По материалам доклада на Третьей Российской конференции с международным участием "Стекло: наука и практика" GlasSP2021, Санкт-Петербург, 13—17 сентября 2021 г.

РЕАКЦИОННАЯ СПОСОБНОСТЬ АМОРФНЫХ ГОРНЫХ ПОРОД С ТОЧКИ ЗРЕНИЯ ИХ ВЗАИМОДЕЙСТВИЯ В ШИХТАХ ДЛЯ СТЕКЛОКРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ

© 2022 г. О. А. Добринская^{1, *}, Н. И. Минько¹

¹Белгородский государственный технологический университет им. В.Г. Шухова, ул. Костюкова, 46, Белгород, 308012 Россия *e-mail: olgadobr aya@mail.ru

> Поступила в редакцию 17.12.2021 г. После доработки 27.04.2022 г. Принята к публикации 07.06.2022 г.

Статья посвящена исследованию реакционной способности различных аморфных горных пород (диатомит, перлит, трепел) и выявлению отличительных технологических особенностей синтеза стеклокристаллических материалов на их основе. Проведена сравнительная оценка горных пород по химическому и минералогическому составам и реакционной способности шихт на их основе. Представлены результаты разработки шихт и синтеза стеклокристаллического материала.

Ключевые слова: аморфная горная порода, диатомит, перлит, трепел, реакционная способность, шихта, стеклокристаллический материал, петроситалл **DOI**: 10.31857/S0132665121100747

ВВЕДЕНИЕ

Внимание аморфным горным породам, как сырью для производства стеклокристаллических материалов, уделяется довольно давно. Возможность получения стеклокристаллических материалов (петроситаллов) в системе $SiO_2-Al_2O_3-Fe_2O_3(FeO)-CaO-MgO-R_2O$, к которой относится большинство горных пород – изверженных (базальт, диабаз, гранит и др.), осадочных (глины, каолины, пески, диатомиты, трепелы и др.) и метаморфических (сланцы, мраморы и др.) – изучена и подтверждена в ряде исследований [1–3]. Анализ этих исследований показал, что в области получения стеклокристаллических материалов, в частности петроситаллов, методом направленной кристаллизации накоплен достаточно большой опыт: проведены исследования по кристаллизации стекол на основе горных пород и получены материалы, обладающие мелкозернистой структурой и высокими физико-химическими и механическими свойствами.

Однако промышленная технология ситаллов на основе горных пород крайне ограничена вследствие неоднородности исходного сырья и необходимости его усреднения.

Большое разнообразие петрургического сырья, его широкая распространенность в природе, благоприятные условия залегания, дешевизна могут стать решением экологических проблем и подтвердить целесообразность использования горных пород для

Порода	Содержание оксидов, мас. %								
Порода	SiO ₂	Al_2O_3	Fe ₂ O ₃	K ₂ O	MgO	CaO	Na ₂ O	TiO ₂	RuO ₄
Диатомит	87.22	6.79	2.22	1.08	1.25	0.431	0.245	0.265	0.216
Перлит	72.0	16.45	1.06	4.30	0.422	0.863	4.21	0.145	0.186
Трепел	79.93	10.99	3.17	1.99	1.81	0.838	0.273	0.687	0.19

Таблица 1. Химические составы усредненных проб аморфных горных пород

промышленного производства ситаллов. Но для этого необходимо решить ряд задач, к которым можно отнести, например, оценку пород с наибольшей реакционной способностью, а также создание технологии ситаллов, при которой стадия подготовки сырья и его усреднения будет требовать меньших затрат.

В этом плане настоящая работа направлена на исследование реакционной способности таких аморфных горных пород, как диатомит, перлит и трепел, установлены отличительные технологические особенности синтеза, кристаллизации, других физикохимических процессов и свойств материалов.

ОСНОВНАЯ ЧАСТЬ

Для проведения исследования была разработана структурно-логическая схема (рис. 1), а в качестве объектов исследования выбраны аморфные горные породы (диатомит Инзенского месторождения, Ульяновская обл.; перлит Мухор-Талинского месторождения, Республика Бурятия; трепел месторождение в Белгородской обл., Шебекинский р-он).

В ходе исследований отобранных и усредненных партий аморфных горных пород были изучены химические (табл. 1) и минералогические составы, а также разработаны рецепты сырьевых смесей (шихт) для синтеза стеклокристаллических материалов. Проведена оценка реакционной способности разработанных шихт, а также синтезированы стеклокристаллические материалы и исследованы их физико-химические свойства (плотность, пористость, прочность при сжатии, микротвердость, водопоглощение, кислотостойкость).

Основным компонентом горных пород является диоксид кремния – SiO_2 , количество которого в исследованных породах различно и составляет: для диатомита порядка 87 мас. %, трепела – 80 мас. %, перлита – 72 мас. %. Также присутствуют оксиды алюминия и железа(III), щелочные и щелочноземельные оксиды. По количеству щелочных оксидов перлит превосходит диатомит и трепел, в частности содержание оксида натрия в перлите более 4%, а в диатомите и трепеле 0.25 и 0.02% соответственно.

Чем меньше в составах горных пород оксида натрия, тем потребуется большее количество соды, которая повышает реакционную способность шихт.

В исследованных материалах наблюдалось повышенное содержание Fe_2O_3 (для диатомита – 2.22 мас. %, перлита – 1.06 мас. %, трепела – 3.17 мас. %) в сравнении с кварцевыми песками, применяемыми в традиционной технологии, что играет положительную роль, так как наличие Fe_2O_3 в составе способствует кристаллизации стекла и дает возможность использования исследуемых материалов в производстве стеклокристаллических материалов.

Определение фазового состава изучаемых материалов производили путем сравнения экспериментального набора значений 2θ , d_{hkl} и I/I_o , найденных из рентгеновских спектров, с табличными значениями d_{hkl} и I/I_o , которые представлены в порошковой рентгенометрической картотеке, издаваемой Американским обществом по испытанию материалов (ASTM). Анализ рентгенограмм показал, что главным породообразу-

Рис. 1. Структурно-логическая схема исследований.

ющим минералом диатомита является рентгеноаморфный опал, в виде примесей содержатся кристаллический α -кварц (d, Å: 4.270, 3.357, 1.822 по ASTM № 5-0490) и монтмориллонит (рис. 2). Идентифицировать кристаллические минеральные фазы перлита не представляется возможным из-за отсутствия на его рентгенограмме значимых по интенсивности отражений. Трепел сложен, в основном, α -кварцем (d, Å: 4.270, 3.357, 2.284, 1.822 по ASTM № 5-0490) и примесями монтмориллонита.

Основным критерием при комплексной химической оценке исходных материалов, а также пригодности их использования в технологии стекла и ситаллов, рекомендуется [1] использовать силикатный коэффициент основности (K_{och}), по величине которого выделяется 5 групп материалов: ультраосновные ($K_{och} > 1.6$), основные ($1.2 < K_{och} < 1.6$), нейтральные ($0.8 < K_{och} < 1.2$), кислые ($0 < K_{och} < 0.8$), ультракислые ($K_{och} < 0$).

$$K_{ocH} = \frac{(CaO + 0.93MgO + 0.6R_2O) - (0.55Al_2O_3 + 0.35Fe_2O_3 + 0.7SO_3)}{0.93SiO_2}$$

Рис. 2. Рентгенограммы горных пород: ● – α-кварц; □ – плагиоклазы; Δ – монтмориллонит; □ – гидрослюды; ● – каолинит.

В технологии стекла и стеклокристаллических материалов рекомендуется использовать ультракислые материалы, к которым, согласно полученным значениям, относятся исследованные горные породы (K_{och} диатомита = -0.027, K_{och} перлита = -0.046, K_{och} трепела = -0.044).

Также известно, что для получения стеклокристаллических материалов с мелкозернистой структурой, необходимо обеспечить переход присутствующего в составе железа в более высокую степень окисления (Fe³⁺). Силикатный коэффициент основности (K_{осн}) позволяет оценить породы с этой точки зрения, и предположить, что материалы на основе диатомита будут обладать наиболее мелкозернистой структурой.

Немаловажным критерием оценки горных пород является их поведение при воздействии высоких температур (брикетированные аморфные горные породы подвергались термической обработке в интервале температур $650-1250^{\circ}$ С с шагом 50° С и выдержкой при каждой температуре в течение 60 мин). Изменение окраски пород в процессе термической обработки свидетельствует об образовании различных форм железа. От степени окисления железа зависит процесс кристаллизации и структура конечного материала. Наиболее интенсивное усиление окраски наблюдалось у диатомита (во всем объеме образца) при температурах $1100-1150^{\circ}$ С – от желтого до краснокоричневого, что говорит об увеличении количества Fe³⁺. Следовательно, состав на основе диатомита будет обладать повышенной кристаллизационной способностью.

Проведенная оценка продуктов обжига горных пород (рис. 3) показала следующее: для диатомита и продуктов его обжига наблюдается присутствие α -кварца, которое остается неизменным до температуры 900°С, при увеличении температуры до 1100°С количество α -кварца снижается, а кристобалита интенсивно растет; снижается количество аморфной фазы за счет ее кристаллизации, анализ рентгенограмм перлита по-казал преобладание аморфной фазы, количество которой увеличивается с повышением температуры термообработки до 1100°С, на рентгенограммах трепела заметно практически полное отсутствие аморфной фазы, что в сочетании с высоким содержанием

Рис. 3. Фрагменты рентгенограмм аморфных разновидностей кремнезема исходных и термообработанных при $T = 900, 1100^{\circ}$ С; $\bullet - \alpha$ -кварц; $\bigcirc - \beta$ -кристобалит; $\square -$ плагиоклазы; $\Delta -$ монтмориллонит; $\diamondsuit - \beta$ -кварц: диатомит (a-e), перлит (z-e), трепел ($\varkappa - u$).

оксида алюминия тормозит превращение α -кварца в кристобалит, с повышением температуры до 1100°C заметно снижение α -кварца, но оно незначительно.

Совокупность полученных результатов свидетельствует о целесообразности применения исследуемых горных пород для разработки шихт и дальнейшего синтеза стеклокристаллических материалов.

В данной работе, после анализа научно-технической информации, для получения стекла за основу был принят следующий химический состав, содержащий, мас. %: 52– $57SiO_2$, $8-16Al_2O_3$, $0.5-3Fe_2O_3$, 7-9MgO, 12-15CaO, $2-5Na_2O$, $2-4K_2O$, 0.3-0.5MnO и до 0.3NiO сверх 100% [4].

В работе исследовали 2 серии шихт на основе горных пород (табл. 2): 1 серия (Ш1): шихты, в которых основной компонент — горная порода, а недостающее количество оксида алюминия вводится в состав шихты глиноземом, 2 серия (Ш2): горная порода, а в качестве материала для подшихтовки оксида алюминия используется ПШК.

Для сравнения готовили шихту на основе кварцевого песка.

В разработанные шихты для синтеза стеклокристаллических материалов аморфные кремнеземистые породы вводились в количестве от 65 до 80 мас. %, а для подшихтовки недостающих компонентов применялись глинозем, доломит, мел, сода, поташ, а также оксиды железа, марганца, никеля.

Присутствие в составе стекла оксида железа Fe_2O_3 способствует кристаллизации, в случаях, когда содержание оксидов железа составляет 8–35 мас. % использование дополнительных катализаторов кристаллизации не требуется [4].

В исследуемом составе стекла количество Fe_2O_3 составляло 0.5–3 мас. %, что потребовало введения в состав катализатора кристаллизации, в качестве которого использовали оксид хрома(III) в количестве 1 мас. % (согласно имеющимся исследованиям [4], количество Cr_2O_3 для высокожелезистых стекол находится в пределах 0.3–1.0 мас. %).

	Содержание материала в шихте, мас. ч								
Сырьевой материал	кпш		1 серия		2 серия				
	КШ	ДШ1	ПШ1	ТШ1	ДШ2	ПШ2	ТШ2		
Кв. песок	57.785	_	-	—	-	—	-		
Горная порода	-	65.992	78.984	72.018	26.952	77.838	40.102		
ПШК	—	_	—	—	47.827	—	37.854		
Глинозем	12.55	8.159	—	4.718	—	—	—		
Доломит	34.584	30.816	32.649	28.633	39.319	38.477	39.491		
Мел технический	5.833	7.463	5.355	8.086	—	—	—		
Сода	5.519	5.219	—	5.161	—	—	—		
Поташ	5.083	3.865	—	2.679	—	—	—		
Окись железа	2.535	1.0704	1.679	0.244	1.889	1.661	1.281		
Σ	123.889	122.854	118.667	121.539	115.987	117.976	118.728		
Сверх 100%									
MnO (0.5%)	0.619	0.613	0.593	0.608	0.58	0.59	0.594		
NiO (0.3%)	0.372	0.368	0.356	0.365	0.348	0.354	0.356		
Cr ₂ O ₃ (1.0%)	1.239	1.226	1.187	1.215	1.16	1.18	1.187		

Таблица 2. Составы шихт для производства ситалла

Максимальное количество катализатора выбрано с целью изучения возможности получения стеклокристаллического материала по одностадийной технологии не предусматривающей дополнительной термообработки.

В стекольных шихтах часто одновременно протекает сразу несколько реакций, которые по большей части гетерогенные, топохимические и идут в диффузионно-кинетическом режиме. Оценка реакционной способности разработанных шихт, произведенная по кажущейся энергии активации [5], формально для реакции 1-го порядка, показала, что наиболее реакционно способной является шихта на основе перлита, так как ее энергия активации имеет самое низкое значение (51.9 кДж/моль) в сравнении с шихтами на основе диатомита (59.0 кДж/моль) и трепела (82.8 кДж/моль).

Основой для расчета энергий активации послужили результаты спекания разработанных шихт в интервале температур 600–800°С. Расчет энергии активации произведен по формуле [5]:

$$E_a = \frac{RT_1T_2}{T_1 - T_2} \ln \frac{\ln\left(\frac{m_1}{m_{01}}\right)}{\ln\left(\frac{m_2}{m_{02}}\right)},$$

где m_1 и m_2 – исходная и конечная масса шихты, T_1 и T_2 – начальная и конечная температуры обработки шихт, R – универсальная газовая постоянная.

Процесс синтеза стеклокристаллического материала проходил по комбинированной стекольной и керамической технологии, включающей стадии подготовки шихты, варки стекла, формования и отжига. Рабочие температуры процесса составляли 1000– 1500°С с шагом 100°С. Внимания заслуживают материалы, полученные при температурах 1300, 1400 и 1500°С (рис. 4).

Образование плотной структуры в этих образцах обуславливается наличием небольшого количества аморфной фазы, связывающей закристаллизованные частицы.

Рис. 4. Снимки синтезированных стеклокристаллических материалов из шихт на основе: КПСКМ – кв. песка; ДСКМ1, ДСКМ2 – диатомита; ПСКМ1, ПСКМ2 – перлита; ТСКМ1, ТСКМ2 – трепела.

При нагревании до 1300°С наблюдалось выделение газов, растворенных внутри материала, но идущая кристаллизация не позволила в полной мере от них избавиться. При повышении температуры до 1400°С в шихтах наблюдалось замедление процесса освобождения от газовых включений, поэтому в материалах наблюдалось увеличение количества и размера пор.

Наиболее плотной структурой и практически нулевой пористостью обладали материалы, полученные при температуре 1500°С.

Анализ рентгенограмм стеклокристаллических материалов, синтезированных при температуре 1500°С показал, что наиболее выражены пики пироксенов, в частности диопсида (*d*, Å: 3.003, 2.515, 2.560 по ASTM № 11-654), а также анортита (*d*, Å: 3.226, 2.950 по ASTM № 12-301) и альбита (*d*, Å: 3.770, 2.912 по ASTM № 20-554), наблюдают-ся следы таких минералов, как ортоклаз, энстатит, волластонит, окерманит.

На рис. 5 представлена рентгенограмма стеклокристаллического материала на основе кварцевого песка. Следует отметить, что минералогический состав для всех ситаллов на основе горных пород и кварцевого песка одинаков, и отличается только количеством стекловидной фазы. Во всех СКМ на основе аморфных горных пород стекловидной фазы меньше, чем в СКМ на кварцевом песке, это объясняется тем, что в шихте с кварцевым песком реагировала чистая сода, реакции протекали легче и образовывалось наибольшее количество аморфной (стекловидной) фазы. Наименьшее количество стекловидной фазы наблюдалось на рентгенограммах СКМ, полученных из шихт на основе перлита (1 серия), так как температура 1500°С для варки этих шихт высока и это послужило кристаллизации стекловидной фазы, выделившейся при более низких температурах.

Синтезированные стеклокристаллические материалы имели мелкозернистую плотную структуру, обладали минимальной пористостью, а свойства материала сопоставимы, в некоторых случаях, со свойствами шлакоситаллов и известных пироксеновых ситаллов, а по значениям плотности, синтезированные на основе диатомита и трепела ситаллы, их даже превосходили (табл. 3).

Рис. 5. Рентгенограмма КПСКМ, синтезированного при 1500°С: ▲ – пироксены; □ – альбит, анортит; + – окерманит; ● – кристобалит; ♦ – энстатит; ◊ – гематит; ■ – ортоклаз; v – волластонит.

Материал	Плотность р, г/см ³	Пористость П, %	Водопогло- щение В, %	Микротвер- дость, МПа	Прочность при сжатии Р, МПа	Кислото- стойкость, %
Синтезирован- ные материалы:						
КПСКМ	3.677	1.028	0.35	11342.3	10.78	98.32
ДСКМ1	3.838	0.083	0.029	6742.61	58.5	99.18
ДСКМ2	3.846	0.687	0.242	7443.86	39.2	98.6
ПСКМ1	3.455	9.855	3.839	5954.65	9.8	92.0
ПСКМ2	3.801	0.711	0.25	6593.06	11.8	98.0
TCKM1	3.910	0.723	0.187	7600.01	54.3	99.1
TCKM2	4.203	0.477	0.165	8181.44	35.5	99.24
Шлакоситалл [6]	2.6-2.8	—	0	8100-8400	70-90	99.1-99.8
Пироксеновый Fe-содержащий шлакоситалл	3.2	_	0	8500	_	98.0–99.0
Ситалл пироксе- нового состава 67 _с [4]	2.93	_	0	9700	95	99.1–99.3
Базальтовое ка- менное литье [7]	2.9-3.0	_	0.05-0.22	_	25-50	97.0–99.0
Гранит	2.6-2.8	3-10	0.2 - 0.5	—	21	—
Керамзит	0.28-0.37	до 70		_	1-1.8	_

Таблица 3. Сравнительная таблица свойств полученных СКМ со свойствами подобных материалов

ЗАКЛЮЧЕНИЕ

В результате проведенного исследования удалось установить: из исследуемой группы материалов для разработки стеклокристаллических материалов целесообразно использование диатомита и трепела, как пород с высоким содержанием кристаллической фазы и высокой кристаллизационной способностью, в качестве катализатора кристаллизации в данных сырьевых композициях эффективно использование оксидов железа в сочетании с оксидом хрома в высших степенях окисления, для планирования шихт с участием аморфных горных пород при разработке стекловидного материала целесообразно использовать перлит, как материал, обладающий не только наибольшим количеством аморфной фазы, но и наивысшей реакционной способностью.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Минько Н.И., Жерновая Н.Ф.* Некоторые особенности кристаллизации стекол систем Na₂O-FeO-SiO₂ и Na₂O-Fe₂O₃-SiO₂ // Физика и химия стекла. 1987. № 4. С. 496-501.
- 2. *Минько Н.И., Ковальченко Н.А.* Электрические и магнитные характеристики железосодержащего стекла в процессе его кристаллизации // Стекло и керамика. 2002. № 9. С. 5–8.
- 3. *Махмудов Ш.А.У., Баркинов Д.Д.У., Андреев В.В.* Стеклокристаллические материалы на основе горных пород // Евразийское научное объединение. 2020. № 6-2. С. 136–138.
- 4. *Жунина Л.А., Кузьменков М.И., Яглов В.Н.* Пироксеновые ситаллы. Минск: Изд-во БГУ, 1974. 224 с.
- 5. Дьяченко А.Н., Шагалов В.В. Химическая кинетика гетерогенных процессов. Томск: Изд-во Томского политехнического университета, 2014. 102 с.
- 6. Полляк В.В., Саркисов П.Д., Солинов В.Ф., Царицын М.А. Технология строительного и технического стекла и шлакоситаллов. М.: Изд. "Стройиздат". 1983. 432с.
- 7. *Саркисов П.Д.* Направленная кристаллизация стекла основа получения многофункциональных кристаллических материалов. М.: Изд. РХТУ им. Д.И. Менделеева. 1997. 218с.