СТРУКТУРНАЯ ХИМИЯ ИНТЕРМЕТАЛЛИДОВ: ГЕОМЕТРИЧЕСКИЙ И ТОПОЛОГИЧЕСКИЙ АНАЛИЗ, ИКОСАЭДРИЧЕСКИЕ КЛАСТЕРНЫЕ ПРЕКУРСОРЫ $K45 = Hg@Hg_{12}@Cs_{12}Hg_{20}$ И $K81 = Hg@Hg_{12}@Hg_{32}@Hg_{36}$ И САМОСБОРКА КРИСТАЛЛИЧЕСКИХ СТРУКТУР $Cs_6Hg_{40}-cP46$ И $Cs_{12}Hg_{162}-cI174$

© 2022 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин³

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова 2, Санкт-Петербург, 199034 Россия

² Межвузовский научно-исследовательский центр по теоретическому материаловедению, Самарский технический университет, ул. Молодогвардейская, 244, Самара, 443011 Россия

³Федеральный научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр. 59, Москва, 119333 Россия

*e-mail: shevchenko@isc.nw.ru

Поступила в редакцию 13.12.21 г. После доработки 03.02.22 г. Принята к публикации 05.08.22 г.

С помощью компьютерных методов (пакет программ ToposPro) осуществлен геометрический и топологический анализ и проведено моделирование самосборки кристаллических структур интерметаллидов Cs_6Hg_{40} -*cP*46, a = 10.913 Å, *Pm*-3*n* и $Cs_{12}Hg_{162}$ -*cI*174, a = 16.557 Å, *Im*-3. Металлокластеры-прекурсоры определены с использованием алгоритма разложения структурных графов на кластерные структуры и путем построения базисной сетки структуры в виде графа, узлы которого соответствуют положению центров кластеров-прекурсоров S_0^3 . В кристаллической структуре Cs_6Hg_{40} -*cP*46 установлены двухслойные икосаэдрические кластеры *K*45 = $Hg@Hg_{12}@Cs_{12}Hg_{20}$, а для кристаллической структуры $Cs_{12}Hg_{162}$ -*cI*174 определены трехслойные икосаэдрические кластеры *K*81 = $Hg@Hg_{12}@Hg_{32}@Hg_{36}$ с симметрией g = m-3 и Cs-спейсеры. Реконструирован симметрийный и топологический код процессов самосборки кристаллических структур интерметаллидов из прекурсоров S_3^0 в виде: цепь $S_3^1 \rightarrow$ микрослой $S_3^2 \rightarrow$ микрокаркас S_3^3 .

Ключевые слова: интерметаллиды Cs_6Hg_{40} -*cP*46 и $Cs_{12}Hg_{162}$ -*cI*174, самосборка кристаллических структур, икосаэдрические кластеры *K*45 = Hg@Hg_{12}@Cs_{12}Hg_{20}, икосаэдрические кластеры *K*81 = Hg@Hg_{12}@Hg_{32}@Hg_{36}

DOI: 10.31857/S013266512110067X

ВВЕДЕНИЕ

С участием атомов шелочных металлов A = Li, Na, K, Rb, Cs установлено образование около 350 кристаллических структур двойных интерметаллидов $A_n B_m$ [1, 2]. Наиболее многочисленное семейство составляют 130 интерметаллидов $\text{Li}_n B_m$, которым соответствуют 49 структурных типов. Наименее многочисленное семейство включает в себя 42 интерметаллида $\text{Cs}_n B_m$, которым соответствуют 33 структурных типа. В пяти системах Cs–Au, Cs–Pt, Cs–Na, Cs–Rb образуется по одному интерметаллиду, в системе Cs–K – два интерметаллида. В системах Cs–M с M = Zn, Cd, Hg установлено об-

разование семи различных структурных типов. В системах $C_s-M c M = Ge$, Sn, Pb десяти интерметаллидам соответствуют 6 структурных типов, а в системах $C_s-M c M = Sb$, Ві одиннадцати интерметаллидам соответствуют 9 структурных типов.

В системе Cs–Hg установлена кристаллизация пяти интерметаллидов Cs_nHg_m с широкой областью изменения состава Hg : Cs = 1–13.5 [1, 2]. Из них четыре образуют кристаллохимические семейства Cs₂Hg₄-o112 [3–5], Cs₂Hg₂-aP8 [3, 5, 6], Cs₁₀Hg₃₈-t148 [5], Cs₆Hg₄₀-cP46 [7, 8]. Интерметаллид Cs₁₂Hg₁₆₂-cI174 [9] с наибольшим соотношением Hg/Cs = 13.5 кристаллохимических аналогов не имеет.

В работе [10] проведено моделирование самосборки кристаллических структур трех семейств: Cs_2Hg_4 -oI12 (состоящего из 55 соединений), Cs_2Hg_2 -aP8 (из трех соединений) и $Cs_{10}Hg_{38}$ -tI48 (из двух соединений). Установлены тетраэдрические металлокластеры K4 = 0@4 в Cs_2Hg_2 -cI2, октаэдрические металлокластеры K6 = 0@6 в Cs_2Hg_4 и новый полиэдрический металлокластер $K21 = Cs@Cs_4Hg_{16}$ в $Cs_{10}Hg_{38}$ -tI48.

В настоящей работе с помощью компьютерных методов (пакет программ ToposPro [11]) осуществлен геометрический и топологический анализ и проведено моделирование самосборки кристаллических структур **Cs₆Hg₄₀-cP46** и **Cs₁₂Hg₁₆₂-cI**174.

Работа продолжает исследования [10, 12–14] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур интерметаллидов с применением компьютерных методов.

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro, позволяющего проводить исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов). Данные о функциональной роли атомов при образовании кристаллических структур получены расчетом топологических индексов (координационных последовательностей, точечных и вершинных символов).

Алгоритм разложения в автоматическом режиме структуры любого интерметаллида, представленного в виде свернутого графа, на кластерные единицы основывается на следующих принципах. Структура образуется в результате самосборки кластеровпрекурсоров. Кластеры-прекурсоры образуют каркас структуры, пустоты в котором заполняют спейсеры. Многослойные нанокластеры-прекурсоры не имеют общих внутренних атомов, но они могут иметь общие атомы на поверхности. Кластеры-прекурсоры занимают высокосимметричные позиции. Набор нанокластеров-прекурсоров и спейсеров включает в себя все атомы структуры.

Кристаллохимические и топологические данные интерметаллидов представлены в табл. 1.

СИММЕТРИЙНЫЙ И ТОПОЛОГИЧЕСКИЙ КОД (ПРОГРАММА) САМОСБОРКИ КРИСТАЛЛИЧЕСКИХ СТРУКТУР ИНТЕРМЕТАЛЛИДОВ

При моделировании кристаллической структуры определяется иерархическая последовательность ее самосборки в кристаллографическом пространстве, т.е. восстанавливается симметрийно-топологический код формирования макроструктуры в виде последовательности значимых элементарных событий, характеризующих самую короткую (быструю) программу конвергентной кластерной самосборки. Алгоритм самосборки трехмерной структуры происходит по универсальному принципу максимального (комплементарного) связывания кластеров-прекурсоров при переходе на более высокий уровень структурной самоорганизации системы.

Интерметаллид	Группа симметрии	Атом Л	Локальное окружение	Координационные последовательности				
				N ₁	N ₂	N ₃	N_4	N ₅
Cs ₃ Hg ₂₀ - <i>cP</i> 46	Pm-3n (223)	Cs1	20Hg	20	54	124	242	364
		Hg1	12Hg	12	32	120	206	332
		Hg2	3Cs + 9Hg	12	54	126	216	360
		Hg3	3Cs + 9Hg	12	56	114	248	362
		Hg4	4Cs + 8Hg	12	58	128	210	386
Cs ₁₂ Hg ₁₆₂ - <i>cI</i> 174	Im-3 (204)	Cs1	20Hg	20	53	129	232	370
		Hg1	2Cs + 10Hg	12	56	119	218	338
		Hg2	3Cs + 8Hg	11	59	127	230	359
		Hg3	15Hg	15	51	117	213	351
		Hg4	2Cs + 11Hg	13	56	121	218	355
		Hg5	1Cs + 11Hg	12	49	115	207	346
		Hg6	16Hg	16	46	118	214	335
		Hg7	12Hg	12	68	92	240	362

Таблица 1. Кристаллохимические и топологические данные интерметаллидов Cs_3Hg_{20} -*cP*46 и Cs_6Hg_{81} -*cI*174

Кристаллическая структура Cs₆Hg₄₀-*cP*46. Кристаллохимическое семейство состоит из Cs₆Hg₄₀ и Rb₆Hg₄₀. Параметры кубической ячейки Cs₃Hg₂₀: a = 10.913 Å, V = = 1299.67 Å³, Z = 2. Пространственная группа *Pm*-3*n* (№ 223) содержит элементы точечной симметрии и соответствующие им позиции Уайкоффа g = m-3 (2*a*), *mmm* (6*b*), -4m (6*c*, 6*d*), 32 (8*e*) и др.

Локальное окружение атомов и значения координационных последовательностей приведены в табл. 1. Координационное число (КЧ) атома Cs равно 20; координационный полиэдр имеет 20 вершин, 48 ребер и 30 граней. Для атома Hg1 значение KЧ = 12 соответствует икосаэдрическому кластеру $K13 = Hg@Hg_{12}$ с симметрией *m*-3 (рис. 1). 12 атомов Hg2 образуют оболочку икосаэдрического кластера K13 и в локальном окружении кроме центрального атома Hg1 находятся еще 11 атомов (3 атома Cs и 8 атомов Hg).

Установлены 11 вариантов кластерного представления кристаллической структуры Cs_3Hg_{20} -*cP*46 (табл. 2). Ниже рассмотрен наиболее быстрой вариант самосборки кристаллической структуры из образующихся в процессе формирования вторых оболочек кластеров *K*45 = 1@12@32 (рис. 2) в виде: первичная цепь \rightarrow слой \rightarrow каркас.

Супраполиэдрческий кластер-димер образуется в результате связывания темплатированных кластеров-прекурсоров *K*13 + *K*13 (рис. 3). На поверхности кластера *K*13 с участием атомов Hg3, Hg4, и Cs формируется оболочка из 32 атомов Cs₁₂Hg₂₀. Темплатированный кластер *K*45 имеет топологию известного кластера Бергмана и химический состав оболочек Hg@Hg₁₂@Cs₁₂Hg₂₀ (табл. 3). Образование тетрамера S₃² происходит связыванием параллельно расположенных цепей в направлении оси Z (рис. 3). Микрокаркас структуры S₃³ формируется при связывании тетрамеров S₃² + S₃².

Кристаллическая структура $Cs_{12}Hg_{162}$ -*cI*174. Параметры кубической ячейки: *a* = 16.557 Å, V = 4538.84 Å³, Z = 2 Cs_6Hg_{81} . Пространственная группа *Im*-3 (no. 204) со-

Рис. 1. Икосаэдры K13 = Hg@Hg₁₂. Числа указывают длины связей в Å.

держит элементы точечной симметрии и соответствующие им позиции Уайкоффа g = m-3 (2*a*), *mmm* (6*b*), -3 (4*c*), *mm*2 (12*d*, 12*e*), 32 (8*e*), 3 (16*f*) и др.

Локальное окружение атомов и значения координационных последовательностей приведены в табл. 1. Так же, как и в кристаллической структуре Cs_3Hg_{20} -*cP*46, атомы Cs имеют KU = 20, однако топология координационного полиэдра незначительно от-

Таблица 2. Cs_3Hg_{20} -cP46. 11 вариантов кластерного представления кристаллической структуры. Указан центральный атом или центр пустоты полиэдрического кластера, число его оболочек (в скобках) и количество атомов в каждой оболочке (в скобках). Кристаллографические позиции, соответствующие центрам пустот полиэдрических кластеров, обозначены ZA1

1 структурная единица				
Hg1(2)(1@12@32)				
2 структурные единицы				
Hg1(0)(1) Cs1(1)(1@20)				
Hg1(1)(1@12) Cs1(1)(1@20)				
Hg1(0)(1) Hg4(1)(1@12)				
Hg1(1)(1@12) Hg4(1)(1@12)				
Hg1(0)(1) Hg3(1)(1@12)				
Hg1(1)(1@12) Hg3(1)(1@12)				
3 структурные единицы				
ZA1(6b)(1)(0@8) Hg1(1)(1@12) Hg3(0)(1)				
ZA1(6b)(1)(0@8) Hg1(0)(1) Hg3(0)(1)				
ZA1(6b)(1)(0@8) Hg1(0)(1) Hg3(1)(1@12)				
ZA1(6b)(1)(0@8) Hg1(1)(1@12) Hg3(1)(1@12)				

Рис. 2. Cs_6Hg_{40} -*cP*46. Кластер *K*45 = Hg@Hg_{12}@Cs_{12}Hg_{20}.

Таблица 3. Cs ₃ Hg ₂₀ - <i>cP</i> 46. Нано	окластер К45. Атомы, формирую	щие внутренний икосаэдр и	132-атомную
оболочку. Для оболочек полих	эдров в скобках приведено число	э вершин, ребер и граней	

Нанокластер Hg1(2)(1@12 @32)				
Икосаэдр Hg@Hg ₁₂	Оболочка Cs ₁₂ Hg ₂₀			
1 Hg1	12 Cs1			
12 Hg2	8 Hg3			
	12 Hg4			
(12, 30, 20)	(32, 84, 54)			
Всего 45 атомов				

личается: он содержит 20 вершин, 45 ребер и 27 граней. Для 7 атомов Hg установлены значения KH = 11, 12 (три атома), 13, 15 и 16.

На поверхности икосаэдра $Hg@Hg_{12}$ (рис. 1) образуется 68-атомная двухслойная оболочка; состав оболочек кластера характеризуется последовательностью $K81 = Hg@Hg_{12}@Hg_{32}@Hg_{36}$ (рис. 4). Установлены 20 вариантов кластерного представления 3D атомной сетки с числом структурных единиц 2 (7 вариантов), 3 (10 вариантов), 4 (3 варианта) (табл. 4). Ниже рассмотрен наиболее быстрой вариант самосборки кристаллической структуры из трехслойных кластеров *K*81 в виде: первичная цепь \rightarrow слой \rightarrow каркас (рис. 5).

В элементарной ячейке центр кластера *K*81 расположен в позиции 2*a* с симметрией g = m-3. Первичная цепь S¹₃ формируется в результате связывания кластеров-прекурсоров *K*81 + *K*81 с участием атомов-спейсеров Cs (табл. 5, рис. 5). Расстояние между центрами кластеров соответствует половине диагонали элементарной ячейки. Образование микрослоя S²₃ происходит связыванием параллельно расположенных цепей в

661

Рис. 3. Cs_3Hg_{20} -*сР*46. Тетрамер $S_3^2 = S_3^1 + S_3^1$.

Рис. 4. $Cs_{12}Hg_{162}-cI$ 174. Кластер $K45 = Hg@Hg_{12}@Hg_{32}$ (слева) и $K81 = Hg@Hg_{12}@Hg_{32}@Hg_{36}$ (справа).

Таблица 4. Cs ₁₂ Hg ₁₆₂ -а	<i>с1</i> 174. 23 варианта кла	астерного представл	ения кристаллическо	ой структуры.
Кристаллографически	ие позиции, соответс	твующие центрам і	пустот полиэдрическ	их кластеров
обозначены ZA1 и ZA	.2			

Таблица 5. Cs ₁₂ Hg ₁₆₂ - <i>cI</i> 174. Атомы, фор	мирующие кластерные структуры.	Для оболочек полиэд-
ров в скобках приведено число вершин	, ребер и граней	

Hg7(2)(1@12@68) Cs1(0)(1) и Hg7(2)(1@12@68) Cs1(1)(1@20)					
Кластер <i>K</i> 81 = (1@12@68)		Атом	Кластер <i>К</i> 21 = 1@20		
1 Hg7	24 Hg1	1 Cs1	1 Cs1		
12 Hg3	12 Hg2		8 Hg1		
	12 Hg4		6 Hg2		
	12 Hg5		4 Hg4		
	8 Hg6		2 Hg5		
(12, 30, 20)	(68, 228, 162)		(20, 45, 27)		
Всего	81 атом	1 атом	21 атом		

Рис. 5. Сs₆Hg₈₁-*cI*174. Стадии самосборки кристаллической структуры: димер (сверху) и тетрамер (снизу).

направлении диагонали элементарной ячейки (рис. 5). Микрокаркас структуры S_3^3 формируется при связывании микрослоев S_3^2 .

ЗАКЛЮЧЕНИЕ

Проведен геометрический и топологический анализ кристаллических структур интерметаллидов Cs_6Hg_{40} -*cP*46, *Pm*-3*n* и $Cs_{12}Hg_{162}$ -*cI*174, *Im*-3. В кристаллической структуре Cs_6Hg_{40} -*cP*46 установлены икосаэдрические кластеры *K*45 = $= Hg@Hg_{12}@Cs_{12}Hg_{20}$ с симметрией *m*-3, а для кристаллической структуры $Cs_{12}Hg_{162}$ *cI*174 определены икосаэдрические кластеры *K*81 = Hg@Hg_{12}@Hg_{32}@Hg_{36} с симметрией *m*-3 и Cs-спейсеры. Реконструирован симметрийный и топологический код процессов самосборки кристаллических структур интерметаллидов из прекурсоров S_3^0 в виде: цепь $S_3^1 \rightarrow$ микрослой $S_3^2 \rightarrow$ микрокаркас S_3^3 .

Анализ самосборки кристаллической структуры выполнен при поддержке Минобрнауки РФ в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, нанокластерный анализ выполнен при поддержке Российского научного фонда (РНФ № 21-73-30019).

СПИСОК ЛИТЕРАТУРЫ

- 1. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- P. Villars, K. Cenzual. Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- Duwell E.J., Baenziger N.C. The crystal structures of KHg and KHg₂ // Acta Crystallogr. 1955. V. 8. P. 705–710.
- Deiseroth H.J., Strunck A., Bauhofer W. RbHg₂ und CsHg₂, Darstellung, Kristallstruktur, elektrische Leitfaehigkeit // Z. Anorg. Allg. Chem. 1988. V. 558. P. 128–136.
- Deiseroth H.J., Strunck A. Quadratische Hg4-Cluster in der Verbindung CsHg // Angewandte Chemie. 1987. V. 99. P. 701–702.
- Deiseroth H.J., Strunck A., Bauhofer W. CsHg, eine ungewoehnliche Variante der Cs Cl Struktur. Darstellung, Kristallstruktur und physikalische Eigenschaften // Z. Anorg. Allg. Chem. 1989. V. 575. P. 31–38.
- Biehl E., Deiseroth H.J. Eine neue, geordnete Defektvariante des Ba Al4-Strukturtyps // Z. Anorg. Allg. Chem. 1999. V. 625. P. 389–394.
- 8. *Todorov E., Sevov S.C.* Synthesis and structure of the alkali metal amalgams $A_3 Hg_{20}$ (A= Rb, Cs), K_3Hg_{11} , $Cs_5 Hg_{19}$, and $A_7 Hg_{31}$ (A = K, Rb) // Journal of Solid-State Chemistry. 2000. 149. P. 419–427.
- 9. *Hoch C., Simon A.* Cs2 Hg27, the mercury-richest amalgam with close relationship to the Bergman phases // Z. Anorg. Allg. Chem. 2008. V. 634. P. 853–856.
- 10. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Интерметаллиды Cs₂Hg₂-aP8, Cs₂Hg₄-oI12, Cs₁₀Hg₃₈-tI48: Геометрический и топологический анализ, кластерные прекурсоры K4, K6, K21 и самосборка кристаллических структур // Физика и химия стекла. 2022. В печати.
- 11. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.
- 12. Blatov V.A., Ilyushin G.D., Proserpio D.M. Nanocluster model of intermetallic compounds with giant unit cells: β, β'-Mg₂Al₃ polymorphs // Inorg. Chem., 2010, V. 49. № 4. P. 1811–1818.
- Ilyushin G.D. Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure // Struct. Chem. 2012. V. 20. № 6. P. 975–1043.
- 14. Shevchenko V.Ya., Medrish I.V., Ilyushin G.D., Blatov V.A. From clusters to crystals: scale chemistry of intermetallics // Struct. Chem., 2019. V. 30. № 6. P. 2015–2027.
- 15. *Ilyushin G.D.* Intermetallic Compounds *K_nM_m* (*M* = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystal-lography Reports. 2020. V. 65. № 7. P. 1095–1105.