ТЕОРИЯ МЕТАЛЛОВ

УДК 538.931

ВЛИЯНИЕ АНИЗОТРОПИИ УПРУГОЙ ЭНЕРГИИ НА ЭЛЕКТРОН-ФОНОННОЕ УВЛЕЧЕНИЕ И ТЕМПЕРАТУРНЫЕ ЗАВИСИМОСТИ ТЕРМОЭДС В КРИСТАЛЛАХ КАЛИЯ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ

© 2019 г. И. И. Кулеев^{*а*, *}, И. Г. Кулеев^{*а*}

^аИнститут физики металлов УрО РАН, ул. С. Ковалевской, 18, Екатеринбург, 620108 Россия

*e-mail: kuleev@imp.uran.ru Поступила в редакцию 14.03.2019 г. После доработки 28.05.2019 г. Принята к публикации 03.06.2019 г.

Исследовано влияние анизотропии упругой энергии на электрон-фононное увлечение и термоэлектрические явления в кристаллах калия. Рассчитаны температурные зависимости теплопроводности, термоэдс и вкладов в них от фононов различных поляризаций. Результаты расчета согласованы с экспериментальными данными путем вариации константы электрон-фононного взаимодействия для квазипоперечных фононов. Установлено, что вклад медленных квазипоперечных фононов в термоэдс увлечения объемных кристаллов калия на порядок величины превышает вклад квазипродольных фононов. Определены максимальные величины термоэдс увлечения в совершенных кристаллах калия. Показано, что они не зависят от значений констант электрон-фононного взаимодействия, а определяются упругими модулями второго порядка и концентрацией электронов.

Ключевые слова: щелочные металлы, упругая энергия, термоэдс, электрон-фононное увлечение, квазипоперечные фононы, решеточная теплопроводность

DOI: 10.1134/S001532301911010X

введение

В [1-4] были измерены термоэлектрические эффекты в щелочных металлах при низких температурах, определена решеточная теплопроводность, а также проанализировано влияние электрон-фононного увлечения на термоэдс. Полученные результаты, как и термоэдс увлечения в других металлах, интерпретировали в модели изотропной среды [1-5]. В этой модели только продольные фононы могут взаимодействовать с электронами и участвовать в электрон-фононном увлечении [6-9]. Целью настоящей работы является исследование влияния анизотропии упругой энергии на электрон-фононное увлечение в щелочных металлах при низких температурах. Анизотропия спектра фононов приводит к неколлинеарности групповых и фазовых скоростей фононов и к анизотропии фононного транспорта [10]. Кроме того, в упругоанизотропных кристаллах распространяются квазипоперечные фононы, которые имеют отличную от нуля продольную компоненту [11, 12] и в рамках стандартной теории потенциала деформации могут участвовать в электрон-фононном увлечении [6-9]. Поэтому, в

отличие от модели изотропной среды, необходимо учитывать вклады всех колебательных мод в электрон-фононное увлечение. Наиболее подходящими кристаллами для анализа этих эффектов являются щелочные металлы Li, Na, K, для которых спектр электронов проводимости считается изотропным. Они обладают кубической симметрией и максимальными параметрами анизотропии упругой энергии $k - 1 (k - 1 = (c_{12} + 2c_{44} - c_{11})/(c_{11} - c_{44}),$ *с_{іі}* – упругие модули второго порядка), которые в значительной степени определяют отклонения направлений групповых и фазовых скоростей фононов и, соответственно, фокусировку фононов (табл. 1). В связи с этим продольная компонента квазипоперечных фононов также имеет максимальное значение, существенно превосходящее величины для полупроводниковых кристаллов (см. табл. 1). Однако кристаллы Li и Na при температурах ниже 36 К испытывают мартенситный переход из оцк в гпу и при более низких температурах представляют двухфазную систему. Поэтому основное внимание уделено исследованию термоэдс увлечения в кристаллах калия.

Соединение	c_{11}	<i>c</i> ₁₂	<i>c</i> ₄₄	ρ	<i>k</i> – 1	$\left< \left(\mathbf{e}^L \mathbf{n} \right)^2 \right>$	$\left< \left(\mathbf{e}^{t1} \mathbf{n} \right)^2 \right>$	$\left< \left(\mathbf{e}^{t^2} \mathbf{n} \right)^2 \right>$
HgSe:Fe	0.69	0.51	0.23	8.26	0.61	0.99	6.7×10^{-4}	7.0×10^{-3}
Si	1.677	0.65	0.804	2.33	0.67	0.99	7.5×10^{-4}	7.9×10^{-3}
К	0.0457	0.0374	0.0263	0.91	2.284	0.965	0.0028	0.0323
Li	0.148	0.125	0.108	0.55	4.825	0.942	0.0044	0.0536
Na	0.0615	0.0469	0.0592	1.01	45.13	0.902	0.0069	0.0908

Таблица 1. Упругие модули второго порядка c_{ij} (10¹² дин/см²), плотность ρ (г/см³), параметр анизотропии k - 1 для кристаллов HgSe:Fe и Si, K, Li, Na

В [13] мы главным образом ограничились исследованием влияния фокусировки фононов на анизотропию термоэдс увлечения в кристаллах калия. Рассмотрена возможность реализации режима кнудсеновское течение фононного газа в монокристаллических нанопластинках калия при низких температурах. Показано, что этот режим реализуется при уменьшении толщины пластинок до $D < 10^{-5}$ см, когда граничное рассеяние в кристаллах калия становится доминирующим механизмом релаксации фононов. Анализ вкладов различных мод в термоэдс увлечения и решеточную теплопроводность кристаллов калия показал, что медленные квазипоперечные фононы вносят преобладающий вклад в электрон-фононное увлечение, на порядок величины превышающий вклад продольных фононов [13]. Очевидно, что модель изотропной среды не является корректной для описания электрон-фононного увлечения в металлах. Необходимо учитывать влияние анизотропии упругой энергии на спектр и вектора поляризации фононов. В настоящей работе мы рассчитали температурные зависимости решеточной теплопроводности и термоэдс увлечения для кристаллов калия и согласовали результаты расчета с экспериментальными данными [1, 4]. Анализ вкладов квазипродольных и квазипоперечных фононов в температурные зависимости теплопроводности и термоэдс увлечения показал, что результаты расчета могут быть согласованы с экспериментальными данными только в предположении, что константа деформационного взаимодействия поперечных фононов с электронами E_{0t} в два раза превышает ее значение для продольных фононов. Аналитически рассчитан предел, определяющий максимальные значения термоэдс увлечения в кристаллах калия без дислокаций. Определены максимальные значения термоэдс увлечения в совершенных кристаллах калия. Показано, что они определяются исключительно упругими модулями второго порядка и не зависят от значений констант электрон-фононного взаимодействия. Ниже мы ограничимся учетом только анизотропии, связанной с подсистемой фононов.

ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ФОНОНОВ В КРИСТАЛЛАХ КАЛИЯ

В щелочных металлах подсистема электронов является сильно вырожденной. В этом случае благодаря законам сохранения энергии и импульса в электрон-фононных взаимодействиях могут участвовать только электроны, находящиеся в пределах теплового размытия поверхности ферми.

Поэтому для них при температурах, гораздо меньших температуры Дебая основной вклад в релаксацию электронов будут вносить длинноволновые фононы с волновым вектором $q \ll q_{\rm D}$ (q_D – дебаевский волновой) [6–9]. В связи с этим для описания фононов мы воспользуемся моделью анизотропного континуума [11, 12]. В этой модели спектр фононов с поляризацией λ представим в виде $\omega_q^{\lambda} = S^{\lambda}(\theta, \phi)q$. фазовая скорость $S^{\lambda}(\theta, \phi)$ зависит от угловых переменных θ и ϕ вектора **q**. В системе координат по ребрам куба она определена в работе [12]. Индекс поляризации L соответствует продольным фононам, t_1 и t_2 – "быстрой" и "медленной" поперечным колебательным модам, соответственно. векторы поляризации фононов определяются выражениями [12]:

$$e_{j}^{\lambda} = \frac{1}{A_{\lambda}} \left\{ \frac{n_{j}}{\psi_{j}^{\lambda}} \right\}, \quad A_{\lambda} = \pm \sqrt{\sum_{j} \frac{n_{j}^{2}}{\left(\psi_{j}^{\lambda}\right)^{2}}};$$
$$(\mathbf{e}^{\lambda} \mathbf{n}) = \frac{1}{A_{\lambda}} \sum_{j} \frac{n_{j}^{2}}{\psi_{j}^{\lambda}}, \quad \psi_{j}^{\lambda} = \frac{1}{3} + z_{\lambda} + (k-1)n_{j}^{2}; \qquad (1)$$
$$k = (c_{12} + c_{44})/(c_{11} - c_{44}),$$

где c_{ij} – упругие модули второго порядка, **n** = q/q = = (sin θ cos φ , sin θ sin φ , cos θ) – единичный волновой вектор фонона, z_{λ} – корни уравнения Кристоффеля, определяющие спектр и вектора поляризации (см. подробнее [10]). Значения модулей упругости второго порядка при T = 4.2 К взяты из работы [14]. Как видно из табл. 1, средние величины $\langle (\mathbf{e}^{t^2}\mathbf{n})^2 \rangle$, входящие в константу электронфононного взаимодействия при переходе от кристаллов Si к калию и натрию, увеличиваются в четыре и одиннадцать раз, соответственно. Это приводит к значительному увеличению вклада квазипоперечных мод в электрон-фононное увлечение.

Направления переноса энергии и фокусировка фононов определяются групповыми скоростями фононов, которые могут быть представлены в виде [10]:

$$\mathbf{V}_{g}^{\lambda}(\theta,\phi) = S^{\lambda}(\theta,\phi)\widetilde{\mathbf{V}}_{g}^{\lambda}(\theta,\phi),$$
$$\widetilde{\mathbf{V}}_{g}^{\lambda}(\theta,\phi) = \mathbf{n} + S_{\theta}^{\lambda}\mathbf{e}_{\theta} + S_{\phi}^{\lambda}\mathbf{e}_{\phi}, \qquad (2)$$
$$S_{\theta}^{\lambda}(\theta,\phi) = \left(\frac{1}{S^{\lambda}}\right)\frac{\partial S^{\lambda}}{\partial \theta}, \quad S_{\phi}^{\lambda}(\theta,\phi) = \frac{1}{\sin\theta}\left(\frac{1}{S^{\lambda}}\right)\frac{\partial S^{\lambda}}{\partial \phi}.$$

Здесь $\mathbf{e}_{\theta} = (\cos\theta\cos\phi, \cos\theta\sin\phi, -\sin\theta), \mathbf{e}_{\phi} = (-\sin\phi, \cos\phi, 0),$ а вектор **n** определен выше. Вектора **n**, \mathbf{e}_{θ} и \mathbf{e}_{ϕ} образуют взаимно ортогональную тройку единичных векторов. Параметры анизотропии k - 1 в щелочных кристаллах значительно превышают значения для Si и HgSe:Fe (табл. 1). Поэтому фокусировка фононов в кристаллах калия существенно отличается от полупроводниковых кристаллов (см. подробнее [15]).

ВЛИЯНИЕ АНИЗОТРОПИИ УПРУГОЙ ЭНЕРГИИ НА ТЕРМОЭДС УВЛЕЧЕНИЯ В МЕТАЛЛАХ

Впервые влияние анизотропии упругой энергии кристалла на спектр, векторы поляризации и фокусировку фононов при анализе термоэдс увлечения проводниках с вырожденной статистикой носителей тока учтено в работе [16]. Для этого была решена система кинетических уравнений для неравновесных электронной f(k, r) и фононной $N^{\lambda}(q, r)$ функций распределения в линейном приближении по внешним возмущениям, обусловленным действием электрического поля ($E = \{E_x, 0, 0\}$) и градиента температуры $\nabla T = (\nabla_x T, 0, 0)$. Отметим, что такие эффекты, как термоэдс и теплопроводность находят из условия равенства нулю полного тока через образец. В этом случае средняя скорость упорядоченного движения электронов в любом физически малом объеме образца равна нулю. Поэтому перенормировку термоэдс за счет взаимного увлечения электронов и фононов мы не рассматриваем. В этом случае градиент температуры приводит к стационарному потоку фононов от горячего конца образца к холодному, и передача импульса упорядоченного движения фононов к электронам в значительной степени определяет величину полной термоэдс при низких температурах. В результате термоэдс может быть представлена в виде аддитивной суммы диффузионного вклада и термоэдс электрон-фононного увлечения: $\alpha = \alpha_{dif} + \alpha_{drag}$.

Диффузионная термоэдс определяется известным выражением [6–9]:

$$\alpha_{\rm dif} = \frac{k_{\rm B}}{e} \left(\frac{\pi^2 k_{\rm B} T}{3 \varepsilon_{\rm F}} \right) A_{\rm dif},$$

$$A_{\rm dif} = \frac{\varepsilon_{\rm F} d}{d\varepsilon} \left[\ln \left(\frac{k^3(\varepsilon) \tau(\varepsilon)}{m(\varepsilon)} \right) \right]_{\varepsilon = \varepsilon_{\rm F}}.$$
(3)

Здесь $k_{\rm B}$ – постоянная Больцмана, T – температура, $\varepsilon_{\rm F}$ – энергия Ферми. Полное время релаксации электронов $\tau(\varepsilon_k) = [\nu_{\rm ei}(\varepsilon_k) + \nu_{\rm eph}(\varepsilon_k)]^{-1}$, где $\nu_{\rm ei}(k)$ – скорость релаксации электронов на примесях [8, 9], $\nu_{\rm eph}(k)$ – скорость релаксации электрона на фононах в модели анизотропного континуума [25]:

$$\begin{split} \mathbf{v}_{\rm eph}(\boldsymbol{\varepsilon}_{k}) &= \frac{m}{8\pi^{2}\hbar^{3}\left(k\right)^{3}} \sum_{\pm} \int_{0}^{2k\pm q_{0}} (Z_{q}^{\lambda})^{5} dZ_{q}^{\lambda}, \\ &\int_{0}^{2\pi} d\phi_{q} \left| C_{0}^{\lambda} \right|^{2} (q_{T\lambda})^{5} N_{q\lambda}^{0} (N_{q\lambda}^{0} + 1) \Phi_{\lambda}^{\pm}(\boldsymbol{\varepsilon}_{k}, q), \\ \Phi_{\lambda}^{\pm}(\boldsymbol{\varepsilon}_{k}, q) &= \pm \left[\frac{f_{0} \left(\boldsymbol{\varepsilon}_{k} \pm \hbar \omega_{q}^{\lambda} \right) - f_{0}(\boldsymbol{\varepsilon}_{k})}{f_{0}(1 - f_{0})} \right] \left[1 \mp \frac{q_{0}^{\lambda}(\boldsymbol{\theta}, \boldsymbol{\phi})}{q} \right] (4) \\ &q_{T}^{\lambda} &= \frac{k_{\rm B}T}{\hbar S^{\lambda}(\boldsymbol{\theta}, \boldsymbol{\phi})}, \quad Z_{q}^{\lambda} = \frac{\hbar \omega_{q}^{\lambda}}{k_{\rm B}T}, \\ &q_{0}^{\lambda}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \frac{2m_{e}S_{0}^{\lambda}(\boldsymbol{\theta}, \boldsymbol{\phi})}{\hbar}, \end{split}$$

где $N_{q\lambda}^0 - ф$ ункция Планка, $|C_q^{\lambda}(\theta, \varphi)|^2 = (C_0^{\lambda}(\theta, \varphi))^2 q$, $(C_0^{\lambda}(\theta, \varphi))^2 = E_{0\lambda}^2 (\mathbf{e}^{\lambda}(\theta, \varphi)\mathbf{n})^2 \hbar / S^{\lambda}(\theta, \varphi)\rho$, $E_{0\lambda} -$ константа деформационного потенциала, для щелочных металлов $E_{0\lambda} \cong (2/3)\varepsilon_{\rm F}$ [6].

Детали расчета термоэдс увлечения приведены в [13, 16], поэтому их здесь мы не воспроизводим, а ограничимся конечным выражением, затем конкретизируем некоторые детали для металлов. В отличие от ранее опубликованных [17, 18], релаксацию импульса фононов в неравновесной электрон-фононной системе мы учитываем, не ограничиваясь линейным приближением по параметру неупругости Z_q^{λ} . В [1–4] исследования термоэдс и решеточной теплопроводности проводили на кристаллах калия с концентрацией электронов $n_e = 1.4 \times 10^{22}$ см⁻³, $k_{\rm F} = 0.75 \times 10^8$ см⁻¹, эффективной массой $m_{\rm F} \cong 1.1 m_0 \ (m_0$ — масса свободного электрона) и энергией Ферми $\varepsilon_{\rm F} = 2.12 \ {\rm SB},$ $\rho \simeq 0.91 \times 10^8$ г · см⁻³, $E_{0\lambda} \simeq (2/3) \varepsilon_{\rm F} = 1.41$ эВ. Из значений фазовых скоростей ($S_L^{[100]} = 2.24 \times 10^5$ см/с и $S_t^{[100]} = 1.7 \times 10^5$ см/с) следует, что величина q_0

на три порядка меньше, чем $2k_{\rm F}$. Поэтому в тер-

моэдс увлечения можно пренебречь добавкой $\pm q_0^{\lambda}$ по сравнению с $2k_F$ и объединить члены, соответствующие испусканию и поглощению фононов. Тогда получим [13, 16]:

$$\alpha_{\rm drag} = \frac{k_{\rm B}}{e} \sum_{\lambda} \left(\frac{3}{4\pi}\right) \int d\Omega_q \int_0^{T_F^{\lambda}(\theta,\phi)/T} \left(Z_q^{\lambda}\right)^4 \operatorname{th}\left(Z_q^{\lambda}/2\right) dZ_q^{\lambda} \times \left(\frac{\nu_{\rm eph0}^{\lambda}(k_F, q_T^{\lambda})}{\nu_{\rm ph}^{\lambda}(q)}\right) \left(\frac{T_{\delta}^{\lambda}}{T}\right) \left\{ \tilde{V}_{g3}^{\lambda} n_{q3} \right\},$$
(5)
$$T_{\delta}^{\lambda} = \left(2m_{\rm F} \left(S^{\lambda}(\theta,\phi)\right)^2\right) / k_{\rm B}.$$

Здесь $\tilde{V}_{g_3}^{\lambda}$ и n_{q_3} – проекции групповой скорости и единичного волнового вектора фонона на направление градиента температур, $v_{eph0}^{\lambda}(k_F, q_T^{\lambda})$ – скорость релаксации электрона с импульсом k_F на тепловом фононе с импульсом q_T^{λ} :

$$\nu_{\text{eph0}}^{\lambda}(k_F, q_T^{\lambda}) = \frac{m(\varepsilon_F)(C_0^{\lambda})^2}{2\pi\hbar^3 k_F^3} \left(q_T^{\lambda}\right)^5 N_{q\lambda}^0 (N_{q\lambda}^0 + 1),$$

$$q_T^{\lambda} = \frac{k_B T}{\hbar S^{\lambda}(\theta, \varphi)}, \quad Z_q^{\lambda} = \frac{q}{q_T^{\lambda}} = \frac{\hbar\omega_q^{\lambda}}{k_B T}.$$
(6)

В выражении (5) верхний предел интегрирования определяется отношением $T_F^{\lambda}(\theta, \varphi)/T = 2\hbar k_F S^{\lambda}(\theta, \varphi)/k_B T$. Поскольку величины $T_F^{\lambda}(\theta, \varphi)$ имеют порядок 10² К ($T_F^{[100]L} = 258$ К и $T_F^{[100]r} =$ = 196 К), то при температурах порядка 1–3 К мы можем распространить верхний предел интегрирования до бесконечности.

Для дальнейших оценок и анализа температурных зависимостей термоэдс в калии мы учтем актуальные в низкотемпературной области механизмы релаксации фононов: рассеяние на границах образца, дислокациях, электронах и дефектах (изотопическом беспорядке). Для этих механизмов скорость релаксации может быть представлена в виде

$$\begin{aligned} \mathbf{v}_{\mathrm{ph}}^{\lambda}(q,\theta,\phi) &= \mathbf{v}_{\mathrm{phB}}^{\lambda}(\theta,\phi) + \frac{k_{\mathrm{B}}T}{\hbar} Z_{q}^{\lambda} \Big[\mathbf{v}_{\mathrm{phd}}^{*\lambda}(\theta,\phi) + \\ &+ \mathbf{v}_{\mathrm{phe}}^{*\lambda}(\theta,\phi) \Big] + \mathbf{v}_{\mathrm{phi}}^{\lambda}(q,\theta,\phi). \end{aligned}$$

Здесь $v_{\text{phB}}^{\lambda}(\theta, \varphi)$ – скорость релаксации фононов на границах (см. [10]), $v_{\text{phd}}^{*\lambda}(\theta, \varphi) = Ab^2 N_d$, $v_{\text{phe}}^{*\lambda}(\theta, \varphi) \cong$ $\cong \frac{m_F^2}{\hbar^4} \frac{E_{0\lambda}^2}{2\pi S^{\lambda}(\theta, \varphi) \rho} \left(\mathbf{e}^{\lambda}(\theta, \varphi) \mathbf{n} \right)^2$ – безразмерные вели-

чины. Согласно [4], $A \approx 1, b \approx 4.5 \times 10^{-8}$ см – вектор Бюргерса, $N_d = 10^{11}$ см⁻² · \tilde{N}_d . Приведенная концентрация дислокаций \tilde{N}_d является подго-

ночным параметром для образцов с различной степенью деформации. Для приведенных выше параметров калия находим:

$$\nu_{\rm phd}^{*\lambda}(\theta, \phi) \cong 2.03 \times 10^{-4} \tilde{N}_d,$$

$$\nu_{\rm phe}^{*\lambda}(\theta, \phi) \cong \frac{6.59 \times 10^{-4}}{\tilde{S}^{\lambda}(\theta, \phi)} \left(\mathbf{e}^{\lambda}(\theta, \phi) \mathbf{n} \right)^2, \qquad (8)$$

$$\tilde{S}^{\lambda}(\theta, \phi) = S^{\lambda}(\theta, \phi) \times 10^{-6}.$$

Для скорости релаксации фононов на изотопическом беспорядке имеем [15, 20, 21]:

$$\mathbf{v}_{\rm iso} \cong A_{\rm iso} \left(T Z_q^{\lambda} \right)^4, \quad A_{\rm iso} = \frac{g V_0}{12\pi} \left(k_{\rm B} / \hbar \right)^4 \left\langle \left(S_0^{\lambda} \right)^{-3} \right\rangle. \tag{9}$$

Здесь V_0 – объем, приходящийся на один атом, $g = 1.64 \times 10^{-4}$ – фактор изотопического беспорядка. Для константы A_{iso} в калии получим: $A_{iso} = 2.85 \times 10^4 \text{ c}^{-1} \text{ K}^{-1}$. Как видно из (5)–(8), при понижении температуры роль рассеяния на дислокациях и электронах уменьшается. В случае, когда доминирует граничное рассеяние фононов, термоэдс увлечения будет следовать зависимости $\alpha_{drag} \approx BT^4$, а при доминирующей роли рассеяния на дислока-

циях и электронах $\alpha_{drag} \approx CT^3$.

ТЕМПЕРАТУРНЫЕ ЗАВИСИМОСТИ ТЕРМОЭДС УВЛЕЧЕНИЯ И РЕШЕТОЧНОЙ ТЕПЛОПРОВОДНОСТИ В КРИСТАЛЛАХ КАЛИЯ

Из анализа температурных зависимостей теплопроводности [15] следует, что доминирующими механизмами релаксации фононов в калии при низких температурах 1—3 К являются рассеяние на электронах и дислокациях. В пользу этих механизмов рассеяния указывают температурные

зависимости теплопроводности $\kappa(T) \approx T^{\delta}$, где показатель $\delta_{exp} \sim 1.6 - 2.4$, и для большинства образцов он близок к двум [4]. Согласно оценкам [15], вклад изотопического рассеяния в полное теплосопротивление при T = 2 К составлял менее 1.5%, а при учете дополнительного рассеяния на примесях с концентрацией 300 ррм этот вклад не превышает 3% [15], а рассеяние на границах – порядка 1%. В работах [13, 15] мы рассчитали температурные зависимости решеточной теплопроводности образцов K4 и K5 с деформациями $\varepsilon \approx 0.05$ и $\varepsilon \approx 0.1$ в интервале 1.5–3 К и согласовали результаты расчета с данными эксперимента [4]. В расчетах использована скорость релаксации фононов (7) с константой деформационного потенциала одинаковой для фононов различных поляризаций $E_{0\lambda} \cong (2/3)\varepsilon_{\rm F} = 1.41$ эВ. Приведенная концентрация дислокаций \tilde{N}_d использована в качестве под-гоночного параметра. Для образцов К4 с деформациями $\varepsilon \approx 0.05$ и $\varepsilon \approx 0.1$ значения \tilde{N}_d равны 0.3

Рис. 1. Температурные зависимости теплопроводности образцов калия с прямоугольным сечением $D \times \mu D = 0.15 \times 0.5 \text{ см}^2$ ($\mu = 3.3$) и длиной L = 3.8 см с деформациями: для K4 $\varepsilon \approx 0.1$ и $\varepsilon \approx 0.05$ (кривые *1* и *2*) и K5 с $\varepsilon \approx 0.053$ и $\varepsilon \approx 0.027$ (кривые *1а* и *2a*), значения \tilde{N}_d приведены в табл. 3. Точки – экспериментальные значения [4].

и 0.55, для K5 с $\varepsilon \approx 0.053$ и $\varepsilon \approx 0.027$ значения \tilde{N}_d равны 0.33 и 0.17 соответственно (см. [15]). Как видно из рис. 3 работы [13], результаты расчета хорошо согласуются с экспериментальными данными.

Для этих механизмов релаксации из выражений (5)—(7) термоэдс увлечения может быть представлена в аналитическом виде:

$$\alpha_{\rm drag}(T) \approx BT^{3}, \quad \mathbf{B} = \sum_{\lambda} \mathbf{B}_{\lambda} = \frac{k_{\rm B}}{e} \times \\ \times \sum_{\lambda} \left(\frac{(m_{F})^{2} E_{0\lambda}^{2}}{4(\pi)^{4} \rho \hbar^{3} n_{e0}} \right) \int d\Omega_{q} \left(\frac{k_{\rm B}}{\hbar S^{\lambda}(\theta, \varphi)} \right)^{3} \times \\ \times \left(\frac{\left(\mathbf{e}^{\lambda}(\theta, \varphi) \mathbf{n} \right)^{2} \left\{ \tilde{V}_{g3}^{\lambda} n_{q3} \right\}}{\left[\mathbf{v}_{\rm phd}^{*\lambda}(\theta, \varphi) + \mathbf{v}_{\rm phe}^{*\lambda}(\theta, \varphi) \right] S^{\lambda}(\theta, \varphi)} \right);$$
(10)
$$\alpha_{3} = (1/4) \int_{0}^{\infty} \left(Z_{q}^{\lambda} \right)^{3} \operatorname{th} \left(Z_{q}^{\lambda}/2 \right) / \left(\operatorname{sh}(Z_{q}/2) \right)^{2} dZ_{q}^{\lambda} = 6.1$$

J

Однако расчетные значения термоэдс увлечения при тех же параметрах $E_{0\lambda} \cong (2/3) \varepsilon_{\rm F} = 1.41$ эВ и \tilde{N}_d оказались меньше экспериментальных данных при T = 2 К почти в два раза. Анализ вкладов квазипродольных и квазипоперечных фононов в термоэдс увлечения кристаллов калия, проведенный в [15], показал, что вклад медленных квазипоперечных фононов, который ранее не учитывали (см. [1–5]), оказался на порядок величины больше вклада продольных фононов: для образца К5 с деформацией $\varepsilon \cong 0.05$ вклад медленной квазипоперечной моды составляет 86%, тогда как

Рис. 2. Температурная зависимость термоэдс: для K4 $\varepsilon \approx 0.1 \ \tilde{N}_d = 0.4 \text{ и } \varepsilon \approx 0$ (кривые *1* и *2*) и K5 с $\varepsilon \approx 0.053 \ \tilde{N}_d = 0.14 \text{ и } \varepsilon \approx 0$ (кривые *3* и *4*). Символы – экспериментальные значения [4].

вклады α_{drag}^{L} и $\alpha_{drag}^{t1} - 8$ и 6% [13]. Очевидно, что подгонка результатов расчета может быть осуществлена только за счет увеличения константы деформационного взаимодействия поперечных фононов с электронами E_{0t} . По-видимому, имеется дополнительный механизм влияния сдвиговых деформаций на энергию электронов проволимости. Кстати, на это в свое время указывал Займан в классической монографии [6]. Поэтому мы провели одновременную подгонку температурных зависимостей теплопроводности и термоэдс при вариации константы деформационного потенциала $E_{0t^2} = E_{0t^1} = E_{0t}$ при фиксированном значении $E_{0L} \cong 1.41$ эВ. В результате были определены значения $E_{0t} \cong 2.81$ эВ и подгоночные параметры \tilde{N}_d . Как видно из рис. 1 и 2, результаты расчета теплопроводности и термоэдс хорошо согласуются с экспериментальными данными.

Ранее при анализе термоэдс щелочных металлов в [1-4] использована эмпирическая формула (см. формулу (4.18) в [5]):

$$\alpha = AT + BT^{3} + C \exp(-\theta^{*}/T).$$
(11)

Здесь первый член соответствует вкладу диффузионной термоэдс (см. формулу (3)), второй член — вклад нормальных процессов электронфононного рассеяния в термоэдс увлечения ($\alpha_{drag}(T) \approx BT^3$), третий член определяет вклад процессов электрон-фононного переброса. В работе [4] все коэффициенты *A*, *B*, *C* и θ^* являлись подгоночными параметрами при сопоставлении выражения (11) с экспериментальными данными. Для значений, приведенных в табл. 2, получено

Образец	3	<i>А</i> , нВ/К ²	<i>В</i> , нВ/К ⁴	С, нВ/К	θ*, K
K5	$\varepsilon = 0.053$	5	-10	2.5×10^{4}	15.2
K5	$\varepsilon = 0$	-0.5	-12.2	3×10^{4}	15.2
K4	$\varepsilon = 0.1$	7	-7.3	1.9×10^{4}	15.9
K4	$\epsilon = 0$	9	-9.4	2.6×10^{4}	15.9

Таблица 2. Значения параметров А, В, С и 0* для образцов калия из работы [4]

Таблица 3. Значения параметров \tilde{N}_d , A, B, C и θ^* для образцов калия K4 и K5 с различной концентрацией дислокаций

Образец	$E_{0L} \cong 1.41$ \Rightarrow B $E_{0t} \cong 2.81$ \Rightarrow B						
	\tilde{N}_d	<i>А</i> , нВ/К ²	<i>B</i> , нB/K ⁴	С, нВ/К	θ*, K		
K5 $\varepsilon = 0.053$	0.139	-5	-6.13	5.5×10^{4}	20		
K5 $\varepsilon = 0.027$	0.06		-6.78		20		
K5 $\varepsilon = 0$	0	-9	-8.33	9×10^{4}	20		
K4 $\varepsilon = 0.1$	0.4	2	-5.04	4×10^4	20		
$K4 \epsilon = 0.05$	0.11		-6.33		20		
$K4 \epsilon = 0$	0	7.8	-8.33	8×10^{4}	20		

хорошее согласие с экспериментальными данными (см. [4] табл. 1 и рис. 4). Ниже мы рассчитаем коэффициент *B* и покажем, что параметры, приведенные в табл. 2, не является корректными. Вопервых, для процессов электрон-фононного переброса температура θ^* не должна варьироваться от образца к образцу, поскольку она определяется фононным спектром. Ее общепринятое значение 20–22 K (см. [5, 19]), поэтому для нее мы взяли $\theta^* = 20$ K.

В нашей теории для определения полной термоэдс подгоночными параметрами являются коэффициенты А и С. Коэффициент В рассчитывали по формулам (10) и расчет проверяли согласно (5)-(9). Результаты нашей подгонки приведены в табл. 3. Как видно из рис. 2, использование этих значений позволяет согласовать величины полной термоэдс с экспериментальными данными [4]. Естественно, что увеличение концентрации дислокаций приводит к уменьшению термоэдс увлечения, и максимальное значение коэффициент B достигается при $ilde{N}_d=0.$ Этот случай особенно интересен, поскольку коэффициент B_{max} определяет значения термоэдс увлечения, которые могут быть достигнуты для совершенных кристаллов калия без дислокаций. Они уже не зависят от значений констант электрон-фононного взаимодействия $E_{0\lambda}^2$ и факторов $\left(\mathbf{e}^{\lambda}(\mathbf{\theta}, \mathbf{\phi})\mathbf{n}\right)^2$, а определяются исключительно упругими модулями второго порядка и концентрацией электронов:

$$B_{\max} = J_3 \frac{k_{\rm B}}{e} \sum_{\lambda} \left(\frac{1}{2(\pi)^3 n_{e0}} \right) \left(\frac{k_{\rm B}}{h S_{1001}^{\lambda}} \right)^3 \int d\Omega_q \times \left(\frac{\left\{ \tilde{V}_{g3}^{\lambda} n_{q3} \right\}}{\left(\tilde{S}^{\lambda}(\theta, \phi) \right)^3} \right), \quad \tilde{S}^{\lambda}(\theta, \phi) = \frac{S^{\lambda}(\theta, \phi)}{S_{1001}^{\lambda}(\theta, \phi)}.$$
(12)

Непосредственный расчет для калия дает $B_{\text{max}} \cong -8.3$, очевидно, что при учете дислокаций $|B| < |B_{\text{max}}| \cong 8.3$. Из сравнения табл. 2 и 3 видно, что значения подгоночных параметров В, выбранных в [4] для образцов калия K4 B = -9.4 и K5 B = -10 и -12.2, заметно меньше параметра B_{max} . Таким образом, подгонка результатов эксперимента, выполненная в работе [4], является некорректной. Именно этот факт послужил основанием для нашего анализа роли квазипоперечных фононов в термоэдс увлечения. В этом пределе вклады медленной и быстрой квазипоперечных мод в α_{drag} составляют 80 и 16%, тогда как вклад продольных фононов - всего 4%. А соотношение коэффициентов В для различных мод имеет вид $B_{t2}: B_{t1}: B_L = 20: 4: 1.$

Можно надеяться, что наш метод окажется полезным для оценок максимальных значений тер-

2. Анализ вкладов колебательных мод в термоэдс увлечения показал, что результаты расчета могут быть согласованы с экспериментальными

деформационного взаимодействия поперечных фононов с электронами E_{0t} в два раза превышает ее значение для продольных фононов.

данными только в предположении, что константа

моэдс увлечения в других щелочных и благород-

ЗАКЛЮЧЕНИЕ

энергии на температурные зависимости тепло-

проводности и термоэдс увлечения в кристаллах

калия при низких температурах. Основные ре-

зультаты можно сформулировать следующим об-

поперечных фононов в термоэдс увлечения объем-

ных кристаллов калия показал, что для образцов с

дислокациями, исследованных в [4], вклад медлен-

ных квазипоперечных фононов, который ранее не

учитывали, оказался на порядок величины больше

вклада продольных фононов. Для объемных кри-

сталлов калия без дислокаций, когда доминирую-

щий вклад в релаксацию фононов вносит рассея-

ние на электронах, суммарный вклад квазипопе-

речных фононов достигает 96%, тогда как вклад

продольных фононов – всего 4%.

1. Анализ вкладов квазипродольных и квази-

Исследовано влияние анизотропии упругой

ных металлах.

разом.

3. Определены максимальные значения термоэдс увлечения при низких температурах в кристаллах калия без дислокаций. Показано, что они определяются исключительно упругими модулями второго порядка и не зависят от значений констант электрон-фононного взаимодействия.

Проведенный анализ свидетельствует, что модель изотропной среды не может дать адекватного описания электрон-фононного увлечения в металлах. Необходимо учитывать вклады всех мод в термоэдс увлечения.

Работа выполнена в рамках государственного задания МИНОБРНАУКИ России (тема "Функция" АААА-А19-119012990095-0).

СПИСОК ЛИТЕРАТУРЫ

- 1. MacDonald D.K.C., Pearson W.B., Templeton I.M. Thermo-Electricity at Low Temperatures. VIII. Thermo-Electricity of the Alkali Metals Below 2 K // Proc. R. Soc. Lond. A. 1960. V. 256. P. 334.
- 2. Guenault A.M., MacDonald D.K.C. Electron and phonon scattering thermoelectricity in potassium and alloys at very low temperatures // Proc. R. Soc. Lond. A. 1961. V. 264. P. 41.

- 3. Stinson M.R., Fletcher R., Leavens C.R. Thermomagnetic and thermoelectric properties of potassium // Phys. Rev. B. 1979. V. 20. P. 3970-3990.
- 4. Fletcher R. Scattering of phonons by dislocations in potassium // Phys. Rev. B. 1987. V. 36. P. 3042-3051.
- 5. Blatt F.J., Schroeder P.A., Foiles C.L., Greig D. Thermoelectric power of metals. N.Y. and London: Plenum press. 1976.
- 6. Займан Дж. Электроны и фононы. М.: Изд-во ИЛ. 1962.
- 7. Блатт Ф. Физика электронной проводимости в твердых телах. М.: Изд-во ИЛ, 1971.
- 8. Гуревич Л.Э. Термоэлектрические свойства проводников. I // ЖЭТФ. 1946. Т. 16. С. 193; Термомагнитные и гальваномагнитные свойства проводников // ЖЭТФ. 1946. Т. 16. С. 416.
- 9. Herring C. Theory of the Thermoelectric Power of Semiconductors // Phys. Rev. 1954. V. 96. P. 1163.
- 10. Кулеев И.Г., Кулеев И.И., Бахарев С.М., Устинов В.В. Фокусировка фононов и фононный транспорт в монокристаллических наноструктурах. Екатеринбург: "Изд-во УМЦ УПИ", 2018. 256 с.
- 11. Федоров Ф.И. Теория упругих волн в кристаллах. М.: Наука, 1965. 388 с.
- 12. Кулеев И.Г., Кулеев И.И. Упругие волны в кубических кристаллах с положительной и отрицательной анизотропией модулей упругости второго порядка // ФТТ. 2007. Т. 49. № 3. С. 422-429.
- 13. Кулеев И.И., Кулеев И.Г. Роль квазипродольных и квазипоперечных фононов в термоэдс увлечения кристаллов калия при низких температурах // ЖЭТФ. 2019. 155. Т. 6. С. 56-70.
- 14. Truel B., Elbaum C., Chick B.B. Ultrasonic methods in solid state physics. Academic Press, N.Y.-London. 1969.
- 15. Кулеев И.И., Кулеев И.Г. Фокусировка фононов и анизотропия решеточной теплопроводности кристаллов калия при низких температурах // ФММ. 2018. T. 119. C. 1141-1147.
- 16. Кулеев И.Г., Кулеев И.И., Бахарев С.М., Устинов В.В. Фокусировка фононов и электрон-фононное увлечение в полупроводниковых кристаллах с вырожденной статистикой носителей тока // ЖЭТФ. 2016. T. 150. C. 567–585.
- 17. Гуревич Л.Э., Коренблит И.Я. Влияние увлечения электронов фононами и их взаимного увлечения накинетические коэффициенты полуметаллов // ФТТ. 1964. Т. 6. С. 856-863.
- 18. Mahan G.D., Lindsay L., Broido D.A. The Seebeck coefficient and phonon drag in silicon // J. Appl. Phys. 2014. V. 116. P. 245102.
- 19. Ekin J.W., Maxfield B.W. Electrical Resistivity of Potassium from 1 to 25° K // Phys. Rev. B. 1971. V. 4. P. 4215-4225.
- 20. Жернов А.П., Инюшкин А.В. Изотопические эффекты в твердых телах. РНЦ "Курчатовский Институт", М., 2001, 216 с.
- 21. Klemens P.G. The scattering of low-frequency lattice waves by static imperfections // Proceedings of the Physical Society. Section A. 1955. V. 68. № 12. P. 1113–1128.