [1, 2].

Параметры ромбической ячейки Cs₂Hg₄: a = 5.488 Å, b = 8.727 Å, c = 9.082 Å, V = 434.97 Å³, Z = 2 Cs₂Hg₄. Пространственная группа *Imma* с набором элементов с точечной симметрией g = 2/m, mm2, 2 и m. В кристаллической структуре атомы Cs и Hg окружены соответственно 16 и 10 атомами (табл. 1). Кластер-прекурсор представляет собой октаэдр Cs₂Hg₄. В элементарной ячейке центр кластера расположен в позиции 4c с симметрией g = 2/m. Длины связей атомов в кластере *K*6 приведены на рис. 2.

Первичная цепь S_3^1 формируется в результате связывания кластеров-прекурсоров Cs₂Hg₄ с числом связей, равным максимально возможному значению $P_c = 6$ (рис. 5). Расстояние между центрами кластеров соответствует вектору трансляции a = 5.488 Å.

Рис. 5. Сs₂Hg₄-*oI*12. Стадии самосборки кристаллической структуры.

Таблица 2. Cs₁₀Hg₃₈-*t1*48. Варианты кластерного представления кристаллической структуры с 3 и 4 структурными единицами. Указан центральный атом или центр пустоты полиэдрического кластера, число его оболочек (в первой скобке) и количество атомов в каждой оболочке (во второй и третьей скобке). Кристаллографические позиции, соответствующие центрам пустот полиэдрических кластеров обозначены ZA1 и ZA2

Три структурные единицы
Cs2(1)(1@20) Hg4(1)(1@12) Hg2(0)(1)
Cs2(1)(1@20) Hg4(0)(1) Hg2(0)(1)
Cs2(1)(1@20) Hg4(0)(1) Hg2(1)(1@12)
Cs2(0)(1) Hg4(0)(1) Hg2(1)(1@12)
Cs2(0)(1) Hg4(1)(1@12) Hg2(1)(1@12)
Cs2(1)(1@20) Hg4(1)(1@12) Hg2(1)(1@12)
ZA1(4c)(1)(0@8) Cs2(1)(1@20) Hg4(0)(1)
ZA1(4c)(1)(0@8) Cs2(0)(1) Hg4(1)(1@12)
ZA1(4c)(1)(0@8) Cs2(1)(1@20) Hg4(1)(1@12)
ZA2(8f)(1)(0@10) Cs2(1)(1@20) Hg4(0)(1)
ZA2(8f)(1)(0@10) Cs2(0)(1) Hg4(0)(1)
ZA2(8f)(1)(0@10) Cs2(0)(1) Hg4(1)(1@12)
ZA2(8f)(1)(0@10) Cs2(1)(1@20) Hg4(1)(1@12)
Четыре структурные единицы
ZA2(8f)(1)(0@10) ZA1(4c)(1)(0@8) Cs2(1)(1@20) Hg4(0)(1)
ZA2(8f)(1)(0@10) ZA1(4c)(1)(0@8) Cs2(0)(1) Hg4(0)(1)
ZA2(8f)(1)(0@10) ZA1(4c)(1)(0@8) Cs2(0)(1) Hg4(1)(1@12)
ZA2(8f)(1)(0@10) ZA1(4c)(1)(0@8) Cs2(1)(1@20) Hg4(1)(1@12)

Образование слоя S_3^2 происходит связыванием первичных цепей со значением индекса $P_c = 12$ (рис. 5). Каркас структуры S_3^3 формируется при упаковке слоев без сдвига. Расстояние между центрами кластеров из соседних цепей в направлениях [010] и [001] соответствует векторам трансляций b = 8.727 Å и c = 9.082 Å.

Кристаллическая структура Cs₁₀Hg₃₈-tI48

Кристаллохимической семейство состоит только из $Cs_{10}Hg_{38}$ -*t1*48 [6] и Rb_5Hg_{19} -*t1*48 [7]. В базах данных [1, 2] из 9465 двойных интерметаллидов такая же редкая стехиометрия A_5B_{19} установлена еще для шести интерметаллидов семейства Ce_5Co_{19} -*hR*24 и трех интерметаллидов семейства Nd_5Ni_{19} -*hP*48, имеющих другую топологию.

Параметры тетрагональной ячейки $Cs_{10}Hg_{38}$: a = b = 11.803 Å, c = 10.814 Å, V = 1506.5 Å³ и Rb_5Hg_{19} : a = b = 11.561 Å, c = 10.510 Å, V = 1404.7 Å³. Пространственная группа *I4/m* с набором элементов с точечной симметрией g = 4/m (2*a*, 2*b*), 2/m (4*c*), -4 (4*d*), 4 (4*e*), -1 (8*f*), 2(8*g*), *m* (8*h*). Порядок группы 16. Последовательность Вайкофа *i*²*hdba*. В локальном окружении двух неэквивалентных атомов Cs находятся 19 и 20 атомов, четырех неэквивалентных атомов Hg – 11 атомов (для двух атомов Hg) и 12 атомов (для двух атомов Hg) (табл. 1).

Установлены 17 вариантов кластерного представления 3D атомной сетки с числом структурных единиц 3 (13 вариантов), 4 (4 варианта) (табл. 2). Ниже рассмотрен наиболее быстрый вариант самосборки с участием трех структурных единиц: 21-атомного

Рис. 6. $Cs_{10}Hg_{38}$ -*t1*48. Стадии самосборки кристаллической структуры.

кластера $K21 = 1@20 = Cs@Cs_4Hg_{16}$ и атомов-спейсеров Hg2 и Hg4 (табл. 2). Длины связей атомов в кластере K21 приведены на рис. 2.

Кластер-прекурсор *K*21 представляет собой новый тип центрированного 21-атомного полиэдра (рис. 2). Топологические характеристики оболочки полиэдра: 20 вершин, 52 ребра, 34 грани. В элементарной ячейке центр кластера *K*21 расположен в позиции 2*b* с симметрией g = 4/m.

Последовательность самосборки кристаллической структуры, моделирующая образование кластерных структур приведена ниже.

Супраполиэдрческий кластер-димер (короткая первичная цепь S_3^1) с центром в позиции 8*f* и симметрией –1 формируется в результате связывания кластеров-прекурсоров *K*21 + *K*21 с участием двух атомов Hg2 с общим числом связей $P_c = 13$ (рис. 6). Свя-

зывание димеров приводит к образованию тетрамера 2K21 + 2K21 (слоя S_3^2), в котором локализуется атом Hg4 (рис. 6). Тетрамер из 4 кластеров K21 с центром в позиции 2a обладает симметрией 4/m. При связывании со сдвигом двух тетрамеров происходит

образование октамера S_3^3 с центром в позиции 4*c* и симметрией 2/m. Расстояния между центрами кластеров *K*21 определяют значения всех векторов трансляций.

ЗАКЛЮЧЕНИЕ

Проведен геометрический и топологический анализ кристаллических структур интерметаллидов Cs_2Hg_2 -aP8, Cs_2Hg_4 -oI12, $Cs_{10}Hg_{38}$ -tI48. С использованием алгоритмов разложения структурных графов на кластерные структуры для интерметаллидов определены металлокластеры-прекурсоры S_3^0 тетраэдрические кластеры $K4 = Cs_2Hg_2$, октаэдрические кластеры $K6 = Cs_2Hg_4$, новый тип центрированного 21-атомного полиэдрического кластера $K21 = Cs@Cs_4Hg_{16}$. Реконструирован симметрийный и топологический код процессов самосборки кристаллических структур интерметаллидов из прекурсоров S_3^0 в виде: цепь $S_3^1 \rightarrow$ слой $S_3^2 \rightarrow$ каркас S_3^3 .

Анализ самосборки кристаллических структур интерметаллидов выполнен при поддержке Минобрнауки РФ в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, нанокластерный анализ выполнен при поддержке Российского научного фонда в рамках проектов РНФ № 20-13-00054 и РНФ №21-73-30019 и топологический анализ выполнен при поддержке Минобрнауки РФ в рамках государственного задания № 0778-2020-0005.

СПИСОК ЛИТЕРАТУРЫ

- 1. Inorganic crystal structure database (ICSD).
- 2. *Villars P., Cenzual K.* Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- Duwell E.J, Baenziger N.C. The crystal structures of KHg and KHg₂ // Acta Crystallogr. 1955. V. 8. P. 705–710.
- Deiseroth H.J., Strunck A., Bauhofer W. RbHg₂ und CsHg₂, Darstellung, Kristallstruktur, elektrische Leitfaehigkeit // Z. Anorg. Allg. Chem. 1988. V. 558. P. 128–136.
- Deiseroth H.J., Strunck A. Quadratische Hg4-Cluster in der Verbindung CsHg // Angewandte Chemie. 1987. V. 99. P. 701–702.
- Deiseroth H.J., Strunck A., Bauhofer W. CsHg, eine ungewoehnliche Variante der Cs Cl Struktur. Darstellung, Kristallstruktur und physikalische Eigenschaften // Z. Anorg. Allg. Chem. 1989. V. 575. P. 31–38.
- Biehl K., Deiseroth H.J. K₂Hg₇ und Rb₂Hg₇, zwei Vertreter eines neuen Strukturtyps binaerer intermetallischer Verbindungen // Z. Anorg. Allg. Chem. 1999. V. 625. P. 1337–1342.
- Biehl E., Deiseroth H.J. Eine neue, geordnete Defektvariante des Ba Al4-Strukturtyps // Z. Anorg. Allg. Chem. 1999. V. 625. P. 389–394.

- 9. Todorov E., Sevov S.C. Synthesis and structure of the alkali metal amalgams $A_3 Hg_{20}$ (A = Rb, Cs), K_3Hg_{11} , Cs_5Hg_{19} , and A_7Hg_{31} (A = K, Rb) // J. Solid-State Chemistry. 2000. V. 149. P. 419–427 10. *Biehl E., Deiseroth H.J.* Darstellung, Strukturchemie und Magnetismus der Amalgame MHg11 (M:
- K, Rb, Ba, Sr) // Z. Anorg. Allg. Chem. 1999. V. 625. P. 1073–1080.
- 11. Deiseroth H.J, Strunck A. Hg₈-Cluster ("Mercuban") in Rb₁₅ Hg₁₆ // Angewandte Chemie. 1989. V. 101. P. 1286-1287.
- 12. Duwell E.J., Baenziger N.C. The crystal structure of K₅Hg₇ // Acta Crystallogr. 1960. V. 13. P. 476–479.
- 13. Tambornino F., Hoch C. Bad metal behaviour in the new Hg-rich amalgam K Hg6 with polar metallic bonding // J. Alloys and Compounds. 2015. V. 618. P. 299-304.
- 14. Hoch C., Simon A. Cs2 Hg27, the mercury-richest amalgam with close relationship to the Bergman phases // Z. Anorg. Allg. Chem. 2008. V. 634. P. 853-856.
- 15. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.
- 16. Blatov V.A., Ilyushin G.D., Proserpio D.M. Nanocluster model of intermetallic compounds with giant unit cells: β, β'-Mg₂Al₃ polymorphs // Inorg. Chem. 2010. V. 49. № 4. P. 1811–1818.
- 17. Ilyushin G.D. Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure // Struct. Chem. 2012. V. 20. № 6. P. 975–1043.
- 18. Shevchenko V.Ya., Medrish I.V., Ilyushin G.D., Blatov V.A. From clusters to crystals: scale chemistry of intermetallics // Struct. Chem. 2019. V. 30. № 6. P. 2015-2027.
- 19. Ilyushin G.D. Intermetallic Compounds $K_n M_m$ (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystal-lography Reports. 2020. V. 65. № 7. P. 1095–1105.
- 20. Ilyushin G.D. Intermetallic Compounds Na_kM_n (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. \mathbb{N} 4. P. 539–545.