КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ ИНТЕРМЕТАЛЛИЧЕСКИХ СИСТЕМ: КЛАСТЕРЫ-ПРЕКУРСОРЫ КЗ, К4, К5, К6, К13 ДЛЯ САМОСБОРКИ КРИСТАЛЛИЧЕСКИХ СТРУКТУР U₈Ni₁₀Al₃₆-*mC*54, U₂₀Ni₂₆-*mC*46, И U₈Co₈-*cI*16

© 2023 г. В. Я. Шевченко^{1, *}, Г. Д. Илюшин^{2, **}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова 2, Санкт-Петербург, 199034 Россия

²Федеральный научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр. 59, Москва, 119333 Россия

> *e-mail: shevchenko@isc.nw.ru **e-mail: gdilyushin@gmail.com

Поступила в редакцию 16.03.2023 г. После доработки 04.04.2023 г. Принята к публикации 06.04.2023 г.

С помощью компьютерных методов (пакет программ ToposPro) осуществлен комбинаторно-топологический анализ и моделирование самосборки кристаллических структур U₈Ni₁₀Al₃₆-mC54 (a = 15.5470 Å, b = 4.0610 Å, c = 16.4580 Å, $\beta = 120.00^{\circ}$, V = 899.89 Å³, C m), U₂₀Ni₂₆-mC46 (a = 7.660 Å, b = 13.080 Å, c = 7.649 Å, $\beta = 108.88^{\circ}$, V = 725.26 Å³, C2/m), U₈Co₈-c116 (a = 6.343 Å, V = 255.20 Å³, $I2_13$). Для кристаллической структуры U₈Ni₁₀Al₃₆-mC54 установлены 960 вариантов кластерного представления 3D атомной сетки с числом структурных единиц 5, 6, 7. Определены 6 кристаллографически независимых структурных единиц в виде пирамиды $K5 = 0@Al(U_2Al_2)$, пирамиды $K6A = 0@U(NiAl_4)$, пирамиды $K6B = 0@U(NiAl_4)$, колец $K3A = 0@NiAl_2$, $K3B = 0@NiAl_2$, $K3C = 0@Al_3$. Для кристаллической структуры U₂₀Ni₂₆-mC46 определены структурные единицы $K5 = Ni(Ni_2U_2)$ и икосаэдры K13 = Ni@Ni₆U₆. Для кристаллической структуры U₂Co₂-cI16 определены структурные единицы – тетраэдры $K4 = U_2Co_2$. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров в виде: первичная цепь \rightarrow слой \rightarrow \rightarrow каркас.

Ключевые слова: $U_8Ni_{10}Al_{36}$ -*mC*54, $U_{20}Ni_{26}$ -*mC*46, U_8Co_8 -*cI*16, самосборка кристаллической структуры, кластерные прекурсоры *K*3, *K*4, *K*5, *K*6, *K*13

DOI: 10.31857/S0132665123600176, EDN: OAKMAG

ВВЕДЕНИЕ

В двойных системах A-B с участием 73 химических элементов установлено образование 7736 интерметаллидов $A_n B_m$. Из них наибольшее число интерметаллидов 524, 538 и 555 образуется с небольшими атомами B = Ni, Al, Ge.

В двойных системах U–B установлена кристаллизация 132 соединений U_nB_m. Кристаллохимические семейства интерметаллидов U_nB_m с атомами B = Ni, Co, Fe, Mn приведены в табл. 1. Структурные типы Ni-содержащих соединений U₂(Ni₄)-*hP*12 [3], UNi(Ni₄)-*cF*24 [3], UNi₅-*hP*6 [4], U₁₁Ni₁₆-*hR*162 [5, 6], как и U₈Ni₁₀Al₃₆-*mC*54 [7] не

Интерметаллид	Группа симметрии	Параметры ячейки, Å и градусы	$V, Å^3$
$(U_4Ni)_2(U_4)$	I4/mcm	10.384, 10.384, 5.156	556.0
$(U_4Co)_2(U_4)$	I4/mcm	10.360, 10.360, 5.210	559.2
$(U_4Fe)_2(U_4)$	I4/mcm	10.290, 10.290, 5.240	554.8
$(U_4Mn)_2(U_4)$	I4/mcm	10.290, 10.290, 5.240	554.8
$(Pu_4Co)_2(Pu_4)$	I4/mcm	10.475, 10.475, 5.340	585.9
$(Np_4Fe)_2(U_4)$	I4/mcm	10.224, 10.224, 5.238	547.5
$(Pu_4Fe)_2(Pu_4)$	I4/mcm	10.410, 10.410, 5.359	580.7
$(Ti_4Ni)_2(Bi_4)$	I4/mcm	10.554, 10.554, 4.814	536.2
$(Ti_4Co)_2(Bi_4)$	I4/mcm	10.506, 10.506, 4.882	538.9
$(Ti_4Fe)_2(Bi_4)$	I4/mcm	10.486, 10.486, 4.933	542.4
$(Ti_4Mn)_2(Bi_4)$	I4/mcm	10.491, 10.491, 4.978	547.9
U ₂ (Co ₄)	Fd-3m	6.978, 6.978, 6.978,	339.8
U ₂ (Fe ₄)	Fd-3m	7.065, 7.065, 7.065,	352.6
$U_2(Mn_4)$	Fd-3m	7.160, 7.160, 7.160,	367.0
$U_2(Ir_4)$	Fd-3m	7.495, 7.495, 7.495,	421.1
U ₂ (Os ₄)	Fd-3m	7.512, 7.512, 7.512,	424.0
$U_2(Al_4)$	Fd-3m	7.766, 7.766, 7.766,	468.4
U ₂ (Ni ₄)	<i>P</i> 6 ₃ / <i>mmc</i>	4.970, 4.970, 8.253	176.5
UNi(Ni ₄)	<i>F</i> -43 <i>m</i>	6.796, 6.796, 6.796	313.8
UNi ₅	P6/mmm	4.846, 4.846, 4.045	82.3
U ₂₀ Ni ₂₆	<i>C</i> 12/ <i>m</i> 1	7.660, 13.080, 7.650, 108.88,	725.3
U ₁₁ Ni ₁₆	<i>R</i> -3	11.779, 11.779, 20.749	2492.9
U ₈ Ni ₁₀ Al ₃₆	<i>C</i> 1 <i>m</i> 1	15.547, 4.061, 16.458, 120.00,	899.9

Таблица 1. Кристаллографические данные интерметаллидов [1, 2]

имеют аналогов в системах с атомами B = Co, Fe, Mn. Интерметаллид U₆Ni-*tI*28 [3] входит в кристаллохимическое семейство U₆B-*tI*28 (табл. 1).

Три Со-содержащих интерметаллид входят в кристаллохимические семейства UCo₃-hR12 [8], U₂(Co₄)-cF24 [2], U₆Co-tI28 [2]. Два интерметаллида U₃Co₁₅-hR18 [9] и U₈Co₈-cI16 [10] не имеют аналогов среди интерметаллидов.

Два Fe-содержащих интерметаллида U_6 Fe-*t1*28 [11] и UFe2-*F*24 [12], как и U_6 Mn- *t1*28 [11] и UMn₂-*F*24 [11], входят в кристаллохимические семейства U_6 Co-*t1*28 [2] и U_2 (Co₄)-*cF*24 [2]. В [13] исследована низкотемпературная модификации UMn₂-*o1*2 с пр. группой *Imma*.

В тройных системах A-B-C с участием 69 различных атомов установлено образование 14667 интерметаллидов $A_n B_m C_k$. Из них наибольшее число интерметаллидов 2385, 2704 и 2890 также образуются с небольшими атомами B = Ni, Ge, Al. С участием атомов U установлена кристаллизация 462 соединений. В системе U—Ni—Al установлено образование 7 соединений [1, 2]. Наиболее кристаллографически сложными интерметаллидами являются U₈Ni₁₀Al₃₆-mS54 [14] с 27 атомами в позициях типа a^{29} и U₁₂Ni₂₀Al₇₆-oC108 [15] с 15 атомами в позициях типа $f^{12}c^3$.

В настоящей работе проведен геометрический и топологический анализ кристаллических структур U₈Ni₁₀Al₃₆-mC54, U₂₀Ni₂₆-mC46, U₈Co₈-cI16. Установлены кластерыпрекурсоры K3, K4, K5, K6, K13 участвующие в самосборке кристаллических структур. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров в виде: первичная цепь \rightarrow слой \rightarrow каркас.

Работа продолжает исследования [16–21] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов [22].

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [22], позволяющего проводить многоцелевое исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде фактор-графов.

Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число атомов в k-ой координационной сфере данного атома. Полученные значения координационных последовательностей атомов для $U_8Ni_{10}Al_{36}$ -mC54, $U_{20}Ni_{26}$ -mC46, U_8Co_8 приведены в табл. 2, 3.

Алгоритм разложения в автоматическом режиме структуры любого интерметаллида, представленного в виде свернутого графа, на кластерные единицы основывается на следующих принципах: структура образуется в результате самосборки из нанокластеров-прекурсоров образующих каркас структуры, пустоты в котором заполняют спейсеры; кластеры-прекурсоры занимают высоко симметричные позиции; набор кластеров-прекурсоров и спейсеров включает в себя все атомы структуры.

СИММЕТРИЙНЫЙ И ТОПОЛОГИЧЕСКИЙ КОД (ПРОГРАММА) САМОСБОРКИ КРИСТАЛЛИЧЕСКИХ СТРУКТУР

Использованный нами метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографическом пространстве. На первом уровне самоорганизации системы определяется механизм формирования первичной цепи структуры из нанокластеров 0-уровня, сформированных на темплатной стадии химической эволюции системы, далее — механизм самосборки из цепи слоя (2-ой уровень) и затем из слоя — трехмерного каркаса структуры (3-й уровень).

Кристаллическая структура U₈Ni₁₀Al₃₆-mC54

Параметры моноклинной ячейки: a = 15.5470 Å, b = 4.0610 Å, c = 16.4580 Å, $\beta = 120.00^{\circ}$, V = 899.89 Å³. Пространственная группа C1m1 (по. 8). Кратность позиции общего положения 4. Последовательность Вайкоффа a^{29} .

Атом	Локальное окружение	Координационные последовательности	
	атома	N1 N2 N3 N4 N5	
All	8Al + 4U	12 52 113 196 317	
A12	7Al + 2Ni + 3U	12 48 109 192 303	
A13	8A1 + 4U	12 52 112 206 328	
Al4	7Al + 3Ni + 2U	12 44 99 194 298	
A15	8A1 + 5Ni +2U	15 45 105 204 315	
Al6	8A1 + 4U	12 52 117 196 322	
A17	8A1 + 2Ni + 2U	12 47 104 184 309	
A18	8Al + 1Ni + 3U	12 48 109 189 311	
A19	8A1 + 3Ni + 1U	12 43 104 197 308	
A110	7Al + 2Ni + 3U	12 45 106 190 295	
Al11	6A1 + 3Ni + 3U	12 42 99 195 315	
A112	8Al + 1Ni + 3U	12 48 109 193 320	
A113	7Al + 2Ni + 3U	12 45 104 195 306	
Al14	6A1 + 3Ni + 3U	12 45 104 201 312	
A115	6A1 + 3Ni + 3U	12 42 101 195 307	
Al16	7Al + 2Ni + 3U	12 44 101 197 302	
A117	7A1 + 3Ni + 2U	12 44 96 186 307	
A118	8A1 + 2Ni + 2U	12 43 104 184 298	
Ni1	7AI + 2U	9 37 93 186 296	
Ni2	8Al + 1U	9 37 92 179 292	
Ni3	9A1	9 35 90 170 287	
Ni4	7Al + 1Ni + 2U	10 42 95 184 304	
Ni5	7Al + 1Ni + 2U	10 42 96 184 292	
U1	13Al + 2Ni	15 50 112 196 321	
U2	13Al + 2Ni	15 50 112 196 321	
U3	13Al + 2Ni	15 47 113 204 318	
U4	13Al + 2Ni	15 47 113 205 318	

Таблица 2. $U_8Ni_{10}Al_{36}$ -*mC*54. Локальное окружение и координационные последовательности атомов в кристаллической структуре

Позиции в плоскости *m* занимают 18 атомов Al, 5 атомов Ni и 4 атома U. Определены KЧ атомов Al = 15 (1 атом) и 12 (17 атомов), атомов Ni – 9 (3 атома) и 10 (2 атома), всех атомов U = 15. (табл. 1).

Установлены 960 вариантов кластерного представления 3D атомной сетки с числом структурных единиц 4 (114 вариантов), 5 (488 вариантов), 6 (358 варианта).

Определены 6 кристаллографически независимых структурных единиц в виде пирамиды $K5 = 0@Al(U_2Al_2)$ с центром (0, 0.40, 0), пирамиды $K6A = 0@U(NiAl_4)$ с центром (0.42, 0.42, 0.66), пирамиды $K6B = 0@U(NiAl_4)$ с центром (0.56, 0.44, 0.34), колец

Интерметаллид	Атом	Локальное окружение атома	Координационные последовательности	
			N1 N2 N3 N4 N5	
U ₂₀ Ni ₂₆ - <i>mC</i> 46	Nil	4Ni + 9U9	13 51 111 204 318	
	Ni2	5Ni + 8U8	13 47 108 198 303	
	Ni3	5Ni + 8U8	13 49 110 197 323	
	Ni4	6Ni + 6U6	12 56 116 216 330	
	Ni5	4Ni + 8U8	12 49 107 197 318	
	U1	10Ni + 4U4	14 47 112 195 316	
	U2	11Ni + 4U4	15 51 112 202 323	
	U3	11Ni + 3U3	14 48 112 200 317	
U ₂ Co ₂ - <i>cI</i> 16	Col	3Co + 8U	11 47 110 194 302	
	U1	8Co + 6U	14 50 110 194 302	

Таблица 3. Локальное окружение и координационные последовательности атомов в кристаллических структурах интерметаллидов

*K*3A = 0@NiAl₂ с центром (0.17, 0.33, 0.66), *K*3(B) = 0@NiAl₂ с центром (0.22,0.33, 0.96), *K*3C = 0@Al₃ с центром (0.34, 0.17, 0.34) (рис. 1).

Ниже рассмотрен вариант самосборки с участием гексамеров из шести связанных структурных единиц K5 + K6A + K6B + K3A + K3B + K3C с участием атомов-спейсеров Ni1 (рис. 2).

Слой S_3^2 . Образование слоя происходит при связывании гексамеров в направлении оси *X* (рис. 3).

Рис. 1. U₈Ni₁₀Al₃₆-*mC*54. Кластеры-прекурсоры.

Рис. 2. $U_8 Ni_{10} Al_{36}$ -*mC*54. Гексамер S_3^1 .

Рис. 3. $U_8 Ni_{10} Al_{36}$ -*mC*54. Слой $S_3^2 = S_3^1 + S_3^1$.

Рис. 4. U₈Ni₁₀Al₃₆-*mC*54. Каркас $S_3^3 = S_3^2 + S_3^2$.

Самосборка каркаса S_3^3 . Образование каркаса S_3^3 происходит при связывании слоя $S_3^2 + S_3^2$ в направлении оси *Y* (рис. 4).

Кристаллическая структура U₂₀Ni₂₆-mC46

Параметры моноклинной ячейки: a = 7.660 Å, b = 13.080 Å, c = 7.649 Å, $\beta = 108.88^{\circ}$, V = 725.26 Å³. Пространственная группа C12/m1 с симметрией частных позиций 2/m (2a, 2b, 2c, 2d), -1 (4e, 4f), 2 (4g, 4h), m (4i). Кратность позиции общего положения 8. Последовательность Вайкоффа $j^4 i^3 a$.

Атом Ni4 занимает позицию 2a с симметрией 2/*m*, атомы Ni2, Ni5, U3 – позиции в плоскости *m*, Ni1, атомы Ni3, U1, U2 – в общем положении 8j.

В табл. 3 приведено локальное окружение атомов U и Ni и значения их координационных последовательностей в 3D атомной сетке. Установлены значения KЧ атомов Ni – 12 (2 атома) и 13 (3 атома) и атомов U – 14 (2 атома) и 13.

Определены структурные единицы в виде икосаэдра $K13(2a) = Ni@Ni_6U_6$ с центром в позиции 2a и симметрией 2/m, и $K5(4i) = Ni(Ni_2U_2)$ с центральным атомом Ni5, общим для двух 3-х колец, лежащих в плоскости m (рис. 5).

Самосборка первичных цепей S_3^1 . Первичная цепь S_3^1 формируется в результате связывания кластеров K13 + K13 с участием кластеров K5 (рис. 6).

Рис. 5. U₂₀Ni₂₆-*mC*46. Кластер *K*13 (слева) и *K*5 (справа).

Рис. 6. U_{20} Ni₂₆-*mC*46. Слой $S_3^2 = S_3^1 + S_3^1$.

Рис. 7. $U_{20}Ni_{26}$ -*mC*46. Каркас $S_3^3 = S_3^2 + S_3^2$.

Самосборка слоя S_3^2 . Образование слоя S_3^2 происходит при связывании цепей S_3^1 (рис. 6).

Самосборка каркаса S_{3}^{3} . Каркас структуры S_{3}^{3} формируется при упаковке слоев со сдвигом (рис. 7).

Кристаллическая структура U₈Co₈ -сI16

Пространственная группа $I 2_1 3$ (по. 199) с симметрией частных позиций 3 (8а), 2(12b), Кратность позиции общего положения 24.

Атомы U и Co занимают частные позиции 8а с симметрией 3.

В табл. 3 приведено локальное окружение атомов U и Ni и значения их координационных последовательностей в 3D атомной сетке. Определены KЧ атома Ni - 11, атома U - 14.

Установлены структурные единицы в виде тетраэдров $K4 = 0@U_2Co_2$.

Самосборка первичных цепей S_3^1 . Первичная цепь S_3^1 формируется в результате связывания тетраэдров *K*4 с индексом связанности Pc = 6. Удвоенное расстояния между центрами тетраэдров *K*4 определяет значение вектора трансляции a = 6.343 Å (рис. 8).

Самосборка слоя S_3^2 . Образование слоя S_3^2 происходит за счет связывания цепей с индексом связанности Pc = 9 (рис. 8).

Самосборка каркаса S_3^3 . Каркас структуры S_3^3 формируется при упаковке слоев $S_3^2 + S_3^2$ (рис. 9).

Рис. 8.
 ${\rm U_8Co_8-}cI$ 16. Первичная цепь S_3^1 (слева) и сло
й S_3^2 (справа).

Рис. 9. U₈Co₈-*cI*16. Каркас $S_3^3 = S_3^2 + S_3^2$.

ЗАКЛЮЧЕНИЕ

Осуществлен комбинаторно-топологический анализ и моделирование самосборки кристаллических структур $U_8Ni_{10}Al_{36}$ -mC54, $U_{20}Ni_{26}$ -mC46, U_8Co_8 -cI16. Для кристаллической структуры $U_8Ni_{10}Al_{36}$ -mC54 определены 6 структурных единиц в виде пирамиды $K5 = 0@Al(U_2Al_2)$, пирамиды $K6A = 0@U(NiAl_4)$, пирамиды $K6B = 0@U(NiAl_4)$, колец $K3A = 0@NiAl_2$, $K3B = 0@NiAl_2$, $K3C = 0@Al_3$. Для кристаллической структуры $U_{20}Ni_{26}$ -mC46 определены структурные единицы $K5 = Ni(Ni_2U_2)$ и икосаэдры $K13 = Ni@Ni_6U_6$. Для кристаллической структуры U_8Co_8 -cI16 определены структурные единицы – тетраэдры $K4 = U_2Co_2$. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров в виде: первичная цепь \rightarrow слой \rightarrow каркас.

Анализ самосборки кристаллической структуры выполнен при поддержке Минобрнауки РФ в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, нанокластерный анализ выполнен при поддержке Российского научного фонда (РНФ № 21-73-30019).

СПИСОК ЛИТЕРАТУРЫ

- 1. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- 2. *Villars P., Cenzual K.* Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- Perricone A., Noel H. Crystal structure refinements and magnetic behavior of U₆Ni, UNi₅, UNi₂ and the substitution derivative U Ni_{1.7} Si_{0.3} // Chemistry of Metals and Alloys. 2008. V. 1. P. 54-57.
- Perricone A., Noel H. Crystal structure and magnetic properties of the binary uranium-nickel alloy UNi₄ // Intermetallics 2002. V. 10. P. 519–521.
- Perricone A., Noel H. Characterization of the new uranium–nickel alloy U₁₀Ni₁₃ // J. Nucl. Mater. 2001. V. 299. P. 260–263
- Perricone A., Potel M., Noel H. Crystal structure and magnetic properties of the binary uranium nickel alloy U₁₁Ni₁₆ // J. Alloys Compd. 2002. V. 340. P. 39–42.
- 7. *Grin Y.N., Rogl P, Akselrud L.G., Pertlik F.* X-ray studies in the systems ZrNi_{5 x}O_x and UNi_{5 x}Al_x // Zeitschrift fuer Kristallographie. 1989. V. 188. P. 271–277.
- Dwight A.E. The unit-cell constants of some PuNi₃-type compounds // Acta Crystallographica B. 1968. V. 24 P. 1395–1396.
- Dommann A., Brandle H., Hulliger F., Fischer P. Crystal structure and magnetic order of UCo₅ // J. Less-Common Metals. 1990. V. 158. P. 287–294.
- Baenziger N.C., Rundle R.E., Snow A.I., Wilson A.S. Compounds of Uranium with the Transition Metals of the First Long Period // Acta Crystallog. 1950. V. 3. P. 34–40.
- Kimball C.W., Vaishnava P.P., Dwight A.E. Phonon anomalies and local atomic displacements in the exchange-enhanced superconductor U₆Fe // Physical Review, Serie 3. B – Condensed Matter. 1985. V. 32. P. 4419–4425.
- Lebech B., Wulff M., Lander G.H., Rebizant J., Spirlet J.C., Delapalme A. Neutron diffraqction studies of the crystalline and magnetic properties of UFe₂ // J. Phys.: Condens. Matter. 1989. V. 1. P. 10229-248.
- Lawson A.C. Jr., Smith J.L., Willis J.O., O'Rourke J.A., Faber J., Hitterman R.L. Orthorhombic structure of UMn₂ at low temperatures // J. Less-Common Metals 1985. V. 107. P. 243–248.
- 14. *Richter C.G., Jeitschko W., Kuennen B., Gerdes M.H.* The ternary titanium transition metal bismuthides Ti₄TBi₂ with T = Cr, Mn, Fe, Co and Ni // J. Solid State Chem. 1997. V. 133. P. 400–406.
- Bauer E.D., Sidorov V.A., Bobev S., Mixson D.J., Thompson J.D., Sarrao J.L., Hundley M.F. Highpressure investigation of the heavy-fermion antiferromagnet U₃Ni₅Al₁₉ // Physical Review, Serie 3. B – Condensed Matter. 2005. V. 71. P. 1–12.
- 16. Shevchenko V.Ya., Ilyushin G.D., Blatov V.A. Cluster Self-Organization of Intermetallic Systems: New Two-Layer Nanocluster-Precursor K44 = $0@8(U_2Ni_6)@36(U_{12}Ni_{24})$ in the Crystal Structure $U_{66}Ni_{96}-hR162$ // Glass Physics and Chemistry. 2021. V. 47. P. 525–532.

- Ilyushin G.D. Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure // Struct. Chem. 2012. V. 20. № 6. P. 975–1043.
- Shevchenko V.Ya., Medrish I.V., Ilyushin G.D., Blatov V.A. From clusters to crystals: scale chemistry of intermetallics // Struct. Chem. 2019. V. 30. P. 2015–2027
- 19. *Ilyushin G.D.* Intermetallic Compounds $K_n M_m$ (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystal-lography Reports. 2020. V. 65. No 7. P. 1095–1105.
- 20. Ilyushin G.D. Intermetallic Compounds Na_kM_n (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 4. P. 539–545.
- 21. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.