КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ ИНТЕРМЕТАЛЛИЧЕСКИХ СИСТЕМ: ДВУХСЛОЙНЫЙ КЛАСТЕР-ПРЕКУРСОР $K44 = 0@8(U_2Pu_6)@36(U_{12}Pu_{24})$ И СПЕЙСЕР $K14 = U_2Pu_{12}$ В КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ $U_{16}Pu_{42}-hP58$

© 2022 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин^{3, **}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

² Международный научно-исследовательский центр по теоретическому материаловедению, Самарский государственный технический университет, ул. Молодогвардейская, 244, Самара, 443100, Россия

³ Федеральный научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр., 59, Москва, 119333 Россия

*e-mail: shevchenko@isc.nw.ru
**e-mail: ilyushin@mail.ru

Поступила в редакцию 10.12.2021 г. После доработки 11.03.2022 г. Принята к публикации 05.04.2022 г.

С помощью компьютерных методов (пакета программ ToposPro) осуществлен геометрический и топологический анализ кристаллической структуры $U_{16}Pu_{42}-hP58$ с параметрами ромбоэдрической ячейки: $a_{rh} = 10.685$ Å, $\alpha = 89.74^{\circ}$, V = 1219.96 Å³, пр. группа *R-3m*. Установлен новый двухслойный нанокластер-прекурсор $0@8(U_2Pu_6)@36(U_{12}Pu_{24})$ с внутренним полиэдром из 8 атомов в виде гексагональной бипирамиды U_2Pu_6 и внешней оболочкой из 36 атомов U₁₂Pu₂₄. Центр кластера-прекурсора *K*44 находится в позиции 4*a* с точечной симметрией -3*m*. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров *K*44 в виде: первичная цепь \rightarrow слой \rightarrow каркас. В пустотах каркаса расположены спейсеры *K*14 = U_2Pu_{12} , которые занимают позиции 4*b* с точечной симметрией -3*m* и представляют собой сдвоенные шестерные кольца (Pu₆)₂, связанные с двумя атомами U.

Ключевые слова: интерметаллид $U_{66}Pu_{96}-hR162$, самосборка кристаллической структуры, двухслойный нанокластер $K44 = 0@8(U_2Pu_6)@36(U_{12}Pu_{24})$, спейсер $K14 = U_2Pu_{12}$ DOI: 10.31857/S0132665122040126

введение

В двойных системах Pu-M с участием 35 элементов установлена кристаллизация 137 интерметаллических соединений Pu_xM_y , в 21 тройной системе Pu-M1-M2 с участием 15 элементов M образуются 34 соединения [1, 2]. Наибольшее число двойных интерметаллидов атомы Pu образуют с атомами Ga (13 соединений), Pt (10 соединений) и Al (8 соединений). Образование только одного интерметаллида Pu_xM_y установлено в 11 системах с атомами M = Cu, Ag, Au, Be, Cd, Bi, Mn, Re, La, Th, Am. Отсутствуют двойные соединения атомов Pu с атомами щелочных металлов Li, Na, K, Rb, Cs, щелочноземельных металлов Ca, Sr, Ba и переходных *d*-металлов Ti, V, Cr, Nb, Mo, Tc, Ta, W.

паолица 1. Кристаллохимические данные интерметаллидов			
Соединение и класс Пирсона	Пр. группа	<i>V</i> , Å ³	
Os ₄ Pu ₁₆ -oS40 [3]	<i>Cmca</i> (64)	867.0	
Os ₂ Pu ₂₄ - <i>oP</i> 52 [4]	<i>Pnna</i> (52)	1133.3	
PuAl-cI52 [5]	<i>I</i> -43 <i>m</i> (217)	1248.9	
U ₁₆ Pu ₄₂ - <i>hP</i> 58 [6]	<i>R</i> -3 <i>m</i> (166)	1219.9	
Pu14Au51-hP68 [7]	<i>P</i> 6/ <i>m</i> (175)	1288.5	
Pu14Ag51-hP68 [8]	<i>P</i> 6/ <i>m</i> (175)	1319.5	
ZrPu ₂₈ - <i>tI</i> 116 [9]	<i>I</i> 4 ₁ / <i>a</i> (88)	2599.9	
PuBe ₁₃ - <i>cF</i> 112 [8]	<i>Fm</i> -3 <i>c</i> (226)	1087.6	
Pu ₃ Zn ₂₂ - <i>tI</i> 100 [10]	<i>I</i> 4 ₁ / <i>amd</i> (141)	1658.9	
Pu ₂ Zn ₁₇ - <i>hP</i> 114 [11]	<i>P</i> -6 <i>m</i> 2 (187)	1863.5	
Pu ₁₃ Zn ₅₈ - <i>hP</i> 142 [12]	<i>P</i> 6 ₃ / <i>mmc</i> (194)	2549.8	
PuCd ₆ - <i>cI</i> 184 [13]	<i>Im</i> -3 (204)	3789.1	
Pu ₃₁ Rh ₂₀ - <i>t</i> I204 [14]	<i>I</i> 4/ <i>mcm</i> (140)	4530.9	
Pu ₃₁ Pt ₂₀ - <i>tI</i> 204 [14]	<i>I</i> 4/ <i>mcm</i> (140)	4775.8	
Pu ₁₀₄ Hg ₃₀₄ - <i>cF</i> 408 [15]	<i>F</i> -43 <i>m</i> (216)	10331.7	
PuB ₆₆ - <i>cF</i> 1744 [16]	<i>Fm</i> -3 <i>c</i> (226)	12862.2	

Таблица 1. Кристаллохимические данные интерметаллидо

Наиболее многочисленным является кристаллохимическое семейство Фриауфа Pu_2M_4 -*cF*24, где M = Co, Ni, Fe, Mn, Ru, Os, Rh, Ir, Pt, Zn, Al с кубической пространственной группой *Fd*-3*m* (227), в котором каркас-образующими являются тетраэдрические кластеры M_4 , а большие атомы Pu образуют связи с 16 атомами M.

Наиболее кристаллохимически сложные интерметаллиды (табл. 1, [3–16]) содержат в элементарных ячейках от 40 атомов в Os_4Pu_{16} -oS40 до 408 атомов в $Pu_{104}Hg_{304}$ -cF408 и 1744 в PuB_{66} -cF1744. Из них не имеют кристаллохимических аналогов интерметаллиды Os_4Pu_{16} -oS40 [3], Os_2Pu_{24} -oP52 [4], $U_{16}Pu_{42}$ -hP58 [6], ZrPu28-tI116 [9], Pu_2Zn_{17} -hP114 [12] и $Pu_{104}Hg_{304}$ -cF408 [15]. Во всех (пяти) кристаллических структурах интерметаллидов, образующихся в системе Pu–U, и интерметаллиде $ZrPu_{28}$ -tI120 предполагается статистическое заселение позиций атомами Pu и U, и Pu и Zr соответственно.

В настоящей работе с помощью компьютерных методов (пакета программ ToposPro [17]) осуществлен геометрический и топологический анализ кристаллической структуры интерметаллида $U_{16}Pu_{42}$ -hP58 и установлены позиции, занимаемые атомами U и Pu. Рассмотрена самосборка кристаллической структуры с участием двухслойных кластеров-прекурсоров $K44 = 0@8(U_2Pu_6)@36(U_{12}Pu_{24})$. Реконструирован симметрийный и топологический код процессов самосборки 3D структуры из кластеров-прекурсоров в виде: первичная цепь \rightarrow слой \rightarrow каркас.

Работа продолжает исследования [18–20] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

Методики, использованные при компьютерном анализе

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [17]. Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательно-

Атом	Координационные последовательности	
	N1 N2 N3 N4 N5	
Pu1	12 47 112 205 322	
Pu3	12 46 109 202 318	
Pu5	12 51 116 204 338	
Pu6	13 50 112 204 323	
Pu8	11 48 113 200 327	
Pu9	12 49 110 202 322	
U2	15 50 114 210 343	
U4	16 52 113 217 349	
U7	16 46 104 202 319	
U10	14 50 114 202 323	

Таблица 2. U₁₆Pu₄₂-*hP*58. Значения координационных последовательностей атомов Pu и U

стей, т.е. наборов чисел $\{N_k\}$, где N_k – число атомов в k-ой координационной сфере данного атома. Полученные значения координационных последовательностей атомов в 3D-сетках приведены в табл. 2, в которой также даны число и типы соседних атомов в ближайшем окружении, т.е. в первой координационной сфере атома.

Алгоритм разложения в автоматическом режиме структуры интерметаллида, представленного в виде свернутого графа на кластерные единицы, приведен в работах [18–21].

Самосборка кристаллической структуры $(U_2Pu_{12})(U_{14}Pu_{30})-hR58$

Использованный нами метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографическом пространстве. На первом уровне самоорганизации системы определяется механизм формирования первичной цепи структуры из нанокластеров 0-уровня, сформированных на темплатной стадии химической эволюции системы, далее — механизм самосборки из цепи микрослоя (2-ой уровень) и затем из микрослоя — трехмерного микрокаркаса структуры (3-й уровень).

Кристаллографические данные (U₂Pu₁₂)(U₁₄Pu₃₀)–*hR*58. Параметры ромбоэдрической ячейки: $\alpha_{\rm rh} = 10.685$ Å, $\alpha_{\rm rh} = 89.74^{\circ}$, V = 1219.96 Å³, пр. группа *R*-3*m* (по. 166). Элементы с точечной симметрией: g = -3m (1*a*, 1*b*), g = 3m (2*c*), 2/*m* (3*d*, 3*e*), 2 (6*f*, 6*g*), *m* (6*h*). Порядок группы 12.

Локальное окружение атомов и значения координационных последовательностей приведены в табл. 2. Определены значения координационных чисел (КЧ) атомов Pu, имеющих меньшие значения КЧ, равные 11 (один атом), 12 (четыре атома) и 13 (один атом) и атомов U с набором больших значений КЧ = 14 (один атом), 15 (два атома), и 16 (один атом). Химический состав интерметаллида соответствует $U_{16}Pu_{42}$.

Метод полного разложения 3D фактор-графа структуры на кластерные подструктуры был использован для определения каркас-образующих нанокластеров кристаллической структуры. Всего найдено 9 вариантов кластерного представления 3D атомной сетки интерметаллида с числом структурных единиц от 2 до 4 (табл. 3).

В результате установлены новые каркас-образующие нанокластеры K44 (табл. 3). В элементарной ромбоэдрической *R*-ячейке центры кластеров K44, расположенные в

Таблица 3. Варианты кластерного представления кристаллической структуры $U_{16}Pu_{42}$ -*hP*58. Указан центральный атом полиэдрического кластера, число его оболочек (в первой скобке) и количество атомов в каждой оболочке (во второй скобке). Кристаллографические позиции, соответствующие центрам пустот полиэдрических кластеров, обозначены ZA с указанием типа позиции

2 структурные единицы	
2:ZA1(3a)(1)(0@8) Pu2(1)(1@15)	
2:ZA2(3b)(2)(0@8@36) ZA1(3a)(2)(0@8@36)	
2:ZA2(3b)(1)(0@8) Pu9(1)(1@13)	
3 структурные единицы	
3:ZA2(3b)(1)(0@8) ZA1(3a)(1)(0@8) Pu2(1)(1@15)	
3:ZA2(3b)(1)(0@8) ZA1(3a)(1)(0@8) Pu9(1)(1@13)	
3:ZA3(9e)(1)(0@10) ZA2(3b)(1)(0@8) ZA1(3a)(2)(0@8@36)	
3:ZA3(9e)(1)(0@10) ZA2(3b)(2)(0@8@36) ZA1(3a)(2)(0@8@36)	
3:ZA3(9e)(1)(0@10) ZA1(3a)(1)(0@8) Pu2(1)(1@15)	
4 структурные единицы	
4:ZA3(9e)(1)(0@10) ZA2(3b)(1)(0@8) ZA1(3a)(1)(0@8) Pu2(1)(1@15)	

вершинах ромбоэдра, находятся на расстоянии 10.685 Å и острый угол ромбоэдра равен $\alpha_{rh} = 89.74^{\circ}$.

Каркас-образующие нанокластеры $K44 = 0@8(U_2Pu_6)@36(U_{14}Pu_{24})$ характеризуются внутренним полиэдром из 8 атомов в виде гексагональной бипирамиды U_2Pu_6 (рис. 1) и внешней оболочкой в виде дельтаэдра из 36 атомов $U_{14}Pu_{24}$ (рис. 2). Центр кластерапрекурсора K44 находится в позиции 1*a* с точечной симметрией -3*m*.

Первичная цепь. Образование димера происходит при связывании кластеров K44 + K44 в направлении вектора трансляций ромбоэдрической ячейки α_{rh} (рис. 3) с участием атомов U2, U10, Pu5, Pu6 (с индексом связанности P = 21). Расстояние между центрами кластеров K44 соответствует значению вектора трансляций $\alpha_{rh} = 10.685$ Å. Центр димера находится в позиции 3d (1/6, 1/3, 1/3) с симметрией g = 2/m.

Рис. 1. Кластерные структуры.

Рис. 2. Нанокластер К44.

Рис. 3. Димер из кластеров *К*44 + *К*44.

Самосборка микрослоя. Образование тетрамера (микрослоя S_3^2) происходит при комплементарном связывании кластеров из соседних первичных цепей в плоскости ромбоэдра с индексом связанности P = 21 (рис. 4). Центр тетрамера находится в позиции

Рис. 4. Тетрамер двух димеров, расположенный в плоскости ромбоэдра.

3e(1/2, 1/2, 0) с симметрией g = 2/m. На этой стадии самосборки происходит локализация в слое кластера *K*14 состава U₂Pu₁₂, занимающего позицию 1*b* с симметрией g = -3m.

Самосборка микрокаркаса. Октамер из 8 кластеров K44 формируется при связывании двух микрослоев (рис. 5) Центр октамера находится в позиции 1b (1/2, 1/2, 1/2) с симметрией g = -3m.

ЗАКЛЮЧЕНИЕ

С помощью компьютерных методов (пакета программ ToposPro) осуществлен геометрический и топологический анализ кристаллической структуры интерметаллида $U_{16}Pu_{42}$. Установлены новые каркас-образующие нанокластеры $K44 = 0@8(U_2Pu_6)@36(U_{12}Pu_{24})$ с симметрией -43m. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров K44 в виде: первичная цепь \rightarrow слой \rightarrow каркас. В пустотах каркаса расположены кластеры K14 состава U_2Pu_{12} .

Рис. 5. Октамер из 8 кластеров K44.

Анализ самосборки кристаллической структуры выполнен при поддержке Минобрнауки РФ в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, нанокластерный анализ выполнен при поддержке РФФИ (№ 19-02-00636), топологический анализ выполнен при поддержке Минобрнауки РФ в рамках государственного задания № 0778-2020-0005.

СПИСОК ЛИТЕРАТУРЫ

- 1. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- 2. *Villars P., Cenzual K.* Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- 3. Cromer D.T. Plutonium–osmium η-Pu₁₉Os // Acta Crystallogr. Sect. B. 1978. V. 34. P. 913–915.
- Cromer D. T. The crystal structure of eta-Pu₁₉Os, a structure closely related to beta-Pu // Acta Crystallographica B. 1979 V. 35. P. 1945–1949.
- 5. *Marples J.A.C.* The lattice parameters of some delta- and epsilon-plutonium alloys // J. Phys. Chem. Solids. 1964 V. 25. P. 521-534.
- Lawson A.C., Goldstone J.A., Cort B., Martinez R.J., Vigil F.A., Zocco T.G., Richardson J.W.J., Mueller M.H. Structure of ζ-Phase Plutonium-Uranium // Acta Crystallographica. B. 1996. V. B. 52. P. 32–37.

- Kutaitsev V.I., Chebotarev N.T., Lebedev I.G., Andrianov M.A., Konev V.N., Menshikova T.S. Phase diagrams of plutonium with the metals of groups IIA, IVA, VIIIA and IB. Plutonium // Proc. Int. Conf., 3rd. 1965. V. 1967. P. 420–449.
- Runnalls O.J.C. The crystal structures of some intermetallic compounds of plutonium // Canadian Journal of Chemistry. 1956. V. 34. P. 133–145.
- Cromer D.T. The crystal structure of theta-PuZr, ideal formula Pu₂₈Zr // Acta Crystallographica B. 1979. V. 35 P. 14–19.
- Johnson Quintin, Wood David H., Smith Gordon S. The crystal structure of Pu₃Zn₂₂ // Acta Crystallographica B. 1968. V. 24. P. 480–484.
- Cramer E.M., Ellinger F.H., Land C.C. Plutonium-zinc phase diagram // Extr. Phys. Metall. Plutonium Alloys. Symp. 1959. P. 169–180.
- Larson A.C., Cromer D.T. The crystal structure of Pu₂Zn₉ // Acta Crystallographica. 1967. V. 23. P. 70–77.
- 13. Koichi Uozumi, Masatoshi Iizuka, Tetsuya Kato, Tadashi Inoue, Osamu Shirai, Takashi Iwai, Yasuo Arai. Electrochemical behaviors of uranium and plutonium at simultaneous recoveries into liquid cadmium cathodes // Journal of Nuclear Materials. 2004. V. 325. P. 34–43.
- Cromer D.T., Larson A.C. The crystal structure of Pu₃₁Pt₂₀ and Pu₃₁Rh₂₀ // Acta Crystallographica B. 1977. V. 33. P. 2620–2627.
- 15. Berndt A.F. A gamma-phase in the plutonium-mercury system // Journal of the Less-Common Metals. 1966. V. 11. P. 216-219.
- 16. Eick H.A. Plutonium borides // Inorganic Chemistry. 1965. V. 4. № 8. P. 1237–1239.
- 17. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.
- 18. Shevchenko V.Ya., Blatov V.A., Ilyushin G.D. Intermetallic compounds of the NaCd₂ family perceived as assemblies of nanoclusters // Struct. Chem. 2009. V. 20. № 6. P. 975–982.
- 19. *Ilyushin G.D.* Cluster Self-Organization of Intermetallic Systems: 124-Atom Cluster 0@12@32@80 and 44-Atom Cluster 0@12@32 for the Self-Assembly of Li48Na80Ga332-oF920 Crystal Structure // Crystallography Reports. 2019. V. 64. № 6. P. 857–861.
- 20. Shevchenko V.Ya., Blatov V.A., Ilyushin G.D. Cluster Self-Organization of Intermetallic Systems: New Two-Layer Nanocluster Precursors K64 = 0@8(Sn4Ba4)@56(Na4Sn52) and K47 = = Na@Sn16@Na30 in the Crystal Structure of Na52Ba4Sn80-cF540 // Glass Physics and Chemistry. 2020. V. 46. № 6. P. 448–454.