ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА

УДК 537.611.3:539.216.2

ВЛИЯНИЕ ЗАМЕЩЕНИЯ ЖЕЛЕЗА ХРОМОМ НА МАГНИТНЫЕ И СТРУКТУРНЫЕ СВОЙСТВА (Tm_xPr_{1 – x})₂Fe₁₇

© 2019 г. А. Г. Кучин^{а,} *, С. П. Платонов^а, В. Ивасечко^b, В. И. Воронин^а, В. С. Гавико^{а, с}

^а Институт физики металлов имени М.Н. Михеева УрО РАН, ул. С. Ковалевской, 18, Екатеринбург, 620108 Россия ^b Институт низких температур и структурных исследований ПАН, 50-950, Вроцлав 2, П.О. 1410, Польша ^c Уральский Федеральный Университет им. Б.Н. Ельцина, ул. Мира, 19, Екатеринбург, 620002 Россия

*e-mail: kuchin@imp.uran.ru Поступила в редакцию 05.03.2019 г. После доработки 09.04.2019 г. Принята к публикации 23.04.2019 г.

Соединения ($\text{Tm}_x \text{Pr}_{1-x}$)₂Fe₁₇ и ($\text{Tm}_x \text{Pr}_{1-x}$)₂Fe_{16.5}Cr_{0.5} кристаллизуются в ромбоэдрическую структуру типа Th₂Zn₁₇ для составов x = 0.-0.4 и в гексагональную типа Th₂Ni₁₇ для x = 0.8-1 и x = 0.75-1, соответственно. Обе структуры сосуществуют в интервале x = 0.5-0.75 и x = 0.5-0.6. Соединения ($\text{Tm}_x \text{Pr}_{1-x}$)₂Fe₁₇ при 0 < x < 0.6 ферримагнитны, при x = 0.6-1 дополнительно реализуется высокотемпературное гелимагнитное состояние. Замещение железа хромом приводит к превращению гелимагнетика в ферримагнетик с неожиданно большим различием температур Кюри (на 25–28 K) для ромбоэдрической и гексагональной фаз. Для состава x = 0.8 отмечены минимальные значения температуры Кюри, Нееля и перехода "ферримагнетик–гелимагнетик" магнитных фазовых переходов и максимальные микродеформации. Перекрывание двух пиков изменения магнитной энтропии $-\Delta S_M(T)$ при двух температурах магнитных фазовых переходов способствует более высокой хладоемкости для двухфазных составов, по сравнению с сосседними однофазными.

Ключевые слова: редкоземельные интерметаллиды, кристаллическая структура, фазовые переходы, внутреннее давление, магнитные измерения, магнитокалорический эффект, нейтронная дифракция, рентгеновская дифракция

DOI: 10.1134/S0015323019100061

введение

Магнитные рефрижераторы, основанные на магнитокалорическом эффекте (МКЭ), вызывают возрастающий интерес благодаря высокой эффективности, надежности и экологичности. Интерметаллические редкоземельные соединения R₂Fe₁₇ являются многообешающими магнитокалорическими материалами благодаря большой спонтанной намагниченности, низкой стоимости основного компонента, легкости приготовления, магнитного упорядочения в "легкой" базисной плоскости в районе комнатной температуры и отсутствия гистерезиса перемагничивания. Хладоемкость соединений типа R₂Fe₁₇ с близкими температурами двух магнитных фазовых переходов "ферримагнетикгелимагнетик-парамагнетик" соизмерима или даже превосходит значения для материалов с гигантским МКЭ [1].

Соединения R_2Fe_{17} кристаллизуются в ромбоэдрическую типа Th_2Zn_{17} или гексагональную типа Th_2Ni_{17} структуры, и магнитные моменты подрешеток R и Fe параллельны или антипараллельны в зависимости от того, является R легким или тяжелым R редкоземельным элементом. В ромбоэдрической структуре атомы Fe занимают четыре неэквивалентные позиции 9d, 18f, 18h и так называемую "гантельную" 6с, в которой два атома ориентированы вдоль оси с кристалла и расстояние Fe-Fe минимально. В идеальной гексагональной структуре атомы Fe занимают четыре позиции 6g (это аналог позиции 9d в ромбоэдрической решетке), 12*j* (18*f*), 12*k* (18*h*) и "гантельную" 4f(6c). Атомы R занимают одну 6c или две 2b. 2dпозиции в ромбоэдрической и гексагональной решетках, соответственно [2]. Известно, что кристаллическая структура R_2Fe_{17} с R = Lu, Tm, Y не идеальная типа Th₂Ni₁₇, а разупорядоченная типа LuFe_{9,5}, предложенная Givord [2]. Вакансии в смешанных атомных плоскостях заполнены частично атомами R в дополнительных узлах: 2с и "гантелях" 4е. В результате, в этих соединениях имеет место неоднородное распределение атомов R и "гантелей" атомов Fe, и реализуются нестехиометрические соединения. Спонтанная намагниченность для Pr_2Fe_{17} [3] больше, чем для Tm_2Fe_{17} [4], но Tm_2Fe_{17} может содержать больше атомов Fe из-за нестехиометрической структуры типа Th₂Ni₁₇ [2, 5].

Рис. 1. Экспериментальная (кружки) и расчетная (линия) рентгенограммы и разница между ними для $(Tm_{0.6}Pr_{0.4})_2Fe_{16.5}Cr_{0.5}$. Вертикальные линии показывают положение рефлексов (сверху вниз) для ромбо-эдрической, гексагональной решеток и α -Fe.

В настоящей статье изучено влияние частичного замещения железа хромом на структурные, магнитные и магнитокалорические свойства соединений $(Tm_x Pr_{1-x})_2 Fe_{17}$.

ОБРАЗЦЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Соединения $(Tm_x Pr_{1-x})_2 Fe_{17}$ [6] и $(Tm_x Pr_{1-x})_2$ $Fe_{165}Cr_{05}, x = 0-1$ приготовлены индукционной плавкой. Гомогенизацию проводили при 1293 К для $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}$ в течение 10 нед., для $(Tm_r Pr_{1-r})_2 Fe_{17}$ в течение 2 нед. и дополнительно 8 нед. Фазовый состав, тип структуры и параметры решетки определены методом рентгеновской дифракции на дифрактометре ДРОН-4 в Си K_{α} -излучении. Для $(Tm_x Pr_{1-x})_2 Fe_{17}$, с целью уточнения структурных параметров, проведено нейтронографическое исследование с использованием мультидетекторного дифрактометра D7a [20] на горизонтальном канале реактора IVV-2M (ИФМ УрО РАН, Заречный, Россия). Установки MPMS, PPMS и 7407 VSM (Lake Shore Cryotronics) использовали для изучения магнитных свойств. Кривые намагничивания М(Н) измеряли на свободных порошковых образцах или поликристаллических образцах сферической формы в максимальных полях до 9 Тл и при температурах 4-420 К. Спонтанную намагниченность M_s при 4 К определяли линейным экстраполированием высокополевой части кривой M(H) на нулевое внутреннее поле. Температуры магнитных фазовых переходов определяли из зависимостей намагниченности М(T) в поле 0.005 или 0.01 Тл. Модуль Юнга для образцов $(Tm_x Pr_{1-x})_2 Fe_{17}$ определен методом микроинден-

Рис. 2. Концентрационные зависимости параметров решетки *a* и *c* для соединений $(\text{Tm}_x \text{Pr}_{1-x})_2 \text{Fe}_{17}$ (а) и $(\text{Tm}_x \text{Pr}_{1-x})_2 \text{Fe}_{16.5} \text{Cr}_{0.5}$ (б): *a* (**•**), *c* (**•**) в фазе типа $\text{Th}_2 \text{Zn}_{17}$; *a* (**□**), *c* (**○**) в фазе типа $\text{Th}_2 \text{Ni}_{17}$.

тации индентором Берковича [7] с помощью прибора NanoTest (Micro Materials Ltd).

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Кристаллическая стуктура. Установлено, что соединения ($\text{Tm}_x \text{Pr}_{1-x}$)₂ Fe_{17} [6] и ($\text{Tm}_x \text{Pr}_{1-x}$)₂ $\text{Fe}_{16.5} \text{Cr}_{0.5}$ при x = 0-0.4 кристаллизуются в ромбоэдрическую структуру типа $\text{Th}_2\text{Zn}_{17}$ (пространственная группа $R\overline{3}m$), составы x = 0.8-1 и x = 0.75-1 кристаллизуются в разупорядоченную гексагональную структуру типа $\text{Th}_2\text{Ni}_{17}$ (P63/mmc) соответственно. Доля не растворившегося α -Fe не превышает 1-7 вес. %. Обе решетки сосуществуют в интервале x = 0.5-0.75 и x = 0.5-0.6. Экспериментальная и расчетная рентгенограммы для соединения ($\text{Tm}_{0.6}\text{Pr}_{0.4}$)₂Fe_{16.5}Cr_{0.5} приведены на рис. 1. Хорошее описание эксперимента было достигнуто комбинацией структур типа $\text{Th}_2\text{Zn}_{17}$ и $\text{Th}_2\text{Ni}_{17}$.

Параметры решетки *a*, *c* для $(Tm_xPr_{1-x})_2Fe_{17}$ [6] и $(Tm_xPr_{1-x})_2Fe_{16.5}Cr_{0.5}$ собраны на рис. 2. По мере

	$(\mathrm{Tm}_{x}\mathrm{Pr}_{1-x})_{2}\mathrm{Fe}_{17}$				$(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}$			
x	<i>М</i> _s , А м²/кг	-ΔS _M , Дж/(кг К)	$-\Delta d/d \times 10^{-4}$	<i>—Р</i> , ГПа	$M_{ m s},$ А м²/кг	$-\Delta S_{\mathrm{M}},$ Дж/(кг К)	$\Delta d/d \times 10^{-4}$	<i>—Р</i> , ГПа
0	170.4	2.42	8.1 R	0.15	160.9	2.06	6(1) R	0.11 R
0.1	165.4	2.36	_	_	_	—	_	—
0.2	159.5	2.44	10.6 R	0.21	143.6	—	6(2) R	0.12 R
0.3	153.1	2.18	—	_	_	—	—	—
0.4	149.4	1.94	13.4 R	0.28	133.3	2.02	16(2) R	0.33 R
0.5	137.2	1.87	17.6 R ^a	0.38	127.1	1.26 ^a (1.91 ⁶) R	11(2) ^a R	0.24 R
0.6			20.7 R	0.45		—	13(2) R	0.28 R
0.6	134.2	1.86	21.9 H	0.48	121.7	1.17 ^a (2.06 ⁶) H	12(2) H	0.26 H
0.7	126.2	1.60	22 H ^a	0.49	_	—	_	_
0.75	120.8	1.38	—	_	116.6	1.41	16(2) H	0.36 H
0.8	115.8	1.39	23.8 H	0.54	110.8	—	18(2) H	0.41 H
0.85	114.5	1.32	—	_	_	—	—	—
0.9	109.7	1.27	21.5 H	0.51	104.1	—	12(2) H	0.29 H
1	98.7	1.45	13.8 H	0.34	86.0	1.38	4.5(5)H	0.11 H

Таблица 1. Спонтанная намагниченность M_s при 4 K, пиковое изменение магнитной энтропии $-\Delta S_M$ в поле 1.5 Tл, микродеформации $-\Delta d/d$ и внутреннее давление -P в соединениях $(\text{Tm}_x\text{Pr}_{1-x})_2\text{Fe}_{17}$ и $(\text{Tm}_x\text{Pr}_{1-x})_2\text{Fe}_{16.5}\text{Cr}_{0.5}$ после двух и десяти недель гомогенизации соответственно

^а Максимальное значение для ромбоэдрической R- или гексагональной H-фазы.

⁶ Оцененное значение с учетом содержания R- или H-фаз.

роста *х* параметры решетки для обеих структур уменьшаются почти линейно, поскольку атомы Pr с радиусом r = 1.828 Å замещаются атомами Tm с меньшим r = 1.746 Å. В двухфазной области x = 0.5-0.75 (рис. 2а) или x = 0.5-0.6 (рис. 2б), параметр *а* меньше, а параметр *с* больше для гексагональной решетки, по сравнению с ромбоэдрической (на рис. 2 для ромбоэдрической решетки нанесены значения 2c/3, т.е. в гексагональной установке).

Полуширина дифракционных рефлексов соединений $(Tm_rPr_{1-r})_2Fe_{17}$ [6] и $(Tm_rPr_{1-r})_2Fe_{16}Cr_{0.5}$ оказалась больше калибровочных значений наших дифрактометров. Из их анализа мы оценили значения микродеформаций $-\Delta d/d$ в сплавах (Δd – изменение любого размера d в образце) и привели их в табл. 1. Микродеформации максимальны для состава x = 0.8. Причины больших микродеформаций в $(Tm_x Pr_{1-x})_2 Fe_{17}$ и $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}$, x = 0.75 - 0.9, по-видимому, одни и те же [6]. Вопервых, гексагональная решетка типа Th₂Ni₁₇ частично разупорядочена и дефектна, в отличие от ромбоэдрической Th₂Zn₁₇ [2]. Во-вторых, размер атома Pr больше, чем атомов Tm или Fe. В результате появление больших атомов Pr вместо атомов Tm или Fe в узлах гексагональной решетки Th₂Ni₁₇ может создать микродеформации, которые максимальны как раз для гексагональной фазы в составах x = 0.75 - 0.9. Следовательно, структурные дефекты гексагональной решетки типа Th_2Ni_{17} являются главной причиной сильных микродеформаций в соединениях $(Tm_xPr_{1-x})_2Fe_{17}$ и $(Tm_xPr_{1-x})_2Fe_{16.5}Cr_{0.5}$ для x = 0.75-0.9.

Внутреннее давление определяется как произведение микродеформации и модуля Юнга. Последний был измерен для соединений $(\text{Tm}_x \text{Pr}_{1-x})_2 \text{Fe}_{17} \text{ c}$ x = 0, 0.8, 1 и равен 188.4, 228.9 и 249.1 ГПа соответственно [6]. Модуль Юнга изменяется в системе почти линейно с содержанием Тт. Мы использовали измеренные значения модуля Юнга для оценки внутреннего давления в системах $(\text{Tm}_x \text{Pr}_{1-x})_2 \text{Fe}_{17}$ и $(\text{Tm}_x \text{Pr}_{1-x})_2 \text{Fe}_{16.5} \text{Cr}_{0.5}, получен$ ные значения приведены в табл. 1. Максимальные значения внутреннего давления равны ~0.4 и5 ГПа для состава <math>x = 0.8 в системах $(\text{Tm}_x \text{Pr}_{1-x})_2 \text{Fe}_{17}$ и $(\text{Tm}_x \text{Pr}_{1-x})_2 \text{Fe}_{16.5} \text{Cr}_{0.5}$ соответственно.

МАГНИТНЫЕ СВОЙСТВА

Значения спонтанной намагниченности M_s для $(\text{Tm}_x \text{Pr}_{1-x})_2 \text{Fe}_{16.5} \text{Cr}_{0.5}$ и $(\text{Tm}_x \text{Pr}_{1-x})_2 \text{Fe}_{17}$ [6] при 4 К собраны в табл. 1. В обеих системах M_s уменьшается монотонно по мере замещения Pr на Tm. Очевидно, что магнитные моменты ионов Tm и Fe взаимно антипараллельны, тогда как магнитные моменты ионов Pr и Fe параллельны друг другу в со-

Рис. 3. Температурная зависимость намагниченности соединений $(Tm_x Pr_{1-x})_2 Fe_{17}$ в поле 0.01 Тл после гомогенизации в течение двух недель.

единениях $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}$ и $(Tm_x Pr_{1-x})_2 Fe_{17}$, как и в случае Pr₂Fe₁₇ и Tm₂Fe₁₇ [3, 4].

Температурные зависимости намагниченности M(T) соединений $(Tm_x Pr_{1-x})_2 Fe_{17}$ [6] после двухнедельного отжига и $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}$ в полях 0.01 и 005 Т приведены на рис. 3 и 4. Порошковые образцы были предварительно ориентированы магнитным полем 3 Тл, приложенным вдоль базисной плоскости кристаллов. Резкое увеличение M(T) в температурном интервале $T \sim$ $\sim 20-160$ К в обеих системах для x = 0.4-1 является результатом хорошо известной спонтанной спиновой переориентации оси легкого намагничивания от направления вдоль гексагональной оси при низких Т в базисную плоскость при высоких T, как в случае бинарного соединения Tm_2Fe_{17} [4, 8]. Спиновая переориентация в Tm₂Fe₁₇ существует из-за конкуренции одноосной анизотропии подсистемы Тт и анизотропии типа легкая базисная плоскость для подсистемы Fe. Спонтанная спиновая переориентация отсутствует в Pr₂Fe₁₇, где оси легкого намагничивания компонентов лежат в базисной плоскости [3]. Поэтому разумно считать, что спонтанная спиновая переориентация существует в гексагональной фазе с ионами Тт и отсутствует в ромбоэдрической фазе с ионами Pr. Однако можно предположить, что спиновая переориентация проявляется локально в ромбоэдрической фазе с ионами Tm, частично заместивших ионы Pr, и наоборот, локально отсутствует в гексагональной фазе с ионами Pr вместо ионов Tm. В таких случаях спиновая переориентация в некоторых составах может быть типа "базисная плоскость – угловая фаза". Поэтому намагниченность при 4 К (рис. 3 и 4) имеет различные значения почти для всех составов.

Рис. 4. Температурная зависимость намагниченности соединений $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}$ в поле 0.01 Тл.

Уменьшение M(T) для $(Tm_x Pr_{1-x})_2 Fe_{17}$ при температурах выше ~200 К (рис. 3) происходит вследствие исчезновения ферримагнитного состояния. Кинк на кривых M(T) соответствует температуре Кюри $T_{\rm C}$ для составов x = 0 - 0.5 или температуре Θ_т перехода "ферримагнетик-гелимагнетик" для x = 0.6 - 1. Для соединений x = 0.6 - 1 (рис. 3), магнитный фазовый переход при температуре Нееля $T_{\rm N}$ слабо проявляется на кривых M(T). Типичный пик при T_N на кривой M(T) для Tm₂Fe₁₉ [5] трансформировался в перегиб для $(Tm_r Pr_{1-r})_2 Fe_{17} c x =$ = 0.6 - 1 (рис. 3).

Кинк на кривых М(Т) для соединений $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}$ (рис. 4) при температурах выше ~320 К соответствует T_C для соединений с x = 0 - 0.4 со структурой типа Th₂Zn₁₇ и для составов x = 0.75 - 1 со структурой типа Th₂Ni₁₇. Для двухфазных составов x = 0.5 - 0.6, кинк на кривой M(T) соответствует $T_{\rm C}$ фазы типа Th₂Zn₁₇, тогда как $T_{\rm C}$ фазы типа ${\rm Th}_2{\rm Ni}_{17}$ проявляется слабо как точка перегиба при $T \sim 350$ К (рис. 4).

Очевидно, что из-за присутствия ионов Тт вместо ионов Pr в ромбоэдрической фазе и присутствия ионов Pr вместо ионов Tm в гексагональной фазе, локальные температуры $T_{\rm C}$ и $\Theta_{\rm T}$, T_N должны различаться в разных частях образцов $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}$ и $(Tm_x Pr_{1-x})_2 Fe_{17}$. Следовательно, образцы $(Tm_x Pr_{1-x})_2 Fe_{17}$ с x = 0.6-0.9должны характеризоваться набором локальных значений $\Theta_{\rm T}$, $T_{\rm N}$, и магнитное состояние этих образцов должно представлять собой смесь локальных ферримагнитных и гелимагнитных состояний. Образцы $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5} c x = 0.2-0.9$ должны характеризоваться набором локальных значений $T_{\rm C}$. Поэтому на кривых M(T) для соединений $(Tm_x Pr_{1-x})_2 Fe_{17}$ с x = 0.6-0.9 отсутствует

1238

типичный пик при $T_{\rm N}$ на рис. 3, а для соединений $({\rm Tm}_x {\rm Pr}_{1-x})_2 {\rm Fe}_{16.5} {\rm Cr}_{0.5}$ с x = 0.5-0.6 отсутствует типичный кинк при $T_{\rm C}$ фазы типа ${\rm Th}_2 {\rm Ni}_{17}$ на рис. 4. В подтверждение существования двух магнитных фазовых переходов при $\Theta_{\rm T}$ и $T_{\rm N}$ для $({\rm Tm}_x {\rm Pr}_{1-x})_2 {\rm Fe}_{17}$, x = 0.6-1 и при двух $T_{\rm C}$ для $({\rm Tm}_x {\rm Pr}_{1-x})_2 {\rm Fe}_{16.5} {\rm Cr}_{0.5}$, x = 0.5-0.6, на температурной зависимости магнитокалорического эффекта наблюдаются по два пика вблизи этих температур, как это видно на рис. 6 (подробнее см. ниже).

Значения $\Theta_{\rm T}$, $T_{\rm N}$, $T_{\rm C}$, $T_{\rm sr}$ для соединений $({\rm Tm}_{x}{\rm Pr}_{1-x})_{2}{\rm Fe}_{17}$ и $T_{\rm C}$, $T_{\rm sr}$ для соединений $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}$ построены на рис. 5 как магнитная Т-х-фазовая диаграмма. Видно, что температура магнитного упорядочения в системе уменьшается от $T_{\rm C} = 284$ К для $\Pr_2 \operatorname{Fe}_{17}$ до $T_{\rm N} =$ = 272 K для Tm₂Fe₁₇. Напротив, температура магнитного упорядочения в системе $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}$ увеличивается от $T_{\rm C} = 331$ К для $\Pr_2 \operatorname{Fe}_{16.5} \operatorname{Cr}_{0.5}$ до $T_{\rm C} = 356 \text{ K}$ для $\text{Tm}_2\text{Fe}_{16.5}\text{Cr}_{0.5}$. По-видимому, этот рост вызван более быстрым ослаблением отрицательных Fe-Fe обменных взаимодействий в $Tm_2Fe_{16.5}Cr_{0.5}$, по сравнению с $Pr_2Fe_{16.5}Cr_{0.5}$, из-за более быстрого увеличения параметра решетки с и, следовательно, межатомного расстояния Fe-Fe в "гантельной" позиции Fe(4f) или Fe(4e) в первом соединении, по сравнению со вторым (рис. 2). В "гантели" соединений R₂Fe₁₇ взаимодействие между двумя атомами Fe максимально отрицательное из-за наименьшего расстояния Fe-Fe [8]. Соединение Tm₂Fe_{16.5}Cr_{0.5} является ферримагнетиком, в отличие от высокотемпературного гелимагнетика Tm₂Fe₁₇. Высокотемпературное гелимагнитное состояние реализуется в соединениях ($Tm_x Pr_{1-x}$)₂Fe₁₇ только для x = 0.6-1, соединения $(Tm_x Pr_{1-x})_2 Fe_{17}$ для $0 \le x \le 0.6$ ферримагнитны. После дополнительного двухмесячного отжига все температуры магнитных фазовых переходов в соединениях $(Tm_x Pr_{1} - x)_2 Fe_{17}$ несколько увеличились, особенно $\Theta_{\rm T}$ для x = 0.8 и 0.9, как это видно на рис. 5. Концентрационные зависимости Θ_{T} , T_{N} , T_{sr} для $(Tm_{x}Pr_{1-x})_{2}Fe_{17}$ и T_{C} , $T_{\rm sr}$ для $({\rm Tm}_{\rm x}{\rm Pr}_{1-{\rm x}})_2{\rm Fe}_{16.5}{\rm Cr}_{0.5}$ на рис. 5 – немонотонные с минимальными значениями Θ_{T} , T_{N} и T_{C} и максимальным значением $T_{\rm sr}$ для x = 0.8. Для системы (Tm_xPr_{1 - x})₂Fe_{16.5}Cr_{0.5} имеет место локальный минимум $T_C(x)$ для состава x = 0.4. Температуры Кюри двухфазных соединений $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}, x = 0.5 - 0.6$, различаются на 25-28 К (рис. 5). Это необычно большая величина, по сравнению с ранее установленным различием в 2-3 К между T_C гексагональной и ромбоэдрической фаз в аналогичных двухфазных соединениях (Nd_{1 – x}Er_x)₂Fe₁₇ с x = 0.5, 0.75 [9].

Линейное изменение с составом температуры магнитного упорядочения типично для си-

Рис. 5. Концентрационные зависимости $T_{\rm C}(\Box, \bullet)$, $T_{\rm N}(o, \bullet)$, $\Theta_{\rm T}(\Delta, \bullet)$ и $T_{\rm sr}(\diamond, \bullet)$ соединений $({\rm Tm}_x{\rm Pr}_{1-x})_2{\rm Fe}_{17}$ после гомогенизации в течение двух недель (открытые символы) и дополнительной гомогенизации в течение двух месяцев (закрытые символы). Концентрационные зависимости $T_{\rm C}$ ромбоэдрической (\triangleleft) и гексагональной (\triangleright) фаз и $T_{\rm sr}(\checkmark)$ соединений (${\rm Tm}_x{\rm Pr}_{1-x}$)₂Fe_{16.5}Cr_{0.5}.

стем $R_{2-x}R'_{x}Fe_{17}$, например, $Nd_{2-x}Er_{x}Fe_{17}$ [9], Nd_{2-x}Gd_xFe₁₇ [10], Pr_{2-x}Dy_xFe₁₇ [11] и др. По-видимому, это вызвано линейным изменением обменной энергии в системах R_{2 – x}R'_xFe₁₇ при взаимном замещении R-ионов. Поэтому обнаруженные немонотонные изменения $T_{\rm C}(x)$ в системе $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}$ и $\Theta_T(x)$, $T_N(x)$ в системе (Tm_xPr_{1-x})₂Fe₁₇ неожиданные. Они могут быть вызваны влиянием внутреннего давления на соответствующие магнитные фазы. Хорошо известно, что небольшое внешнее гидростатическое давление ~0.3 ГПа заметно уменьшает $T_{\rm C}$ соединений R_2Fe_{17} и даже превращает ферромагнетик в гелимагнетик [12] из-за сильной зависимости обменных взаимодействий Fe-Fe от межатомного pacстояния [8]. Мы предполагаем, что линейное изменение $T_{\rm C}(x)$ в системах ${\rm R}_2 - {}_x {\rm R}'_x {\rm Fe}_{17}$ может происходить только при постоянном внутреннем давлении в соединениях. Эта гипотеза подтверждается тем, что не были обнаружены микродеформации в системах $Nd_{2-x}Er_{x}Fe_{17}$ [9], $Nd_{2-x}Gd_{x}Fe_{17}$ [10], $Pr_{2-x}Dy_{x}Fe_{17}$ [11] с линейным изменением $T_{C}(x)$.

Максимальное значение внутреннего давления в $(\text{Tm}_x \text{Pr}_{1-x})_2 \text{Fe}_{16.5} \text{Cr}_{0.5}$ составляет ~0.4 ГПа для состава x = 0.8 (табл. 1). Эта величина меньше максимального значения ~0.5 ГПа для состава x = 0.8 в системе $(\text{Tm}_x \text{Pr}_{1-x})_2 \text{Fe}_{17}$ после двухнедельной гомогенизации. Возможно, из-за этого различия в давлении, локальный минимум $T_{\text{C}}(x)$ в системе $(\text{Tm}_x \text{Pr}_{1-x})_2 \text{Fe}_{16.5} \text{Cr}_{0.5}$ менее глубокий,

Рис. 6. Температурная зависимость изменения магнитной энтропии $-\Delta S_{M}(T)$ для соединений $(\text{Tm}_{x}\text{Pr}_{1-x})_{2}\text{Fe}_{17}, x = 0$ (Δ), 0.2 (\blacklozenge), 0.5 (\blacktriangle) (a) и 0.6 (\bigtriangledown), 0.85 (\blacksquare), 1 (o) (б) в поле 0.1 Тл и для соединений $(\text{Tm}_{x}\text{Pr}_{1-x})_{2}\text{Fe}_{16.5}\text{Cr}_{0.5}, x = 0$ (Δ), 0.2 (\blacklozenge), 0.5 (\bigstar) (b) и 0.6 (\bigtriangledown), 0.85 (\blacksquare), 1 (\circ) (r) в поле 0.2 Тл.

по сравнению с локальными минимумами T_N и Θ_T в системе $(Tm_x Pr_{1-x})_2 Fe_{17}$ при x = 0.8 после двухнедельной гомогенизации (рис. 5). Однако, если сравнить системы $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}$ и $(Tm_x Pr_{1-x})_2 Fe_{17}$ после одинакового отжига в течение десяти недель, минимум $T_C(x)$ для первой системы несколько глубже минимумов T_N или Θ_T для второй системы при x = 0.8. По-видимому, причиной этого различия является усиление структурной неоднородности в сплавах $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}$ вследствие присутствия Cr, по сравнению со сплавами $(Tm_x Pr_{1-x})_2 Fe_{17}$, неоднородность которых значительно уменьшается после десятинедельной гомогенизации.

Уменьшение $T_{\rm C}(x)$ в соединениях (${\rm Tm}_x {\rm Pr}_{1-x}$)₂Fe_{16.5}Cr_{0.5} в интервале x = 0-0.4 может быть обусловлено концентрационным уменьшением параметров решетки, т.е. взаимным сближением ионов Fe и, как следствие, усилением отрицательных обменных взаимодействий между ионами Fe. Последующее увеличение $T_{\rm C}(x)$ в ромбоэдрической фазе в ин-

тервале x = 0.5-0.6 может быть вызвано подмагничиванием молекулярным магнитным полем со стороны гексагональной фазы, которая появляется при этих концентрациях и характеризуется более высокими и почти постоянными значениями $T_{\rm C}(x)$ в этом интервале.

МАГНИТОКАЛОРИЧЕСКИЙ ЭФФЕКТ

Изотермическое изменение магнитной энтропии $-\Delta S_{\rm M}$ было вычислено из магнитных изотерм M(H) с использованием известного соотношения Максвелла:

$$\Delta S_{\rm M}(T,H) = \int_{0}^{H} (\partial M / \partial T)_{H} dH.$$
(1)

Поскольку $\partial M / \partial T$ максимально при температуре магнитного упорядочения, большое значение магнитокалорического эффекта (МКЭ) ожидается при магнитных фазовых переходах.

ких магнитных фазовых переходов больше, чем при одном переходе [1, 11].

Температурные зависимости изменения магнитной энтропии $-\Delta S_{M}(T)$ для соединений $(Tm_{x}Pr_{1-x})_{2}Fe_{17}$ в поле 0.1 Т и для (Tm_xPr_{1-x})₂Fe_{16.5}Cr_{0.5} в поле 0.2 Т построены на рис. 6. Наблюдается один пик $-\Delta S_{\rm M}(T)$ при $T_{\rm C}$ ферримагнетиков $({\rm Tm}_{\rm x}{\rm Pr}_{1-{\rm x}})_{2}{\rm Fe}_{17}$ для x = 0, 0.2, 0.5 (рис. 6а) и $(\text{Tm}_x \text{Pr}_{1-x})_2 \text{Fe}_{16.5} \text{Cr}_{0.5}$ для x = 0, 0.4, 0.75, 1 (рис. 6в, 6г). Два пика $-\Delta S_{\rm M}(T)$ наблюдаются для соединений (Tm_xPr_{1-x})₂Fe₁₇ для x = 0.6, 0.85, 1 вблизи $\Theta_{\rm T}$ и $T_{\rm N}$ (рис. 6б) и для ферримагнетиков $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5} для x = 0.5, 0.6$ вблизи двух значений T_C для ромбоэдрической и гексагональной фаз (рис. 6в, 6г). Наличие двух пиков на зависимости $-\Delta S_{\rm M}(T)$ вблизи точек перегиба при Θ_{T} и T_{N} для $(Tm_{x}Pr_{1-x})_{2}Fe_{17}$ или двух значений $T_{\rm C}$ для $({\rm Tm}_x {\rm Pr}_{1-x})_2 {\rm Fe}_{16.5} {\rm Cr}_{0.5}$ подтверждает существование двух спонтанных магнитных фазовых переходов при этих температурах для x = 0.6 - 1 и x = 0.5 - 0.6, соответственно.

Значения $-\Delta S_{\rm M}$ в поле 1.5 Тл для систем $({\rm Tm}_x {\rm Pr}_{1-x})_2 {\rm Fe}_{17}$ и $({\rm Tm}_x {\rm Pr}_{1-x})_2 {\rm Fe}_{16.5} {\rm Cr}_{0.5}$ собраны в табл. 1. Наибольшее значение $-\Delta S_{\rm M} = 2.42 \, {\rm Дж}/({\rm kr}\,{\rm K})$ установлено при 295 К для ${\rm Pr}_2 {\rm Fe}_{17}$ и уменьшается как при замещении ${\rm Pr}$ до $-\Delta S_{\rm M} = 1.45 \, {\rm Дж}/({\rm kr}\,{\rm K})$ при 275 К для ${\rm Tm}_2 {\rm Fe}_{17}$, так и Fe: $-\Delta S_{\rm M} = 2.06 \, {\rm Дж}/({\rm kr}\,{\rm K})$ при 335 К для ${\rm Pr}_2 {\rm Fe}_{16.5} {\rm Cr}_{0.5}$ и 1.38 ${\rm Дж}/({\rm kr}\,{\rm K})$ при 360 К для ${\rm Tm}_2 {\rm Fe}_{16.5} {\rm Cr}_{0.5}$. По-видимому, эти уменьшения MKЭ вызваны уменьшением спонтанной намагниченности (табл. 1). В поле 5 Тл значение $-\Delta S_{\rm M}$ равно 5.45 ${\rm Дж}/({\rm kr}\,{\rm K})$ для ${\rm Pr}_2 {\rm Fe}_{17}$ и 3.36 ${\rm Дж}/({\rm kr}\,{\rm K})$ для ${\rm Tm}_2 {\rm Fe}_{17}$. Эти значения близки к литературным 5.4 ${\rm Дж}/({\rm kr}\,{\rm K})$ для ${\rm Pr}_2 {\rm Fe}_{17}$ и 3.4 ${\rm Дж}/({\rm kr}\,{\rm K})$ для ${\rm Tm}_2 {\rm Fe}_{18}$ [1, 11].

Значение $-\Delta S_{\rm M}(T)$ для двухфазных составов x = 0.5 или 0.6 системы $({\rm Tm}_x {\rm Pr}_{1 - x})_2 {\rm Fe}_{16.5} {\rm Cr}_{0.5}$ (табл. 1, рис. 6в, 6г) в области локального минимума не является точным, поскольку было вычислено для массы всего образца. Учет процентного содержания двух фаз в этих составах (табл. 1) позволяет оценить величину $-\Delta S_{\rm M}$ для каждой фазы при ее $T_{\rm C}$, оцененные значения приведены в табл. 1. Видно, что так оцененные значения $-\Delta S_{\rm M}$ для составов x = 0.5 и 0.6 вписываются в монотонную концентрационную зависимость $-\Delta S_{\rm M}(x)$ для системы (${\rm Tm}_x {\rm Pr}_{1 - x}$)₂Fe_{16.5}Cr_{0.5}.

Пики $-\Delta S_{\rm M}(T)$ при $T_{\rm C}$ ромбоэдрической и гексагональной фаз для $({\rm Tm}_x {\rm Pr}_{1-x})_2 {\rm Fe}_{16.5} {\rm Cr}_{0.5}, x = 0.5-0.6$ или при $\Theta_{\rm T}$ и $T_{\rm N}$ для $({\rm Tm}_x {\rm Pr}_{1-x})_2 {\rm Fe}_{17}, x = 0.6-1$ перекрываются (рис. 6). Поэтому хладоемкость для этих составов должна быть значительно больше, по сравнению с соседними однофазными составами. Хладоемкость характеризует, сколько тепла может быть перенесено с охлаждаемой части холодильника к его теплой части за один цикл охлаждения, и пропорциональна ширине пика на зависимости $-\Delta S_{\rm M}(T)$, которая в случае двух близ-

ЗАКЛЮЧЕНИЕ

Замещение железа хромом привело к сужению интервала двухфазного состояния с x == 0.5 - 0.75 в $(Tm_x Pr_{1-x})_2 Fe_{17}$ до x = 0.5 - 0.6 в $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}$, а также вызвало магнитный фазовый переход "гелимагнетик-ферримагнетик" в составах x = 0.6-1. В двухфазной области x = 0.5 - 0.6 для соединений $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}$ различие между Т_с ромбоэдрической и гексагональной фаз составляет 25—28 К. Как $\Theta_{\rm T}$ и $T_{\rm N}$ для $(Tm_x Pr_{1-x})_2 Fe_{17}$, так и T_C для $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}$ изменяются с составом немонотонно с минимумом для x = 0.8, для которого микродеформации в сплавах максимальны. Перекрывание двух пиков $-\Delta S_{\rm M}(T)$ при $T_{\rm C}$ ромбоэдрической и гексагональной фаз в $(Tm_x Pr_{1-x})_2 Fe_{16.5} Cr_{0.5}$ или при Θ_T и $T_{\rm N}$ для $({\rm Tm}_{x}{\rm Pr}_{1-x})_{2}{\rm Fe}_{17}$ должно способствовать более высоким значениям хладоемкости для таких составов, по сравнению с соседними составами с одной $T_{\rm C}$.

Работа выполнена в рамках государственного задания по темам "Магнит" № АААА-А18-118020290129-5 и "Поток" № АААА-А18-118020190112-8. Авторы благодарны Магнитометрическому Центру и Отделу механических испытаний ЦКП "Испытательный центр нанотехнологий и перспективных материалов" ИФМ УрО РАН, а также А.В. Протасову за помощь в проведении измерений.

СПИСОК ЛИТЕРАТУРЫ

- Kuchin A.G., Iwasieczko W., Platonov S.P. The magnetocaloric effect in R₂Fe₁₇ intermetallics with different types of magnetic phase transition // Low Temp. Phys. 2015. V. 41. P. 985–992.
- 2. *Givord D., Lemaire R., Moreau J.M., Roudaut E.* X-ray and neutron determination of a so-called Th₂Ni₁₇-type structure in the lutetium-iron system // J. Less-Common Met. 1972. V. 29. № 4. P. 361–369.
- Isnard O., Miraglia S., Soubeyroux J.L., Fruchart D., Pannetier J. Neutron powder-diffraction study of Pr₂Fe₁₇ and Pr₂Fe₁₇N_{2.9} // Phys. Rev. B 1992-II. V. 45. P. 2920–2926.
- Grandjean F, Isnard O., Long G.J. Magnetic and Mössbauer spectral evidence for the suppression of the magnetic spin reorientation in Tm₂Fe₁₇ by deuterium // Phys. Rev. B 2002. V. 65. P. 064429(10).
- Kuchin A.G., Platonov S.P., Korolyov A.V., Volegov A.S., Voronin V.I., Berger I.F., Elokhina L.V., Makarova G.M., Belozerov E.V. Magnetism and structure of near-stoichiometric Tm₂Fe_{17 + δ} compounds // J. Alloys Compd. 2014. V. 599. P. 26–31.
- 6. Kuchin A.G., Platonov S.P., Voronin V.I., Iwasieczko W., Korolev A.V., Volegov A.S., Neznakhin D.S., Protasov A.V.,

Berger I.F., Kolodkin D.A., Proskurnina N.V. Influence of microdeformations on magnetic phase transitions in the $(Tm_x Pr_{1-x})_2 Fe_{17}$ system // J. Alloys Compd. 2017. V. 726. P. 330–337.

- Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments // J. Mater. Res. 1992. V. 7. P. 1564–1583.
- Givord D., Lemaire R. Magnetic transition and anomalous thermal expansion in R₂Fe₁₇ compounds // IEEE Transact. Magn. 1974. V. Mag-10. P. 109–113.
- 9. Xiao Y.G., Rao G.H., Zhang Q., Liu G.Y., Zhang Y., Liang J.K. Influence of rare earth mixing on structural

and magnetic properties of $Nd_{2-x}Er_xFe_{17}$ compounds // J. Alloys Compd. 2006. V. 419. P. 15–20.

- Ben Kraiem M.S., Cheikhrouhou A. Physical properties study of Nd_{2 - x}Gd_xFe₁₇ intermetallic alloys // J. Alloys Compd. 2005. V. 397. P. 37–41.
- Guetari R., Bez R., Cizmas C.B., Mliki N., Bessais L. Magnetic properties and magneto-caloric effect in pseudo-binary intermetallic (Pr, Dy)₂Fe₁₇ // J. Alloys Compd. 2013. V. 579. P. 156–159.
- Arnold Z., Kuchin A.G., Kamarád J., Platonov S.P. Unusual stability of ground ferrimagnetic state in Tm₂Fe₁₇ under pressure // JMMM. 2018. V. 460. P. 188–192.