= КРАТКИЕ СООБЩЕНИЯ —

ПОЛУЧЕНИЕ ТВЕРДЫХ РАСТВОРОВ НА ОСНОВЕ $sr_3B_2sio_8$, ДОПИРОВАННЫХ eu^{3+}

© 2022 г. О. Л. Белоусова^{1, *}, Д. С. Ершов¹, Е. С. Деркачева¹, В. Л. Уголков¹

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия *e-mail: olgabelousova80@gmail.com

> Поступила в редакцию 01.08.22 г. После доработки 04.08.22 г. Принята к публикации 05.08.22 г.

Кристаллизацией из расплава получены образцы ряда гомогенных твердых растворов $\text{Sr}_{3-x}\text{B2Si}_{1-x}\text{O}_{8-3x}$; $y\text{Eu}^{3+}$ (x=0.63, y=0.001; 0.01; 0.1; 0.2; 0.4). Проведены исследования методами рентгенофазового и термического анализов. Определены параметры элементарной ячейки, температуры плавления и кристаллизации.

Ключевые слова: $Sr_3B_2SiO_8$, твердые растворы, Eu^{3+} , кристаллизация из расплава, рентгенофазовый анализ, люминофоры **DOI:** 10.31857/S0132665122600583

ВВЕДЕНИЕ

Боросиликаты щелочноземельных металлов, легированные различными редкоземельными элементами, являются перспективными соединениями для получения люминофоров и активных сред для лазеров. В системе SrO–B₂O₃—SiO₂ такими являются метастабильное тройное соединение SrB₂Si₂O₈ и стабильное соединение Sr₃B₂SiO₈. Люминофоры SrB₂Si₂O₈: Eu³⁺, Ce³⁺, Tb³⁺ могут эффективно работать в УФ-области [1, 2]. Боросиликат Sr₃B₂SiO₈: Eu³⁺ является перспективным для использования в качестве красного фосфора для белых светоизлучающих диодов [3]. В работе [4] были исследованы люминесцентные свойства материалов на основе Sr₃B₂SiO₈, содержащего 0.1 мол. % Eu₂O₃ или Dy₂O₃. При этом однофазный продукт получен не был, в качестве примесной фазы в образцах присутствовал силикат SrSiO₃. Известны работы по получению твердофазным методом синтеза однофазных материалов на основе боросиликата стронция, допированного европием, с общей формулой Sr_{3-2x}Eu_xNa_xB₂SiO₈ (*x* = 0.01–0.20), и исследованию их люминесцентных свойств [5].

Актуальной является задача получения люминофоров основных цветов на базе матриц одной системы. Впервые были получены и исследованы гомогенные твердые растворы на основе $Sr_3B_2SiO_8$ [6–8]. Были изучены условия образования твердых растворов на основе соединения $Sr_3B_2SiO_8$ и установлены пределы смесимости. Были синтезированы образцы с содержанием SiO_2 1.25, 2.5, 3.75 мол. % для уточнения границы смесимости. Разрыв смесимости в ряду твердых растворов $Sr_2B_2O_5 - Sr_3B_2SiO_8$ наблюдался в области, близкой к $Sr_2B_2O_5$. Анализ дифрактограмм показал, что в интервале составов с содержанием SiO_2 0–3.125 мол. % наблюдаются только пики $Sr_2B_2O_5$, интервал 3.125–4.38 мол. %

является гетерогенным, а начиная с содержания SiO₂ 4.38 мол. % (x = 0.86) при 1000°C образуются гомогенные твердые растворы. Все твердые растворы также могут быть получены кристаллизацией из расплава, но только после многоступенчатого твердофазного синтеза. Образцы, подвергавшиеся плавлению сразу после предварительного обжига при 900°C, помимо самого твердого раствора содержат примесные фазы Sr₂B₂O₅, SrSiO₃ и Sr₂SiO₄. Параметры решетки твердых растворов при этом отклоняются от зависимости, полученной для гомогенных твердых растворов. Данные о термической стабильности твердых растворов и их структуре позволяют предположить, что на их основе можно создавать широкий ряд люминесцентных материалов для светодиодов [7, 8].

Цель настоящей работы — получение боросиликатов $Sr_{3-x}B_2Si_{1-x}O_{8-3x}:yEu^{3+}$ (x = 0.63, y = 0.001; 0.01; 0.1; 0.2; 0.4), изучение их фазового состава и термического поведения (плавление, кристаллизация), разработка методики синтеза гомогенных твердых растворов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез твердых растворов состава $Sr_{2.37}B_2Si_{0.37}O_{6.11}$: yEu^{3+} (y = 0.001, 0.01, 0.1, 0.2, 0.4) осуществляли твердофазным методом и кристаллизацией из расплава. В качестве исходных реагентов были использованы $SrCO_3$ ("ос. ч." 7-4), H_3BO_3 ("х. ч."), SiO_2 ("ос. ч." 14-4), Eu_2O_3 ("ос. ч."). Смеси, содержащие оксиды в заданных соотношениях, гомогенизировали измельчением в яшмовом барабане в течение 6 ч. После их предварительного обжига при 800°C и повторного измельчения из полученных порошков были отпрессованы образцы в виде таблеток, которые далее подвергали последовательной термообработке при температурах 900°C (96 ч), 1000°C (40 ч). Синтез проводили в печах KO – 14 с карбид-кремниевыми нагревателями и камерной электропечи сопротивления TK.5.6.1800,ДМ с нагревателями из дисилицида молибдена, на воздухе в Pt тиглях. Отожженные при 1000°C образцы были измельчены, расплавлены при 1300–1350°C и закристаллизованы на воздухе на платиновой подложке.

Определение фазового состава полученных образцов проводили методом порошкового рентгенофазового анализа (РФА) на дифрактометрах Rigaku, ДРОН-3, Си K_{α} -излучение, режим работы рентгеновской трубки 30 кВ, 10 мА, геометрия съемки на отражение, позиционно-чувствительный детектор. Интервал углов 2 θ = 5°–75°; шаг 0.01°– 0.03°; экспозиция в точке 1–5 с. Первичную обработку данных РФА и расчет параметров кристаллической решетки полученных материалов осуществляли в программном комплексе PDWIN (НПО Буревестник). Фазовый состав образцов определяли с помощью международной базы порошковых рентгендифракционных данных ICDD (PDF-2).

Термическое поведение полученных материалов изучали методом дифференциальной сканирующей калориметрии (ДСК) на установке синхронного термического анализа NETZSCH STA 429 с использованием платино-платинородиевого держателя для образцов типа "TG + DSC", скорость нагревания составляла 10°С/мин.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

При синтезе составов Sr_{2.37}B₂Si_{0.37}O_{6.11}: yEu³⁺ (y = 0.001; 0.01; 0.1; 0.2; 0.4) твердофазным методом при 1000°C и 24 часах выдержки однофазные твердые растворы не были получены. Увеличение времени выдержки при 1000°C до 40 ч не приводит к изменению фазового состава. Образцы содержат преимущественно силикаты стронция, а также бораты и силикат европия, образование твердого раствора Sr_{2.37}B₂Si_{0.37}O_{6.11} в

Рис. 1. Дифрактограммы составов Sr_{2.37}B₂Si_{0.37}O_{6.11}: *у*Eu³⁺, полученных кристаллизацией из расплава, где *у*: 1) 0, 2) 0.001, 3) 0.01, 4) 0.1, 5) 0.4, 1–3, 5 – плавление после обжига при 1000°С, 4 – после 900°С.

минимальных количествах начинается в составе с содержанием 0.1 Eu³⁺. РФА закристаллизованных составов, полученных после плавления отожженных при 1000°С (40 ч) образцов показал, что составы с $(0-0.1)Eu^{3+}$ представляют собой гомогенные твердые растворы на основе Sr_{2.37}B₂Si_{0.37}O_{6.11} (рис. 1, дифрактограммы 1–3, 5). Закристаллизованный состав Sr_{2.37}B₂Si_{0.37}O_{6.11}: 0.4Eu³⁺, содержащий ионы европия в довольно большом количестве, чтобы оказать модифицирующее влияние на процессы синтеза, был получен из образцов, отожженных при 900°С. РФА показал, что, помимо твердого раствора на основе Sr_{2.37}B₂Si_{0.37}O_{6.11} в составе присутствуют также силикаты стронция (рис. 1, дифрактограмма 4).

Гетеровалентное замещение происходит по схеме $3Sr^{2+} \rightarrow 2Eu^{3+} \square$ и приводит к образованию вакансий по кислороду [9]. Известно, что при частичном замещении Sr^{2+} ионами Eu^{3+} возникают дефекты положительного заряда (Eu + Sr), которые могут негативно влиять на люминесценцию. Для компенсации заряда вводят ионы щелочных металлов (Li⁺, Na⁺, K⁺) [5].

Полученные твердые растворы кристаллизуются в ромбической сингонии, пространственная группа *Pnma*. Были рассчитаны параметры элементарной ячейки всех полученных твердых растворов (табл. 1). Очевидно, что введение Eu³⁺, а также изменение его концентрации оказывает влияние на изменение параметров

yEu ³⁺	Параметры элементарной ячейки			
	<i>a</i> , Å	b, Å	<i>c</i> , Å	<i>V</i> , Å ³
0.000	12.1800 (19)	3.8792 (10)	5.39137 (80)	254.735 (58)
0.001	12.1645 (14)	3.87730 (53)	5.38418 (70)	253.948 (42)
0.01	12.1352 (32)	3.87401 (10)	5.3666 (19)	252.295 (91)
0.1	12.1103 (28)	3.8651 (64)	5.3481 (25)	250.331 (30)
0.2	12.0598 (44)	3.87316 (10)	5.30221 (22)	247.664 (25)
0.4	11.9992 (32)	3.8916 (13)	5.2775 (15)	246.437 (91)

Таблица 1. Параметры элементарной ячейки твердых растворов $Sr_{2.37}B_2Si_{0.37}O_{6.11}$: yEu^{3+}

элементарной ячейки. Объем элементарной ячейки уменьшается примерно на 3% в соответствии с замещением крупного атома Sr^{2+} ионным радиусом 1.20 Å на меньший атом Eu^{3+} с ионным радиусом 1.09 Å:

$$y = 0 - V = 254.735 (58) Å^3,$$

 $y = 0.4 - V = 246.437 (91) Å^3.$

Рис. 2. Результаты дифференциальной сканирующей калориметрии: 1) Sr₃B₂SiO₈, 2) Sr_{2.37}B₂Si_{0.37}O_{6.11}, 3)–6) Sr_{2.37}B₂Si_{0.37}O_{6.11}: *y*Eu³⁺, где *y*: 3) 0.001; 4) 0.01; 5) 0.1; 6) 0.4. Сплошная линия – нагревание, пунктирная линия – охлаждение.

y = 0 - a = 12.1800 (19) Å, b = 3.8792 (10) Å c = 5.39137(80) Å

y = 0.4 - a = 11.9992 (32) Å, b = 3.8916 (13) Å, c = 5.2775 (15) Å;

Основой кристаллической структуры $Sr_3B_2SiO_8$, на базе которого были получены допируемые твердые растворы $Sr_{3-x}B_2Si_{1-x}O_{8-3x}$, являются боросиликатные псевдоцепочки, вытянутые вдоль оси b. Структура состоит из полиэдров (Si, B) – O, а атомы Sr расположены между цепями. Псевдоцепочки (Si, B) – O наименее чувствительны к замещению $Sr^{2+} \rightarrow Eu^{3+}$, о чем и свидетельствует наименьшее изменение параметра *b*.

Подробно влияние соотношений Sr/Eu и B/Si на структурные характеристики, а также люминесцентные свойства полученных твердых растворов были рассмотрены в работе [9], при этом для них была предложена структурная формула Sr_{3-1.5x}Eu_xB_{2+y}Si_{1-y}O_{8-y/2}.

На рисунке 2 представлены результаты термического анализа $Sr_3B_2SiO_8$, твердого раствора на его основе $Sr_{2.372}Si_{0.37}O_{6.11}$ и допированных твердых растворов $Sr_{2.372}Si_{0.37}O_{6.11}$: yEu^{3+} с различным содержанием Eu^{3+} . На кривых нагревания и охлаждения 1—5 присутствуют только эффекты, соответствующие плавлению и кристаллизации. Температура плавления от $Sr_3B_2SiO_8$ (1163°C) к $Sr_{2.372}Si_{0.37}O_{6.11}$ (1161°C) снижается незначительно, что характерно для систем с твердыми растворами. Кристаллизация $Sr_{2.372}Si_{0.37}O_{6.11}$ происходит со значительным переохлаждением по сравнению с кристаллизацией тройного соединения, что связано, скорее всего, с деформацией решетки в твердых растворах. Параметры элементарной ячейки закристаллизованных расплавов при этом:

$$Sr_3B_2SiO_8 a = 12.361(4) \text{ Å}, b = 3.927(1) \text{ Å}, c = 5.419(1) \text{ Å}, V = 263.05(11) \text{ Å}^3.$$

 $Sr_{2.372}Si_{0.37}O_{6.11} a = 12.180(2) \text{ Å}, b = 3.8792(1) \text{ Å}, c = 5.3913(1) \text{ Å}, V = 254.736(6) \text{ Å}^3.$

Введение в твердые растворы $Sr_{2.372}Si_{0.37}O_{6.11}$ *0.001*Eu³⁺ и *0.01*Eu³⁺ приводит к понижению температуры плавления составов почти на 30°C по сравнению с тройным соединением и твердым раствором, не содержащим европий, температуры кристаллизации несколько повышаются. Дальнейшее увеличение содержания европия снижает температуру плавления состава $Sr_{2.372}Si_{0.37}O_{6.11}$: *у*Eu³⁺ еще на 30°C, что может быть связано со свойствами РЗЭ активировать процессы синтеза и спекания [10]. На уменьшение температуры плавления, скорее всего, оказывают влияние и деформации решетки, связанные с гетеровалентным замещением и возникновением вакансий. Температура кристаллизации при этом существенно не изменяется.

Для состава с содержанием 0.4Eu^{3+} , полученного кристаллизацией из расплава образцов, отожженных при 900°С, на кривой нагревания отмечены два эффекта, первый из которых при 959°С связан с плавлением примесных фаз, а второй при 1071°С относится к полному плавлению смеси (рис. 2, кривая 6). При этом закристаллизованный расплав образцов этого состава, прошедших все стадии термообработки в интервале температур 800–1000°С, показал только один эффект, соответствующий плавлению, при 1075°С. Очевидно, что получение гомогенных твердых растворов методом кристаллизации из расплава требует последовательного проведения длительных предварительных изотермических термообработок.

ЗАКЛЮЧЕНИЕ

Впервые получены однофазные твердые растворы $Sr_{2.37}B_2Si_{0.37}O_{6.11}$: *y*Eu³⁺ (*y* = 0.001, 0.01, 0.1, 0.2, 0.4) методом кристаллизации из расплава. Установлено, что предвари-

тельная термообработка составов в интервале температур 800–1000°С необходима для получения гомогенного продукта. Введение Eu^{3+} понижает температуру плавления твердых растворов, приводит к уменьшению объема элементарной ячейки на 3%. Синтез по разработанной методике позволяет получать широкий ряд составов боросиликатов, допированных Eu^{3+} , вплоть до концентрации 0.4 Eu^{3+} .

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации в рамках государственного задания ИХС РАН (тема 1021050501072-8-1.4.3).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Wang Y., Zhang Z., Zhang J.* Electronic properties and rare-earth ions photoluminescence behaviors in borosilicate: SrB₂Si₂O₈ // J. Solid State Chem. 2009. V. 182. P. 813–820.
- Verstegen J.M.P.J., Ter Vrugt J.W., Wanmaker W.L. Luminescence of Eu²⁺-activated SrB₂Si₂O₈ // J. Inorg. Nucl. Chem. 1972. V. 34. P. 3588–3589.
- 3. Wang L., Wang Yu. Luminescent properties of Eu³⁺-activated Sr₃B₂SiO₈: A red-emitting phosphor for white light-emitting diodes // J. of Luminescence. 2011. V. 131. P. 1479–1481.
- İsrafil Şabikoğlu. Synthesis of Eu and Dy doped Sr₃B₂SiO₈ using solid state reaction and investigation of radio and photoluminescence properties of these materials // J. of Alloys and Compounds. 2013. V. 556. P. 135–138
- Jianfeng Sun, Wenlin Zhang, Dezhong Shen and Jiayue Sun. Intense Red Light Emission of Eu³⁺-Doped Sr₃B₂SiO₈ for White Light-Emitting Diodes // J. of The Electrochem. Soc. 2012. V. 159. № 4. P. 107–114.
- Krzhizhanovskaya M.G., Bubnova R.S., Krivovichev S.V. Synthesis, crystal structure and thermal behavior of Sr₃B₂SiO₈ borosilicate // J. Solid St. Chem. 2010. V. 183. P. 2352–2357.
- Белоусова О.Л., Кржижановская М.Г., Бубнова Р.С. Твердые растворы ряда Sr_{3-x}B₂Si_{1-x}O_{8-3x} в тройной системе SrO-B₂O₃-SiO₂ // Физ. и хим. стекла. 2012. Т. 38. № 6. С. 910-915.
- 8. *Volkov S., Bubnova R., Bolotina N.* Incommensurate modulation and thermal expansion of Sr₃B_{2+x}Si_{1-x}O_{8-x/2} solid solutions // Acta Cryst. 2015. B. 71. P. 489–497.
- Krzhizhanovskaya M.G, Volkov S.N., Povolotskiy A.V. Crystal structure, thermal expansion and fluorescence of Sr_{3-1.5x}Eu_xB_{2+y}Si_{1-y}O_{8-y/2} phosphors. // Materials Chemistry and Physics. 2021. V. 260. P. 124151.
- 10. Портной К.И., Тимофеева Н.И. Кислородные соединения редкоземельных элементов. Справ. изд. М.: Металлургия, 1986. 480 с.