КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ ИНТЕРМЕТАЛЛИЧЕСКИХ СИСТЕМ: КЛАСТЕРЫ-ПРЕКУРСОРЫ КЗ, К4, К5, К7, К8 ДЛЯ САМОСБОРКИ КРИСТАЛЛИЧЕСКИХ СТРУКТУР Lu₆₆Te₂₄-*mC*90, Te₄Lu₂₈-*oC*32, Lu₃(TeLu₃)Lu₂-*hP*9 И Lu₄Te₄-*cF*8

© 2023 г. В. Я. Шевченко^{1, *}, Г. Д. Илюшин^{2, **}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

²Научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр., 59, Москва, 119333 Россия

> *e-mail: shevchenko@isc.nw.ru **e-mail: gdilyushin@gmail.com

Поступила в редакцию 19.12.2022 г. После доработки 01.02.2023 г. Принята к публикации 08.02.2023 г.

С помощью компьютерных методов (пакет программ ToposPro) осуществлен комбинаторно-топологический анализ и моделирование самосборки кристаллических структур Lu₄Te₄-*oF*8 (*Fm*-3*m*, *V* = 211.0 Å³), Te₄Lu₂₈-*oC*32 (*Cmcm*, *V* = 908.3 Å³), Lu₃(TeLu₃)Lu₂-*hP*9 (*P*-62*m*, *V* = 908.3 Å³), Lu₆₆Te₂₄-*mC*90 (C12/*m*1, *V* = 2467.2 Å³). Для кристаллической структурь Lu₄Te₄-*oF*8 установлены кластеры-прекурсоры K8 = 0@Te₄Lu₄ с симметрией -43*m*, для Te₄Lu₂₈-*oC*32 – тетраэдрические кластеры-прекурсоры K4 = 0@Lu₄ и K4 = 0@TeLu₃ с симметрией 2 и *m*, для Lu₃(TeLu₃)Lu₂ – кластеры-прекурсоры K7 = 0@Lu₄(TeLu₃) с симметрией 3*m* и спейсеры Lu. Для кристаллической структуры Lu₆₆Te₂₄-*mC*90 установлены кластеры-прекурсоры в виде пирамиды K5 = 0@Lu₅ с симметрией 2, тетраэдры K4 = 0@Lu₄ и с имстрией 2, тетраэдры K4 = 0@Lu₂, и кольца K3 = 0@TeLu₂, участвуют в образование супракластеров-тримеров. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров в виде: первичная цепь \rightarrow слой \rightarrow каркас.

Ключевые слова: интерметаллиды Lu₄Te₄-oF8, Te₄Lu₂₈-oC32, Lu₃(TeLu₃)Lu₂-hP9 и Lu₆₆Te₂₄-mC90, самосборка кристаллической структуры, кластеры-прекурсоры K3, K4, K5, K7, K8

DOI: 10.31857/S0132665122600947, EDN: SLCWBB

введение

В двойных системах A-T (T = Se, Te) установлено образование 623 селенидов и 614 теллуридов $A_x T_y$ с атомами A = Sc, Y, Zr, U, Ti, V, Cr, Fe, Co, Ni, Cu, лантанидами Ln = La–Lu [1, 2]. Наиболее многочисленным является кристаллохимическое семейство $A_2 T_2$ -cF8с пр. группой *Fm*-3*m*, насчитывающее 36 селенидов и 37 теллуридов.

В системе Lu–Te (табл.1) интерметаллиды LuTe₃-oC16 [3], LuTe₂-tP6 [3], Lu₂Te₃-oF80 [4] и Lu₄Te₄-cF8 [5] имеют кристаллохимических аналогов среди интерметаллидов Sc_x Te_y (табл. 2, [9–14]) и интерметаллидов Y_x Te_y (табл. 3, [15–17]) и среди других интерметаллидов с большими атомами A.

Соединение	Группа симметрии	Параметры элементарной ячейки в Å, угол в градусах	$V, Å^3$
LuTe ₃ - <i>oC</i> 16 [3]	Стст	4.277, 25.137, 4.278	459.9
LuTe ₂ - <i>tP</i> 6 [3]	P4/nmm	4.222, 4.222, 8.807	157.0
Lu ₂ Te ₃ - <i>oF</i> 80 [4]	Fddd	12.022, 8.499, 25.497	2605.2
Lu_4Te_4 - <i>cF</i> 8 [5]	Fm-3m	5.953, 5.953, 5.953	211.0
Lu ₈ Te- <i>hP</i> 9 [6]	<i>P</i> -62 <i>m</i>	9.000, 9.000, 3.687	258.6
$Te_4Lu_{28}-oC32$ [6]	Стст	3.742, 12.278, 19.770	908.3
Lu ₆₆ Te ₂₄ - <i>mC</i> 90 [7]	<i>C</i> 12/ <i>m</i> 1	30.412, 3.950, 21.073, 102.96	2467.2
Lu- <i>cI</i> 2 [8]	Im-3m	3.900, 3.900, 3.900	59.32

Таблица 1. Система Lu-Те. Кристаллографические данные

Таблица 2. Система Sc-Te. Кристаллографические данные

Соединение	Группа симметрии	Параметры элементарной ячейки в Å, угол в градусах	V, Å ³
Sc ₂ Te ₃ - <i>oF</i> 80 [10]	Fddd	8.222, 11.629, 24.608	2353.0
Sc_4Te_4-cF8 [1]	Fm-3m	5.817, 5.817, 5.817	196.8
ScTe- <i>hP</i> 4 [1]	<i>P</i> 6 ₃ / <i>mmc</i>	4.130, 4.130, 6.749	99.7
ScTe- <i>hP</i> 8 [11]	<i>P</i> 6 ₃ / <i>mmc</i>	4.097, 4.097, 13.602	197.7
Sc ₂ Te- <i>oP</i> 36 [12]	Pnma	20.178, 3.919, 10.675	844.1
Sc ₈ Te ₃ - <i>mC</i> 88 [13]	<i>C</i> 12/ <i>m</i> 1	28.842, 3.852, 22.352, 122.51	2094.0
Sc ₉ Te ₂ - <i>oC</i> 88 [14]	$Cmc2_1$	7.758, 15.654, 17.283	2098.8

Три кристаллические структуры Te₄Lu₂₈-*oC*32 (TeLu₇, *Cmcm*, V = 908.3 Å³) [6], Lu₃(TeLu₃)Lu₂-*hP*9 (TeLu₈, *P*-62*m*, V = 908.3 Å³) [6], Lu₆₆Te₂₄-*mC*90 (Lu₁₁Te₄, *C*12/*m*1, V = 2467.2 Å³) [7] не имеют кристаллохимических аналогов.

Кристаллические структуры TeLu₇-oC32 и TeLu₈-hP9 рассмотрены в [6] как новые варианты замещения атомов в металлическом лютеции Lu [8].

Кристаллическая структура $Lu_{66}Te_{24}$ -*mC*90 в [7] интерпретирована как слоистая и проведено ее сравнение со слоистыми структурами Sc_8Te_3 -*mC*88 [13] и Ti₁₁Se₄-*mS*90 [18].

В настоящей работе проведен геометрический и топологический анализ кристаллических структур Lu_2Te_2 -cF8, TeLu₇-oC32, TeLu₈-hP9, Lu₆₆Te₂₄-mC90. Установлены кластеры-прекурсоры K3, K4, K5, K7, K8 участвующие в самосборке кристаллических

Соединение	Группа симметрии	Параметры элементарной ячейки в Å	$V, Å^3$
YTe ₃ - <i>oC</i> 16 [15]	Стст	4.303,25.490,4.303	472.0
YTe ₂ - <i>tP</i> 6 [3]	P4/nmm	4.291,4.291,8.912	164.1
Y ₂ Te ₃ - <i>oF</i> 80 [4]	Fddd	12.228,8.645,25.935	2741.6
YTe-cF8 [16]	Fm-3m	6.095,6.095,6.095	226.4
Y ₇ Te ₂ - <i>oP</i> 36 [17]	Pnma	21.328,4.056,11.401	986.3

Таблица 3. Система Ү-Те. Кристаллографические данные

Атом	Локальное окружение	Координационные последовательности
		N1 N2 N3 N4 N5
Te1	6 Lu	6 50 138 296 404
Lul	6Te + 12Lu	18 74 170 306 482

Таблица 4. Lu₄Te₄-*cF*8. Координационные последовательности и локальное окружение атомов в кристаллической структуре

Таблица 5. Те₄Lu₂₈-*oC*32. Координационные последовательности и локальное окружение атомов в кристаллической структуре

Атом	Локальное окружение	Координационные последовательности
		N1 N2 N3 N4 N5
Te1	2Te + 9Lu	11 42 93 176 279
Lu1	1Te + 11Lu	12 45 105 183 291
Lu2	2Te + 11Lu	13 46 102 182 287
Lu3	12Lu	12 47 103 185 290
Lu4	3Te +Lu1	13 46 99 188 2 89

структур. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров в виде: первичная цепь — слой — каркас.

Работа продолжает исследования [19–23] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [24], позволяющего проводить многоцелевое исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде фактор-графов.

Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число атомов в k-ой координационной сфере данного атома. Полученные значения координационных последовательностей атомов для Lu₄Te₄-*cF*8, Te₄Lu₂₈-*oC*32, Lu₃(TeLu₃)Lu₂-*hP*9, Lu₆₆Te₂₄-*mC*90, приведены в табл. 4–7.

Алгоритм разложения в автоматическом режиме структуры любого интерметаллида, представленного в виде свернутого графа, на кластерные единицы основывается на следующих принципах: структура образуется в результате самосборки из нанокластеров-прекурсоров образующих каркас структуры, пустоты в котором заполняют спейсеры; кластеры-прекурсоры занимают высокосимметричные позиции; набор нанокластеров-прекурсоров и спейсеров включает в себя все атомы структуры.

СИММЕТРИЙНЫЙ И ТОПОЛОГИЧЕСКИЙ КОД (ПРОГРАММА) САМОСБОРКИ КРИСТАЛЛИЧЕСКИХ СТРУКТУР

Использованный нами метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографи-

Атом	Локальное окружение	Координационные последовательности
		N1 N2 N3 N4 N5
Tel	2Te + 9Lu	11 41 110 191 305
Lu1	2Te + 12Lu	14 50 114 198 314
Lu2	1Te + 12Lu	13 49 112 201 311
Lu3	11Lu	11 47 104 197 311

Таблица 6. ТеLu₈-*hP*9. Координационные последовательности и локальное окружение атомов в кристаллической структуре

Таблица 7. Lu₆₆Te₂₄-*mC*90. Координационные последовательности и локальное окружение атомов в кристаллической структуре

Атом	Локальное окружение	Координационные последовательности
		N1 N2 N3 N4 N5
Te1	4Te + 8Lu	12 47 107 200 316
Te2	2Te + 9Lu	11 47 106 197 319
Te3	4Te + 7Lu	11 46 108 200 320
Te4	5Te + 7Lu7	12 45 114 200 331
Te5	3Te + 9Lu	12 46 109 210 336
Te6	4Te + 8Lu	12 44 106 201 317
Lu1	4Te + 10Lu	14 52 116 207 337
Lu2	3Te + 10Lu	13 51 111 207 338
Lu3	5Te + 12Lu	17 55 119 212 336
Lu4	3Te + 11Lu	14 51 117 209 339
Lu5	4Te + 11Lu	15 55 118 207 342
Lu6	2Te + 12 Lu	14 57 123 227 348
Lu7	1Te + 13Lu	14 53 130 238 356
Lu8	4Te + 10 Lu	14 50 121 216 340
Lu9	4Te + 10 Lu	14 50 118 209 337
Lu10	4Te + 9Lu	13 54 122 219 347
Lu11	2Te + 12Lu	14 54 118 215 331
Lu12	3Te + 11Lu	14 53 118 214 339
Lu13	2Te + 12Lu	14 51 117 208 336
Lu14	1Te + 13Lu	14 50 119 217 343
Lu15	4Te + 11Lu	15 51 118 216 340
Lu16	2Te + 12Lu	14 52 114 208 335
Lu17	14Lu	14 52 112 204 328

ческом пространстве. На первом уровне самоорганизации системы определяется механизм формирования первичной цепи структуры из нанокластеров 0-уровня, сформированных на темплатной стадии химической эволюции системы, далее – механизм самосборки из цепи слоя (2-ой уровень) и затем из слоя – трехмерного каркаса структуры (3-й уровень).

Кристаллическая структура Lu₄Te₄-oF8

Пространственная группа *Fm*-3*m* (по. 225) характеризуется набором элементов с точечной симметрией g = m-3*m*, -43*m*, *mmm* и др. Индекс Пирсона соответствует *cF*8, т.е. в элементарной ячейке находится 8-ми атомный кластер *K*8. Атомы Lu и Te занимают позиции 4*a* (0, 0, 0) и 4*b* (1/2, 1/2, 1/2) с симметрией *m*-3*m*.

Кластер-прекурсор $K8 = 0@Te_4(Lu_4)$ представляет собой тетраэдр Lu₄ на гранях которого находятся атомы Te (рис. 1). Длины связей атомов Lu–Lu в тетраэдре 4.209 Å и Lu–Te = 3 × 2.977 Å (рис. 1). В локальном окружении атома Te находятся 6 атомов Lu, атома Lu – 12 атомов Lu и 6Te (табл. 5).

В элементарной ячейке Lu_4Te_4 -*oF*8 находится один атомный кластер *K*8. Центр кластера расположен в позиции 8*c* (1/4, 1/4, 3/4) с симметрией -43*m*.

Первичная цепь S_3^1 . Первичная цепь S_3^1 формируется в результате связывания кластеров-прекурсоров K8 + K8 с индексом связности $P_c = 8$.

Самосборка слоя S_3^2 . Образование микрослоя $S_3^2 = S_3^1 + S_3^1$ происходит связыванием параллельно расположенных цепей. При связывании первичных цепей индекс связности $P_c = 8 + 8 + 2$ (рис. 1).

Самосборка каркаса S_3^3 . Микрокаркас структуры S_3^3 формируется при упаковке (без сдвига) микрослоев. Расстояние между микрослоями соответствует значению параметра кубической ячейки.

Кристаллическая структура Te₄Lu₂₈-oC32

В элементарной ячейке Te_4Lu_{28} находятся 32 атома. В локальном окружении атома Те находятся 11 атомов (2Te + 9Lu), атома Lu1 находятся 12 атомов (1Te + 11Lu), атома Lu2 находятся 13 (2Te + 11Lu), атома Lu3 – 12 Lu, атома Lu4 – 3Te + 10Lu (табл. 5). Длины связей атомов в кристаллической структуре приведены на рис. 2, 3.

Рассматривается вариант самосборки кристаллической структуры из образующих упаковки 4-атомных тетраэдрических кластеров-прекурсоров $K4(2) = 0@Lu_4$ и $K4(m) = 0@TeLu_3$ с симметрией 2 и *m* (рис.2).

Первичная цепь S_3^1 . Самосборка первичных цепей из кластеров K4(2) и K4(m) происходит в направлении кратчайшей оси *a* с индексом связанности кластеров $P_c = 8$ (равному числу связей: 1 Te–Te + 7 Lu–Lu) и 8 Lu–Lu (рис. 3). Расстояние между центрами кластеров K4(2) и K4(m) соответствует значению вектора трансляции a = 3.742 Å.

Самосборка слоя S_3^2 . Образование микрослоя S_3^2 происходит при связывании первичных цепей в плоскости элементами симметрии g = -1.

Самосборка каркаса S_3^3 . Микрокаркас структуры формируется при связывании двух микрослоев S_3^2 в направлении оси *X* (рис. 3).

Кристаллическая структура Lu₃(TeLu₃) Lu₂-hP9

В элементарной ячейке $Lu_3(TeLu_3)Lu_2$ находятся 9 атомов. В локальном окружении атома Те находятся 11 атомов (2Te + 9Lu), атома Lu1 находятся 15 атомов (2Te + 10Lu), атома Lu2 – 13 (1Te + 12Lu), атома Lu3 – 11Lu (табл. 6). Длины связей атомов в кристаллической структуре приведены на рис. 4.

Рассматривается вариант самосборки кристаллической структуры из образующих упаковки 7-атомных кластеров-прекурсоров $K7 = 0Lu_3(TeLu_3)$ с участием атомовспейсеров Lu2 (рис. 4).

Рис. 2. Кристаллическая структура Lu7Te-oC32.

Кластер-прекурсор. Центр кластера-прекурсора *К*7 находится в частной позиции 2е (0, 0, 1/8) с симметрией g = 3m (рис. 4). На трех гранях тетраэдра TeLu₃ расположены большие атомы Lu2 (с KЧ = 15), образующие связи с атомом Те и двумя атомами Lu1. Атомы-спейсеры Lu3 связаны с атомами Lu1 и Lu2.

Первичная цепь S_3^1 . Самосборка первичных цепей из кластеров *K*7 происходит в направлении кратчайшей оси *Z* с индексом связанности кластеров $P_c = 9$ (рис. 4). Атомы-спейсеры Lu3, расположенные между кластерами *K*7, увеличивают индекс связанности кластеров P_c до 9 + 4 = 13 (рис. 4). Расстояние между центрами кластеров *K*7 соответствует значению вектора трансляции c = 3.687 Å.

Самосборка слоя S_3^2 . Образование микрослоя происходит при связывании первичных цепей в плоскости *XZ* (рис. 4). Расстояние между центрами кластеров *K*7 из соседних цепей в направлении осей *X* соответствует значению вектора трансляции *a* = 9.000 Å.

Самосборка каркаса S_3^3 . Микрокаркас структуры формируется при связывании двух микрослоев S_3^2 (рис. 4). Многократная 3D-конденсация микрокаркаса из восьми кластеров-прекурсоров приводит к самосборке макрокристаллической структуры.

Кристаллическая структура Lu₆₆Te₂₄-mC90

Пространственная группа C12/m1 (№ 12) с симметрией частных позиций 2/m (2a,2b,2c,2d), -1 (4e, 4f), 2 (4g,4h), m (4i).

В элементарной ячейке Lu₆₆Te₂₄-*mC*90 находятся 90 атомов.

Установлены значения КЧ атомов Те равные 11 (2 атома) и 12 (4 атома), и КЧ атомов Lu равные 13 (2 атома), 14 (12 атомов), 15 (2 атома), 17 (1 атом) (табл. 7).

Из 23 кристаллографически независимых атомов, только атом Lu17 занимает позицию 2а (0,0,0) с симметрией 2/m, все остальные — 16 атомов Lu и 6 атомов Те находятся в плоскостях *m* в позиции 4i (x, 0, z).

Определены 7 кристаллографически независимых полиэдров в виде пирамиды $K5(2) = 0@Lu_5 c$ симметрией 2, тетраэдра $K4(2) = 0@Lu_4 c$ симметрией 2, тетраэдра $K4-1 = 0@TeLu_3$, тетраэдра $K4-2 = 0@TeLu_3$, тетраэдра $K4-3 = 0@Te_2Lu_2$, тройных колец K3-1 = @TeLu2 u K3-2 = @TeLu2 (рис. 5).

Выделены супраполиэдрические кластеры – тримеры – образованные из трех кластеров (рис. 5):

Рис. 3. Кристаллическая структура Lu7Te-*oC*32 и Lu-*cI*2.

Рис. 4. Кристаллическая структура Lu₃(TeLu₃)P₂-*hP*9. Слой (сверху) и каркас (снизу).

SSU-1 = пирамида 0@Lu₅ + 2 кольца @TeLu₂, SSU-2 = тетраэдр 0@Lu₄ + 2 кольца @TeLu₂, SSU-3 = 2 тетраэдра 0@TeLu₃ + тетраэдр 0@Te₂Lu₂ SSU-4 = 2 тетраэдра 0@TeLu₃ + тетраэдр 0@Te₂Lu₂.

Самосборка слоя S_3^2 . Образование микрослоя происходит при связывании тримеров в плоскости *XZ* (рис. 5). Удвоенное расстояние между центром пирамиды $0@Lu_5$ и

Рис. 5. Кристаллическая структура Lu₆₆Te₂₄-*mC*90. Слой.

центром тетраэдра 0@Lu₄ в направлении оси Z соответствует значению вектора трансляции c = 21.073 Å.

Самосборка каркаса S_3^3 . Микрокаркас структуры формируется при связывании двух микрослоев S_3^2 в направлении оси *Y*. Расстояние между слоями соответствует значению вектора трансляции *b* = 3.950 Å.

ЗАКЛЮЧЕНИЕ

Осуществлен комбинаторно-топологический анализ и моделирование самосборки кристаллических структур Lu₄Te₄-*cF*8, TeLu₇-*oC*32 и TeLu₈-*hP*9 Lu₆₆Te₂₄-*mC*90. Для

кристаллической структуры Lu₄Te₄-*oF*8 установлены тетраэдрические кластеры-прекурсоры $K4 = 0@Te_2Lu_2$ с симметрией -43*m*, для Te₄Lu₂₈-*oC*32 – кластеры-прекурсоры $K4 = 0@Lu_4$ и $K4 = 0@TeLu_3$ с симметрией 2 и *m*, для кристаллической структуры Lu₃(TeLu₃)Lu₂ – кластеры-прекурсоры $K7 = 0@Lu_3$ (TeLu₃) с симметрией 3*m* и атомыспейсеры Lu. Для кристаллической структуры Lu₆₆Te₂₄-*mC*90 установлены кластерыпрекурсоры в виде пирамиды $K5 = 0@Lu_5$ с симметрией 2, тетраэдры $K4 = 0@Lu_4$ с симметрией 2, тетраэдры $K4 = 0@TeLu_3$ и тетраэдры $K4 = 0@Te_2Lu_2$, и кольца $K3 = @TeLu_2$, участвующие в образование супракластеров-тримеров. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров в виде: первичная цепь \rightarrow слой \rightarrow каркас.

Анализ самосборки кристаллических структур выполнен при поддержке Минобрнауки РФ в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, кластерный анализ выполнен при поддержке Российского научного фонда (РНФ № 21-73-30019).

СПИСОК ЛИТЕРАТУРЫ

- 1. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- 2. *Villars P., Cenzual K.* Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- 3. Cannon J.F., Hall H.T. High-pressure, high-temperature syntheses of selected lanthanide-tellurium compounds // Inorganic Chemistry. 1970. V. 9. P. 1639–1643.
- Flahaut Jean, Laruelle Pierre, Pardo Marie Paule, Guittard Micheline. Les sulfures, seleniures et tellurures L2X3 de terres rares, d'yttrium et descandium orthorhombiques du type Sc2S3 // Bulletin de la Societe Chimique de France. 1965. V. 1965. P. 1399–1404.
- Hulliger F., Hull G.W.Jr. Superconductivity in rocksalt-type compounds // Solid State Communications. 1970. V. 8. P. 1379–1382.
- Chen Ling, Corbett J.D. Lu8 Te and Lu7 Te. Novel substitutional derivatives of lutetium metal // J. Am. Chem. Soc. 2003. V. 125. P. 7794–7795.
- Chen Ling, Xia Shengqing, Corbett J.D. Metal-rich chalcogenides. Synthesis, structure and bonding of the layered LullTe4. Comparison with the similar Sc8Te3 and TillSe4 // Inorg. Chem. 2005. V. 44. P. 3057–3062.
- 8. *Miller A.E., Daane A.H.* The High-Temperature Allotropy of Some Heavy Rare-Earth Metals // Transactions of the Metallurgical Society of Aime. 1964. V. 230. P. 568–572.
- White J.G., Dismukes J.P. The Crystal Structure of Scandium Sesquitelluride // Inorg. Chem. 1965. V. 4. P. 1760–1763
- Assoud A., Kleinke H. The sesquitelluride Sc₂Te₃ // Acta Crystallogr., Sect. E: Struct. Rep. Online 2006. V. 62. P. i17–i18.
- Chai P., Corbett J.D. Two new compounds, β-ScTe and Y₃Au₂, and a reassessment of Y2Au. // Acta Crystallogr., Sect. C. V. 67. P. i53–i55.
- Maggard P.A., Corbett J.D. Sc2Te: A novel example of condensed metal polyhedra in a metal-rich but relatively electron-poor compound // Angewandte Chemie (Edition international). 1997. V. 36. P. 1974–1976.
- 13. *Maggard P.A., Corbett J.D.* The synthesis, structure, and bonding of Sc8Te3 and Y8Te3. Cooperative matrix and bonding effects in the solid state // Inorg. Chem. 1998. V. 37. P. 814–820.
- Gupta S., Maggard P.A., Corbett J.D. A bismuth-stabilized metal-rich telluride Lu9 Bi ~ 1.0 Te ~ 1.0 -Synthesis and characterization // European J. Inorganic Chemistry. 2010. V. 18. P. 2620–2625.
- Pardo M.P., Flahaut J. Les tellurures superieurs des terres rares, de formules L2Te5 et LTe3 // Bulletin de la Societe Chimique de France. 1967. V. 1967. P. 3658–3664.
- 16. *Brixner L.H.* Structure and electrical properties of some new rare earth arsenides, antimonides and tellurides // J. Inorganic and Nuclear Chemistry. 1960. V. 15. P. 199–201.
- Castro-Castro L.M., Chen Ling, Corbett J.D. Condensed rare-earth metal-rich tellurides. Extension of layered (Sc₆PdTe₂)-type compounds to yttrium and lutetium analogues and to Y₇Te₂, the limiting binary member // J. Solid State Chem. 2007. V. 180. P. 3172–3179.

- Weirich T.E., Ramlau R., Simon A., Hovmoeller S., Zou X.-D. A crystal structure determined to 0.02 Å accuracy by electron crystallography // Nature (London). 1996. V. 382. P. 144–146.
- Shevchenko V.Y., Blatov V.A., Ilyushin G.D. Structural Chemistry of Intermetallic Compounds: Geometric and Topological Analysis; Cluster Precursors K4, K6, and K21; and Self-Assembly of Crystal Structure Cs₂Hg₂-aP8, Cs₂Hg₄-oI12, and Cs₁₀Hg₃₈-tI48 // Glass Physics and Chemistry. 2022. V. 48. P. 155–162.
- 20. Ilyushin G.D. Intermetallic compounds Li_kM_n (M = Ag, Au, Pt, Pd, Ir, Rh): Geometrical and topological analysis, tetrahedral cluster precursors, and self-assembly of crystal structures // Crystal-lography Reports, 2020.V. 65. P. 202–210.
- Shevchenko V.Y., Blatov V.A., Ilyushin G.D. Cluster self-organization of intermetallic systems: New two-layer nanocluster precursors K64 = 0@8(Sn₄Ba₄)@56(Na₄Sn₅₂ and K47 = Na@Sn₁₆@Na₃₀ in the crystal structure of Na₅₂Ba₄Sn₈₀-cF540 // Glass Physics and Chemistry. 2020. V. 46. P. 448–454.
- 22. Ilyushin G.D. Intermetallic Compounds Na_kM_n (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 4. P. 539–545.
- 23. *Ilyushin G.D.* Intermetallic Compounds $K_n M_m$ (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystal-lography Reports. 2020. V. 65. No 7. P. 1095–1105.
- 24. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.