КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ КРИСТАЛЛООБРАЗУЩИХ СИСТЕМ: КЛАСТЕРЫ-ПРЕКУРСОРЫ $K13 = Pu@Pu_{12}, K8 = 0@Pu_8$ И $K4 = 0@Pu_4$ ДЛЯ САМОСБОРКИ КРИСТАЛЛИЧЕСКИХ СТРУКТУР $Pu_4(Pu_{13})$ -mS34, Pu_8 -mP16 И Pu_4 -hP8

© 2022 г. В. Я. Шевченко^{1, *}, Г. Д. Илюшин²

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова 2, Санкт-Петербург, 199034 Россия

²Федеральный научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр. 59, Москва, 119333 Россия *e-mail: shevchenko@isc.nw.ru

> Поступила в редакцию 25.01.22 г. После доработки 24.06.22 г. Принята к публикации 05.08.22 г.

С помощью компьютерных методов (пакета программ ToposPro) осуществлен геометрический и топологический анализ кристаллических структур $Pu_4(Pu_{13})-mS34$ ($V = 749.1 Å^3$, пр. группа I2/m), Pu_8-mP16 ($V = 319.96 Å^3$, пр. группа $P2_1/m$) и Pu_4-hP8 ($V = 115.02 Å^3$, пр. группа $P6_3/m$). Для $Pu_8(Pu_{13})_2$ найдено 39 вариантов кластерного представления 3D атомной сетки с числом структурных единиц от 2 до 5. Установлены образующие 3D упаковку икосаэдрические кластеры $K13 = Pu@Pu_{12}$ с симметрией 2/m. В пустотах икосаэдрического каркаса расположены атомы-спейсеры Pu. Для Pu_8-mP16 установлены образующие 3D упаковку кластеры K8 = 0@Pu8 с центрами в позициях 2с и 2b с симметрией -1. Для Pu_4-hP8 установлены образующие 3D упаковку кластеры $K4 = 0@Pu_4$ с центром в позиции 4f с симметрией 3. Реконструирован симметричный и топологический код процессов самосборки кристаллических структур из металлокластеров-прекурсоров S_3^0 в виде: цепь $S_3^1 \rightarrow$ микрослой $S_3^2 \rightarrow$ \rightarrow микрокаркас S_3^3 .

Ключевые слова: Pu₄(Pu₁₃)-*mP*34, Pu₈-*mP*16 и Pu₄-*hP*8, самосборка кристаллической структуры, кластеры-прекурсоры *K*13 = Pu@Pu₁₂, *K*8 = 0@Pu₈ и *K*4 = 0@Pu₄ **DOI**: 10.31857/S0132665122100018

ВВЕДЕНИЕ

Анализ кристаллических структур металлов, образующихся на границе расплавтвердое тело, показал, что большинство из них кристаллизуется в структурных типах W-cI2, Cu-cF4, Mg-hP2 [1, 2]. В структурном типе W-cI2 установлена кристаллизация 44 металлов, в структурном типе Cu-cF4 – 11 металлов, и в структурном типе Mg-hP2 – 7 металлов. Кристаллические структуры металлов характеризуются высокими значениями координационных чисел атомов: 12 – для Cu-cF4 и Mg-hP2 и 14 – для W-cI2. Структурные типы Cu-cF4, Mg-hP2, и W-cI2 характеризуются тетраэдрическими кластерами-прекурсорами K4 (рис. 1, [1, 2]).

При понижении температуры многие металлы изменяют тип кристаллической структуры [1–6]. Имеют место переходы из структур типа W-cI2 в Mg-hP2 (14 металлов), из структур типа W-cI2 в Cu-cF4 – для Yb, Th, Pa и из структур типа Cu-cF4 в Mg-

Рис. 1. Тетраэдрические кластеры-прекурсоры кристаллических структур металлов. Числа указывают длины связей в Å.

*hP*2 для Со. 27 химических элементов со структурами типа Cu-*cF*4, Mg-*hP*2 и W-*cI*2 не обладают термическим полиморфизмом.

При понижении температуры до комнатной для некоторых металлов установлено образование уникальных кристаллических структур.

Среди *s*, *d*-элементов для марганца Mn последовательность структурных переходов имеет вид Mn-*cI*2 \rightarrow Mn-*cF*4 \rightarrow Mn-*cP*20 \rightarrow Mn-*cI*58. Кристаллические структуры Mn-*cI*2 и Mn-*cF*4 входят в кристаллохимические семейства W-*cI*2 и Cu-*cF*4. Кристаллические структуры Mn-*cI*58 не имеют аналогов среди других металлов.

Кристаллические структуры Sc, Y, и лантаноиды Ln = от La до Yb характеризуются структурными типами W-*cI*2, Cu-*cF*4, Mg-*hP*2 и при низких температурах структурными типами Nd-*hP*4 и Sm-*hR*3 [3, 4].

Кристаллические структуры актиноидов при высоких температурах характеризуются структурами типа W-*cI*2, Cu-*cF*4 (рис. 1), но при понижении температуры уникальными кристаллическими структурами (табл. 1). Наибольшее число — шесть структурных модификаций установлено для плутония [7—10]. При комнатной температуре и высоком давлении установлен переход из моноклинной структуры Pu_8-mP16 в гексагональную структуру Pu_4-hP8 [11], не имеющую аналогов среди металлов.

Металл	Группа симметрии	Параметры элементарной ячейки в Å и градусах	<i>V</i> , Å ³	Индекс Пирсона
Np	Im-3m (229)	3.520, 3.520, 3.520	43.6	c <i>I</i> 2
U	Im-3m (229)	3.532, 3.532, 3.532	44.1	c <i>I</i> 2
Pu	Im-3m (229)	3.640, 3.640, 3.640	48.2	cI2
Th	Im-3m (229)	4.110, 4.110, 4.110	69.4	cI2
Pu	I4/mmm (139)	3.339, 3.339, 4.446	49.6	tI2
Pa	I4/mmm (139)	3.940, 3.940, 3.244	50.4	tI2
Pu	Fm-3m (225)	4.631, 4.631, 4.631	99.3	cF4
Cf	Fm-3m (225)	4.780, 4.780, 4.780	109.2	cF4
U	Fm-3m (225)	4.890, 4.890, 4.890	116.9	cF4
Am	Fm-3m (225)	4.894, 4.894, 4.894	117.2	cF4
Bk	Fm-3m (225)	4.997, 4.997, 4.997	124.8	cF4
Pa	Fm-3m (225)	5.031, 5.031, 5.031	127.3	cF4
Cm	Fm-3m (225)	5.039, 5.039, 5.039	127.9	cF4
Th	Fm-3m (225)	5.089, 5.089, 5.089	131.8	cF4
Pu ₄	Fddd (70)	3.159, 5.768, 10.162	185.2	oF8
Pu ₄ (Pu ₁₃)	<i>I2/m</i> (12)	9.284, 10.463, 7.859, 90.00, 92.13, 90.00	762.9	<i>mI</i> 34
Pu ₁₆	$P12_1/m1$ (11)	6.179, 4.806, 10.942, 90.00, 101.74, 90.00	318.1	<i>mP</i> 16
Pu ₈ -HPr	$P6_3/m$ (176)	5.437, 5.437, 4.493	115.0	<i>hP</i> 8

Таблица 1. Кристаллографические данные актиноидов [3, 4]

В элементарной ячейке моноклинной α -модификации Pu₈-*mP*16 (V = 319.96 Å³, пр. группа $P2_1/m$) содержатся 16 атомов Pu, которым соответствуют 8 кристаллографически различных атомов с KЧ = 12 (1 атом), 14 (6 атомов), 16 (1 атом) [10]. Все кристаллографически независимые атомы Pu1–Pu8 лежат в плоскости *m* на высоте y = 1/4 и 3/4. В [5] атомные сетки, расположенные параллельно (010) интерпретированы как состоящие из неправильных четырехугольниках и треугольников или только из неправильных треугольников.

В элементарной ячейке другой моноклинной β -модификация $Pu_4(Pu_{13})$ -*mS*34 (V = 749.1 Å³, пр. группа I 2/m) [9] содержатся 34 атома_Pu, которым соответствуют 7 типов кристаллографически различных атомов с KЧ = 12 (1 атом), 13 (2 атома), 14 (2 атома), 15 (2 атома). В [5] выделены пентагон-квадратно-треугольные сетки из атомов Pu(1), Pu(2), Pu(3), Pu(4), лежащих в плоскости *m* на высоте y = 0 и 1/2. Атомы Pu(5) и Pu(6) образуют гофрированные гексагон-треугольные сетки лежащие в плоскостях с *y*-координатами примерно 1/4 и 3/4 В плоскостях с y = 0.15 и 0.35 и y = 0.65 и 0.85 располагаются пары атомов Pu (7) на расстояниях 2.59 Å.

В настоящей работе осуществлен геометрический и топологический анализ уникальных кристаллических структур $Pu_4(Pu_{13})$ -*mP*34, Pu_8 -*mP*16, Pu_4 -*hP*8 и впервые установлены кластерные прекурсоры *K*13, *K*8, *K*4. Реконструирован симметрийный и топологический код процессов самосборки кристаллических структур из металлокластеров-прекурсоров S_3^0 в виде: цепь $S_3^1 \rightarrow$ слой $S_3^2 \rightarrow$ каркас S_3^3 . Работа продолжает исследования [1, 2, 12–14] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением компьютерных методов (пакета программ ToposPro [15]).

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro, позволяющего проводить исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов).

Алгоритм разложения в автоматическом режиме структуры любого интерметаллида, представленного в виде свернутого графа, на кластерные единицы основывается на следующих принципах: структура образуется в результате самосборки из кластеров-прекурсоров; кластеры-прекурсоры образуют каркас структуры, пустоты в котором заполняют спейсеры; кластеры-прекурсоры не имеют общих атомов; кластерыпрекурсоры занимают высокосимметричные позиции; набор кластеров-прекурсоров и спейсеров включает в себя все атомы структуры.

Кристаллографические данные для 7 модификаций металлического плутония приведены в табл. 1. Топологические данные структурных модификаций металлического плутония $Pu_4(Pu_{13})$ -*mP*34, Pu_8 -*mP*16, и Pu_4 -*hP*8 представлены в табл. 2. На рис. 1 даны длины связей атомов Pu в тетраэдрических кластерах-прекурсорах трех кристаллических структур металлического плутония Pu-*cI*2, Pu-*tI*2, и Pu-*cF*4.

СИММЕТРИЙНЫЙ И ТОПОЛОГИЧЕСКИЙ КОД (ПРОГРАММА) САМОСБОРКИ КРИСТАЛЛИЧЕСКИХ СТРУКТУР

Кристаллическая структура $(Pu_4)_2(Pu_{13})_2$ -*m*S34. Пространственная пр. группа *I*2/*m* с элементами точечной симметрии: g = 2/*m* (2a, 2b, 2c, 2d,), -1(4e 4f), 2 (4g, 4h), *m* (4i). Порядок группы 8.

Атом Pu (1) занимают позицию 2a (0,0,0), атомы Pu (2), Pu (3), Pu (4) — позиции 4i в плоскости y = 0, атом Pu (5) на оси 2, атомы Pu (6) и Pu (7) в позициях 8j (x, y, z).

Локальное окружение атомов Pu и различающиеся значения координационных последовательностей атомов приведены в табл. 2. Определены значения КЧ (координационных чисел) атомов Pu, равные КЧ = 12 (1 атом), 13 (2 атома), 14 (2 атома), 15 (2 атома).

Метод полного разложения 3D атомной сетки на кластерные структуры использован для определения каркас-образующих кластеров кристаллической структуры. Всего найдено 39 вариантов кластерного представления 3D атомной сетки с числом структурных единиц от 2 до 5 (табл. 3).

В результате установлены образующие 3D упаковку икосаэдрические кластеры $K13 = Pu(Pu_{12})$ (табл. 3, рис. 2). В элементарной ячейке центры кластеров K13 расположены в позициях 2a с симметрией 2/m (рис. 3). Кластер K13 образован из пяти кристаллографически независимых атомов Pu1, Pu2, Pu3, Pu6, Pu7. Два атома Pu4 и Pu5 являются спейсерами, занимающие позиции в пустотах каркаса.

Первичная цель. Образование первичной цепи S_3^1 из кластеров *K*13 происходит с индексом связанности $P_{\text{лок}} = 5$ (рис. 2). Атомы-спейсеры Pu4 и Pu5 расположены между кластерами *K*13 и образуют с ними по 4 связи (рис. 2). Центр димера находится в позиции 4е (1/4, 1/4, 1/4) с симметрией g = -1.

Металл	Группа симметрии	Атом	Координационные последовательности				
			N ₁	N ₂	N ₃	N ₄	N ₅
Pu ₄ (Pu ₁₃)- <i>mI</i> 34	I2/m	Pu1	12	46	116	202	344
		Pu2	15	53	122	213	347
		Pu3	13	47	112	203	339
		Pu4	15	53	116	221	347
		Pu5	14	52	118	216	347
		Pu6	14	51	113	213	341
		Pu7	13	53	120	218	350
Pu ₈ - <i>mP</i> 16	$P2_1/m$	Pu1	12	50	116	210	332
		Pu2	14	54	120	212	334
		Pu3	14	54	120	212	334
		Pu4	14	50	118	220	334
		Pu5	14	54	122	214	334
		Pu6	14	50	120	220	332
		Pu7	14	52	120	212	330
		Pu8	16	56	120	210	330
Pu- <i>hP</i> 8	<i>P</i> 6 ₃ / <i>m</i>	Pu1	12	50	120	212	324
		Pu2	14	52	118	210	326

Таблица 2. Кристаллографические и топологические данные структурных модификаций плутония

Самосборка слоя. Образование микрослоя происходит при связывании первичных цепей со сдвигом (рис. 3). На этой стадии самосборки также происходит локализация атомов-спейсеров Pu4 и Pu5 между кластерами *K*13.

Самосборка каркаса. Октамер из восьми кластеров *K*13 формируется при связывании двух микрослоев со сдвигом (рис. 4). Центр супракластера находится в позиции 2с (1/2, 0, 0) с симметрией g = -1.

Кристаллическая структура Pu_8-mP16 . Пространственная группа $P \ 12_1/m1$ с элементами точечной симметрии: g = -1 (2a, 2b, 2c, 2d), *m* (2e). Порядок группы 4.

Локальное окружение атомов Pu и значения координационных последовательностей приведены в табл. 2. Определены значения КЧ (координационных чисел) атомов Pu, равные CN = 12 (1 атом), 14 (6 атомов), 16 (1 атом).

Установлены кластеры K8(2b) и K8(2c) образующие 3D упаковку (табл. 3, рис. 5). В элементарной ячейке центры двух кристаллографически различных кластеров расположены в позициях 2b и 2c с симметрией -1 (рис. 5). Кластер K8(2b) образован из четырех кристаллографически независимых из атомов Pu3, Pu4, Pu5, Pu6 (лежащих в плоскости *m*). Кластер K8(2c) образован из четырех кристаллографически независимых атомов Pu1, Pu2, Pu7, Pu8 (также лежащих в плоскости *m*).

Первичная цепь. Образование первичной цепи S_3^1 из кластеров K8(2c) + K8(2c) и из кластеров K8(2b) + K8(2b) происходит с индексом связанности P = 9 в направлении

Таблица 3. Pu₄(Pu₁₃)-*mI*34. Варианты кластерного представления кристаллической структуры с 2, 3 и 5 структурными единицами. Указан центральный атом или центр пустоты полиэдрического кластера, число его оболочек (в скобках) и количество атомов в каждой оболочке (в скобках). Кристаллографические позиции, соответствующие центрам пустот полиэдрических кластеров, обозначены ZA1–ZA5

2 структурные единицы						
Pu1(0)(1) Pu5(1)(1@14)						
Pu1(1)(1@12) Pu5(1)(1@14)						
ZA2(2c)(1)(0@10) Pu1(1)(1@12)						
ZA5(4f)(1)(0@12) Pu1(1)(1@12)						
3 структурные единицы						
ZA1(2b)(1)(0@10) Pu1(0)(1) Pu5(1)(1@14)						
ZA1(2b)(1)(0@10) Pu1(1)(1@12) Pu5(0)(1)						
ZA1(2b)(1)(0@10) Pu1(1)(1@12) Pu5(1)(1@14)						
ZA2(2c)(1)(0@10) ZA1(2b)(1)(0@10) Pu1(0)(1)						
ZA2(2c)(1)(0@10) ZA1(2b)(1)(0@10) Pu1(1)(1@12)						
ZA3(2d)(1)(0@8) ZA1(2b)(1)(0@10) Pu1(0)(1)						
ZA3(2d)(1)(0@8) ZA1(2b)(1)(0@10) Pu1(1)(1@12)						
ZA3(2d)(1)(0@8) ZA2(2c)(1)(0@10) Pu1(1)(1@12)						
ZA4(4e)(1)(0@8) ZA1(2b)(1)(0@10) Pu1(1)(1@12)						
ZA4(4e)(1)(0@8) ZA2(2c)(1)(0@10) Pu1(0)(1)						
ZA4(4e)(1)(0@8) ZA2(2c)(1)(0@10) Pu1(1)(1@12)						
ZA5(4f)(1)(0@12) ZA1(2b)(1)(0@10) Pu1(0)(1)						
ZA5(4f)(1)(0@12) ZA1(2b)(1)(0@10) Pu1(1)(1@12)						
ZA5(4f)(1)(0@12) ZA3(2d)(1)(0@8) Pu1(0)(1)						
ZA5(4f)(1)(0@12) ZA3(2d)(1)(0@8) Pu1(1)(1@12)						
ZA5(4f)(1)(0@12) ZA4(4e)(1)(0@8) Pu1(0)(1)						
ZA5(4f)(1)(0@12) ZA4(4e)(1)(0@8) Pu1(1)(1@12)						
5 структурных единиц						
ZA4(4e)(1)(0@8) ZA3(2d)(1)(0@8) ZA2(2c)(1)(0@10) ZA1(2b)(1)(0@10) Pu1(0)(1)						
ZA4(4e)(1)(0@8) ZA3(2d)(1)(0@8) ZA2(2c)(1)(0@10) ZA1(2b)(1)(0@10) Pu1(1)(1@12)						
ZA5(4f)(1)(0@12) ZA4(4e)(1)(0@8) ZA3(2d)(1)(0@8) ZA1(2b)(1)(0@10) Pu1(0)(1)						
ZA5(4f)(1)(0@12) ZA4(4e)(1)(0@8) ZA3(2d)(1)(0@8) ZA1(2b)(1)(0@10) Pu1(1)(1@12)						

оси *х*. В первичной цепи расстояние между кластерами соответствует значению трансляции a = 6.183 Å (рис. 5).

Самосборка слоя. Образование слоя происходит при связывании *x* цепей S_3^l из кластеров *K*8(2c) и цепей S_3^l из кластеров *K*8(2b) с индексом связанности *P* = 21 (рис. 5).

Самосборка микрокаркаса. Октамер из восьми кластеров *К*8 формируется при связывании двух микрослоев (рис. 6). Центр октамера находится в позиции 4f (0.25, 0.50 0.25).

Рис. 2. $Pu_4(Pu_{13})$ -*mP*34. Кластер-прекурсор $S_3^0 = Pu@Pu_{12}(a)$, первичная цепь $S_3^1 = K13 + K13$ (б), первичная цепь $S_3^1 = K13 + K13 + Pu$ -спейсеры (в).

Рис. 3. $Pu_4(Pu_{13})$ -*mP*34. Слой $S_3^2 = S_3^1 + S_3^1 + Pu$ -спейсеры.

Рис. 4. $Pu_4(Pu_{13})$ -*mP*34. Каркас $S_3^3 = S_3^2 + S_3^2$.

Кристаллическая структура (Pu_4)₂-*hP8*. Пространственная пр. группа *P*6₃/*m* с элементами точечной симметрии: g = -6 (2a), -3(2b), -6(2c, 2d), 3(4e, 4f), -1(6g), *m*(6h). Порядок группы 12. Локальное окружение атомов Pu и значения координационных последовательностей приведены в табл. 2.

Рис. 5. Pu_8-mP16 . Слой S_3^2 из первичных цепей S_3^1 из кластеров K8(2c) + K8(2c) и S_3^1 из кластеров K8(2b) + K8(2c).

Рис. 6. Ри₈-*тР*16. Каркас из слоев из кластеров *К*8(2с) и из кластеров *К*8(2b).

Рис. 7. (Pu₄)₂-*hP*8. Кластер-прекурсор $S_3^0 = 0$ @Pu₄ (*a*), первичная цепь $S_3^1 = S_3^0 + S_3^0$ (б).

Установлены образующие 3D упаковку тетраэдрические кластеры $K4 = 0@Pu_4$ (рис. 7). Кластер K4 образован из двух кристаллографически независимых атомов Pu1, расположенных в позиции 2d с симметрией -6 и атомов Pu2 расположенных в позиции 6h с симметрией *m*. В элементарной ячейке центр кластер K4 расположен в позиции 4f с симметрией 3.

Первичная цепь. Образование первичной цепи S_3^1 из кластеров *K*4 + *K*4 происходит с индексом связанности $P_{\text{лок}} = 7$ (рис. 7).

Самосборка микрослоя. Образование слоя происходит при связывании первичных цепей S_3^1 с индексом связанности $P_{nok} = 14$ (рис. 8).

Самосборка каркаса. Каркас структуры S_3^3 формируется при упаковке микрослоев S_3^2 из восьми кластеров *K*4 в направлении оси *z* (рис. 8). Расстояние между микрослоями в направлении оси *x* соответствует значению трансляции гексагональной ячейки *a* = = 5.437 Å. Центр каркаса находится в позиции 2b (0, 0, 0) с симметрией -3.

Рис. 8. (Pu₄)₂-*hP*8. Слой $S_3^2 = S_3^1 + S_3^1$ (*a*), каркас $S_3^3 = S_3^2 + S_3^2$ (*б*).

ЗАКЛЮЧЕНИЕ

Осуществлен геометрический и топологический анализ кристаллических структур $Pu_8(Pu_{13})_2$ -*m*S34, Pu_8 -*mP*16 и Pu_4 -*hP*8. Для $Pu_8(Pu_{13})_2$ установлены каркас-образующие икосаэдрические кластеры *K*13 = $Pu(Pu_{12})$ и атомы-спейсеры Pu, расположенные в пу-

стотах каркаса. Для $Pu_8 - mP16$ установлены каркас-образующие кластеры K8 = 0@8Puи для $Pu_4 - hP8$ — кластеры K4 = 0@4Pu. Реконструирован симметрийный и топологический код процессов самосборки кристаллических структур металлов из металлокластеров-прекурсоров S_3^0 в виде: цепь $S_3^1 \rightarrow$ микрослой $S_3^2 \rightarrow$ микрокаркас S_3^3 .

Авторы благодарят В.А. Блатова за предоставления для расчетов пакета программ ToposPro.

Анализ самосборки кристаллических структур выполнен при поддержке Минобрнауки РФ в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, нанокластерный анализ выполнен при поддержке Российского научного фонда (РНФ 20-13-00054).

СПИСОК ЛИТЕРАТУРЫ

- Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. М.: УРСС, 2003. 376 с.
- 2. Илюшин Г.Д. Symmetry and Topology Code (Program) of Crystal Structure Cluster Self-Assembly for Molecular and Framework Compounds // Russian Journal of Inorganic Chemistry. 2014. V. 59. № 13. Р. 1568–1626.
- 3. *Villars P., Cenzual K.*. Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- 4. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST).
- 5. Пирсон У. Кристаллохимия и физика металлов и сплавов. Ч. 1 и 2. М.: Мир. 1977.
- 6. Уэллс А. Структурная неорганическая химия. М.: Мир, Т. 1–3. 1987.
- 7. *Ellinger F.H.* Crystal structure of delta-prime plutonium and the thermal expansion characteristics of delta, delta-prime and epsilon plutonium // Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers. 1956. V. 206. P. 1256–1259.
- Zachariasen W.H., Ellinger F.H. Crystal Chemical Studies of the 5f-Series of Elements. XXIV. The Crystal Structure and Thermal Expansion of γ-Plutonium // Acta Crystallographica. 1955. V. 8. P. 431–433
- Zachariasen W.H., Ellinger F.H. The crystal structure of beta plutonium metal // Acta Crystallographica. 1963 V.16. P. 369-375
- Zachariasen W.H., Ellinger F.H. The crystal structure of alpha plutonium metal // Acta Crystallographica. 1963. V. 16. P. 777–783.
- 11. Dabos-Seignon S., Dancausse J.P., Gering E., Heathman S., Benedict U. Pressure-induced phase transition in alpha-Pu // Journal of Alloys Compd. 1993 V. 190. P. 237–242.
- 12. Шевченко В.Я, Блатов В.А., Илюшин Г.Д. Кластерная самоорганизация интерметаллических систем: новый трехслойный нанокластер-прекурсор K211 = 0@14@80@116 в кристаллической структуре Er₈₈Mn₁₁₀Al₂₃₇Si₂₃₇-*cP*672 // Физика и химия стекла. 2021. Т. 47. № 6. С. 623–630.
- Ilyushin G.D. Modeling of the Self-Organization Processes in Crystal-Forming Systems. Tetrahedral Metal Clusters and the Self-Assembly of Crystal Structures of Intermetallic Compounds // Crystallography Reports. 2017. V. 62. 5. P. 670–683.
- Ilyushin G.D. Symmetry and Topology Code of the Cluster Self-Assembly of Intermetallic Compounds A^[16]₂ B^[12]₄ of the Friauf Families Mg₂Cu₄ and Mg₂Zn₄ // Crystallography Reports. 2018. V. 63. 4. P. 543–552.
- 15. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.