СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ

УДК 669.715'884'3'296:539.89

СТРУКТУРНЫЕ И ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В СПЛАВЕ AI-Li-Cu-Mg-Zr-Sc-Zn ПРИ ВЫЛЕЖИВАНИИ ПОСЛЕ МЕГАПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ

© 2019 г. Л. И. Кайгородова^{*a*}, Д. Ю. Распосиенко^{*a*, *b*, *, В. Г. Пушин^{*a*, *b*}, В. П. Пилюгин^{*a*, *b*}}

^аИнститут физики металлов УрО РАН, ул. С. Ковалевской, 18, Екатеринбург, 620108 Россия

^bФГАОУ ВО "УрФУ имени первого Президента России Б.Н. Ельцина", ул. Мира, 19, Екатеринбург, 620002 Россия *e-mail: dmitrijrasp@gmail.com

Поступила в редакцию 08.07.2019 г. После доработки 09.07.2019 г. Принята к публикации 13.07.2019 г.

Электронно-микроскопически изучены структурные и фазовые превращения в промышленном многокомпонентном алюминий-литиевом сплаве при вылеживании после мегапластической деформации кручением под высоким давлением. Показано, что формирующаяся деформационная структура сплава нестабильна, и при дальнейшем вылеживании при комнатной температуре происходит ее трансформация посредством комплексной реакции: рекристаллизации *in situ* и распада пересыщенного твердого раствора. Характер трансформации определяется режимом предшествующей мегапластической деформации и длительностью вылеживания.

Ключевые слова: мегапластическая деформация, кручение под высоким давлением, вылеживание, старение, рекристаллизация, распад пересыщенного твердого раствора, нанокристаллическая структура, границы, фаза, дислокации

DOI: 10.1134/S0015323019120076

введение

Эффективность практического использования изделий из металлических материалов во многом определяется стабильностью их эксплуатационных характеристик и, в первую очередь, механических свойств. При этом для нанокристаллических материалов постоянство уникальных свойств обеспечивается как размерной и фазовой стабильностью кристаллитов и их субструктуры, так и неизменностью межкристаллитных областей [1–4].

Также следует отметить, что изменение дисперсности зеренной структуры стареющих сплавов от микрокристаллической (МК) до субмикро- (СМК) и нанокристаллической (НК) может значительно повлиять на состав и морфологию фаз, выделяющихся после деформации в процессах естественного и искусственного старения [5-7]. Так, формирование наноструктурного состояния в высокопрочных промышленных алюминий-литиевых сплавах 1450 и 1469 обеспечивает при вылеживании в процессе естественного старения выделение вместо метастабильных фаз δ' (Al₃Li) и θ' (Al₂Cu) стабильных мелкодисперсных фаз: в сплаве 1450 T₂ (Al₅CuLi₃) и S₁ (Al₂LiMg), а в сплаве 1469 – фазы Т₂ [4, 6]. При этом старение на максимальную прочность в сплаве 1469 с СМК-

или НК-структурой сопровождается вместо гомогенного зарождения и роста протяженных частиц фаз T_1 (Al₂LiCu) и Ω (Al₂Cu) пластинчатой формы выделением высокодисперсных равноосных частиц фазы T_2 по границам и в теле зерен и субзерен [7].

С учетом вышеизложенного в данной работе была поставлена задача исследования влияния длительного (до 1 года) вылеживания при комнатной температуре на трансформацию ультрамелкозернистой структуры, а также на зарождение и рост выделяющихся фаз в алюминий-литиевом сплаве нового поколения марки 1461, подвергнутого мегапластической деформации (МПД) кручением под высоким давлением (КВД).

МАТЕРИАЛ И МЕТОДИКА ЭКСПЕРИМЕНТА

Исследовали промышленный сплав 1461 с НК- и СМК-структурой, сформированной при КВД и последующем вылеживании при комнатной температуре. Химический состав сплава в мас. % приведен в табл. 1.

КВД закаленного сплава 1461 осуществляли в наковальнях Бриджмена под давлением 4 ГПа

Cu	Li	Zr	Sc	Zn	Mg	Al
2.8	1.8	0.08	0.09	0.66	0.5	Ост.

Таблица 1. Химический состав сплава 1461 (в мас. %)

Таблица 2. Режимы кручения под высоким давлением под давлением 4 ГПа

Число оборотов n	1	5	10
Угол поворота φ, π рад	2	10	20
Истинная деформация на 1/2 радиуса диска <i>е</i>	7.0	8.6	9.3

при комнатной температуре [8]. Используемые режимы КВД приведены в табл. 2.

Изучение структурных и фазовых превращений в сплаве осуществляли методом тонких фольг на просвечивающих электронных микроскопах (ПЭМ) JEM-200 CX и Philips CM 30 Super Twin в Центре коллективного пользования ИФМ УрО РАН. Образцы для исследований вырубали пробойником из области на 1/2 радиуса диска. Линейные размеры элементов структуры определяли непосредственными измерениями на плоскости наблюдения. Для каждого распределения нанозерен были рассчитаны средний размер и среднее квадратичное отклонение.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА И ИХ ОБСУЖДЕНИЕ

КВД на $\phi = 2\pi$ рад, 1 мес. вылеживания. После МПЛ по рассматриваемому режиму в сплаве 1461 наблюдалась неоднородная бимодальная нанофрагментированная структура с диаметром наименьших нанофрагментов ~50 нм [8]. Исследование показало, что последующее вылеживание приводит к некоторой трансформации деформированной структуры. Так, на светло- и темнопольных изображениях на фоне субмикро- и нанофрагментированной структуры появляются нанозерна с однородным контрастом, диаметр которых практически идентичен диаметру нанофрагментов (рис. 1а, 1б). Зерна, в отличие от фрагментов, характеризуются более равноосной формой и более совершенными границами с большими углами разориентации. В соответствии с наблюдаемыми структурными изменениями, можно полагать, что при вылеживании в течение 1 месяца в сильнодеформированном сплаве начинается процесс рекристаллизации in situ.

На изображениях микроструктуры сплава видно, что часть образовавшихся НК- и СМК-зерен имеет спрямленные границы, часть — менее равновесные выпукло-вогнутые (рис. 1в). Вблизи зерен с выпукло-вогнутыми границами присутствует деформационный контраст в виде петель или дуг (рис. 1а, 1в). Подобный контраст был обнаружен ранее при изучении подвергнутых КВД сплавов 1450 и 1469, и его появление было объяснено возникновением полей упругих напряжений и неуравновешенностью поверхностного натяжения границ [6–8].

В объеме НК- и СМК- зерен после вылеживания, как и после КВД [8], выявляются также вторичные нанофрагменты диаметром 15-20 нм (рис. 1в). Данные фрагменты разделены малоугловыми границами и возникают в результате "цикличности" процесса МПД, когда в образовавшихся динамически рекристаллизованных зернах под действием деформирующих напряжений снова происходит накопление дефектов, и процесс фрагментации повторяется. В зависимости от дифракционных условий они наблюдаются на электронно-микроскопических изображениях либо в виде неоднородного пятнистого контраста, либо в виде сетки тонких малоконтрастных границ. Вылеживание существенно не меняет их размеры и разориентацию (на последнее косвенно указывает сохранение характера микроэлектронограмм и малой контрастности границ нанофрагментов [9, 10]).

Очевидно, что протекающие процессы рекристаллизации in situ приводят к релаксации накопленной при деформации упругой энергии, что сопровождается постепенным уменьшением плотности и протяженности дипольных границ (отмечены стрелками на рис. 1а). Данные дефекты образуются в металлических материалах при больших пластических деформациях [11] и были обнаружены ранее при исследовании микроструктур ряда сильнодеформированных алюминий-литиевых сплавов [6-8]. В данных публикациях показано, что параметры таких границ (плотность их распределения и протяженность) зависят от упругонапряженного состояния сплавов и изменяются при длительном вылеживании или отжиге.

На границах НК- и СМК-зерен и сохранившихся дипольных границах после вылеживания так же, как и после КВД, присутствуют гетерогенно зародившиеся дисперсные выделения T_2 -фазы диаметром 5–10 нм (рис. 1а–1г). Качественный анализ не позволил установить, что выдержка в течение 1 месяца при комнатной температуре значимо влияет на их размеры и объемную долю.

КВД на $\varphi = 2\pi$ рад, 12 мес. вылеживания. После увеличения длительности вылеживания до 1 года структура сплава 1461 продолжает сохранять основные структурно-морфологические признаки сильнодеформированного состояния: на электронно-микроскопических изображениях сосуществуют

Рис. 1. Микроструктура сплава 1461 после КВД на $\varphi = 2\pi$ рад и вылеживания: а-г – в течение 1 мес.; д-е – в течение 12 мес.; а, в, д – светлопольные изображения; б, г, е – темнопольные изображения в близких рефлексах (530)_{T₂}, (111)_{Al}. Типичные кольцевые микроэлектронограммы приведены на вставках, стрелками отмечен контраст от дипольных границ.

области фрагментированной и кристаллической структур разного масштаба (рис. 1д, 1е).

Незавершенность процесса рекристаллизации после 12 мес. вылеживания подтверждается высокой дисперсностью НК- и СМК-зерен, а также сохранением некоторых обрывистых дипольных границ, которые в алюминий-литиевых сплавах, подвергнутых КВД, полностью исчезают только после завершения формирования рекристаллизованной структуры [4, 6, 7]. Как и после одного месяца вылеживания, часть зерен имеет неравновес-

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 120 № 12 2019

ные выпукло-вогнутые границы, другая — спрямленные.

Наиболее значимым различием между структурами на раннем и более позднем этапах вылеживания является изменение дефектной структуры фрагментов и зерен: в процессе вылеживания происходит возрастание размеров вторичных нанофрагментов и угла разориентации между ними. Это подтверждается как увеличением количества дифракционных максимумов и их интенсивности на микроэлектронограммах, так и усилением интенсивности пятнистого контраста и четкости изображений малоугловых границ в объеме зерен (рис. 1д). При этом диаметр отдельных вторичных нанофрагментов достигает 30 нм.

Анализ электронно-микроскопических изображений показал, что длительное вылеживание стимулирует распад пересыщенного твердого раствора. Частицы равновесной фазы T_2 активно зарождаются не только на границах СМК и НК зерен, но и в их теле на границах вторичных нанофрагментов, что демонстрируется на темнопольном изображении в рефлексе $(530)_{T_2}$ (рис. 1е). Размеры частиц T_2 при этом заметно не изменяются, но увеличивается их количество (см. рис. 1д, 1е).

КВД на $\varphi = 10\pi$ рад, 1 мес. вылеживания. Увеличение деформации при возрастании угла поворота ϕ от 2π до 10π рад, очевидно, способствовало активизации динамической рекристаллизации, в процессе которой сформировалась смешанная (нанофрагментированная и нанокристаллическая) структура. Количество нанозерен и нанофрагментов и их диаметры были соизмеримы, размеры варьировались в интервале 20-100 нм [8]. Через 1 месяц вылеживания в данном сплаве сохранилась смешанная структура, однако в этом случае преобладающим структурным элементом становятся нанозерна диаметром 30-100 нм (рис. 2а–2в). Таким образом, за рассматриваемый период вылеживания процесс рекристаллизации остается незавершенным, что подтверждается присутствием на электронно-микроскопических изображениях нанофрагментов и дипольных границ, протяженность и плотность распределения которых близки к значениям, обнаруженным при подобном режиме вылеживания после КВД на $\phi = 2\pi$ рад.

Часть нанозерен после вылеживания обладает неравновесными границами выпукло-вогнутой формы. На электронно-микроскопических изображениях вблизи таких границ наблюдается контраст в виде петель или дуг (рис. 2а, 2в). В объеме нанозерен анизотропной формы выявляются вторичные нанофрагменты, диметр которых идентичен зафиксированному в сильнодеформированном состоянии и не превышает 15–20 нм (рис. 26, 2в).

Появление в отдельных участках образца деформационных полос становится характерной особенностью микроструктуры сплава после деформации на 10π рад. После вылеживания тенденция к выраженной полосчатости особенно выявляется на темнопольных изображениях микроструктуры сплава (рис. 2б). На представленных рисунках видно, что одним из результатов образования однонаправленной полосовой структуры является анизотропия в распределении нанофрагментов и нанозерен вдоль некристаллографических направлений, соответствующих преобладающему направлению ротационного массопереноса при КВД.

При вылеживании в течение 1 мес. изменение режима КВД не оказывает заметного влияния на механизм и кинетику распада пересыщенного твердого раствора: гетерогенно зародившиеся на границах нанозерен частицы фазы T_2 сохраняют размеры (их диаметр не превышал 10 нм) и объемную долю (рис. 26, 2в).

КВД на $\varphi = 10\pi$ рад, 12 мес. вылеживания. Рост величины деформации проявляется в структурных и фазовых преврашениях сплава 1461 при более длительном вылеживании. Так, в процессе вылеживания в течение 12 мес. реализуется рекристаллизация in situ, обуславливающая трансформацию нанофрагментированной структуры в НК с диаметром нанозерен ~50-100 нм (рис. 2г-2е). Образование более однородной равновесной структуры подтверждается исчезновением дипольных границ на электронно-микроскопических изображениях (рис. 2г) (уже отмечалось, что плотность распределения и протяженность дипольных границ зависят от полноты протекания рекристаллизации [4, 6, 7]). Вместе с тем границы рекристаллизованных НК-зерен сохраняют неравновесную выпукло-вогнутую форму [1].

На электронно-микроскопических изображениях хорошо видна тенденция к анизотропному распределению нанозерен в пределах деформационных полос шириной до 100 нм после длительного вылеживания (рис. 2г, д). Вместе с тем сравнение двух соседних темнопольных изображений показывает, что полосовая структура начинает частично "рассыпаться" при вылеживании (ср. рис. 26, 2г, 2е). Как и после КВД на $\phi =$ $= 2\pi$ рад, при рассматриваемом режиме деформашии вылеживание в течение 12 мес. существенно влияет на размеры и взаимную разориентировку вторичных нанофрагментов: их диаметр после вылеживания составляет 20-30 нм, они приобретают хорошо сформированные границы (рис. 2е). Эти границы, подобно границам нанозерен, становятся предпочтительными местами для гетерогенного зарождения равновесной фазы Т2, что приводит к возрастанию ее объемной доли (рис. 2д, 2е). Однако диаметр частиц фазы за период вылеживания практически не меняется – он по-прежнему не превышает 10-15 нм.

Рис. 2. Микроструктура сплава 1461 после КВД на $\varphi = 10\pi$ рад и вылеживания: а–в – в течение 1 мес.; г–е – в течение 12 мес.; а, в, д – светлопольные изображения; б, г, е – темнопольные изображения в близких рефлексах (530)_{T₂}, (111)_{Al}. Типичные кольцевые микроэлектронограммы приведены на вставках.

КВД на $\varphi = 20\pi$ рад, 1 мес. вылеживания. Максимальная деформация на $\varphi = 20\pi$ рад привела к активизации динамической рекристаллизации, результатом которой явилось формирование развитой полосовой структуры после КВД [8]. Нанозерна диаметром до 50 нм распределены анизотропно в пределах некристаллографических ротационно-деформационных полос, занимавших весь объем образца. Следует отметить, что повышение величины деформации при КВД вызвало усиление интенсивности полосчатого контраста на электронно-микроскопических изображениях. Возможно, это вызвано возрастанием как углов разориентировки соседних

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 120 № 12 2019

Рис. 3. Микроструктура сплава 1461 после КВД на $\varphi = 20\pi$ рад и вылеживания: а–в – в течение 1 мес.; г–е – в течение 12 мес.; а, в, д – светлопольные изображения; б, г, е – темнопольные изображения в близких рефлексах (530)_{T₂}, (111)_{Al}. Типичные кольцевые микроэлектронограммы приведены на вставках.

полос, так и их ротационной фрагментацией. Об этом свидетельствуют близко расположенные параллельные изгибные контуры экстинкции поперек деформационных полос (рис. 3а–3в).

За период вылеживания в течение 1 мес. происходит коалесценция отдельных нанофрагментов, что приводит к возрастанию размеров некоторых НК-зерен от 50 до 100 нм (рис. 3а–3в). Размеры вторичных нанофрагментов в объеме нанозерен составляют 20–30 нм (рис. 3в). Следует отметить, что после КВД на $\phi = 2\pi - 10\pi$ рад кратковременное вылеживание не вызывает изменения размеров этих структурных составляющих. Размеры, объемная доля и характер распре-

деления фазы T₂ в течение рассматриваемого периода практически не менялись.

КВД на \varphi = 20\pi рад, 12 мес. вылеживания. Увеличение длительности вылеживания до 1 года вызывает трансформацию полосовой структуры: деформационные полосы "рассыпались" и становились менее протяженными, а их границы теряли прямолинейность (рис. 3д, 3е). Изменение морфологии полос, возможно, является следствием их сегментации. В пользу этого предположения свидетельствует исчезновение контраста от параллельных изгибных контуров в измененых полосах (рис. 3е).

Скопления НК- и СМК-зерен анизотропно распределены вдоль некристаллографических направлений полос деформации (рис. 3д, 3е). Анализ светло-и темнопольных изображений выявил наличие двух морфологических типов нанозерен: диаметр одних достигает 100-150 нм, диаметр вторых соизмерим с размерами вторичных нанофрагментов и составляет 30-50 нм (рис. 3е). Более крупные зерна, скорее всего, образовались в результате динамической рекристаллизации в процессе КВД и последующей коалесценции. НК-зерна диаметром 30-50 нм могли сформироваться посредством трансформации вторичных нанофрагментов в объеме более крупных зерен за счет увеличения углов их разориентации. При этом крупные СМК-зерна обладают преимущественно прямолинейными границами, а более мелкие – выпукло-вогнутыми. Спрямление границ нанозерен большего размера и трансформация вторичных нанофрагментов подтверждают, что при вылеживании сплав переходит в более равновесное состояние. Таким образом, структура, формирующаяся в процессе фрагментации и динамической рекристаллизации при KBД на $\phi =$ $= 20\pi$ рад, после длительного вылеживания в основном сохраняет наномасштаб.

В процессе длительного до 1 года вылеживания возрастает объемная доля гетерогенно зарожденной фазы Т₂. Это связано с наличием большой протяженности границ деформационных полос, состоящих из НК- и СМК-зерен, которые являются благоприятными местами для гетерогенного зарождения частиц стабильных фаз (рис. 3д, 3е). Степень дисперсности равноосных частиц Т₂ в процессе вылеживания практически не меняется — их диаметр не превышает 10—15 нм.

ЗАКЛЮЧЕНИЕ

Результаты проведенного исследования показали, что сплав 1461 после мегапластической деформации кручением под давлением P = 4 ГПа при углах поворота $\varphi = 2\pi - 20\pi$ рад при последующем вылеживании в течение до 1 года сохраняет наноструктурное состояние: в среднем размер структурных и фазовых элементов после вылеживания не превышает 100 нм.

Обнаружено, что при вылеживании происходит гетерогенное зарождение и рост частиц стабильной фазы T_2 в сильнодеформированном сплаве 1461. Образование таких зернограничных равноосных выделений T_2 является одной из основных причин стабилизации зеренной структуры в пределах наноразмерного масштаба при вылеживании сплава после мегапластической деформации.

Выявлено, что последовательная трансформация вторичных нанофрагментов в объеме нанозерен и возрастание угла разориентации между ними обуславливает то, что их границы, наряду с границами нанозерен и деформационных полос, становятся благоприятными местами для гетерогенного зарождения упрочняющей равновесной фазы T₂, приводя к увеличению ее объемной доли.

Таким образом, в настоящей работе установлено, что в сплаве 1461 при вылеживании после мегапластической деформации кручением под высоким давлением, как и в других промышленных сплавах на основе системы Al-Li-Cu, реализуется комплексная реакция рекристаллизации in situ и гетерогенного распада пересыщенного твердого раствора с образованием дисперсных равноосных частиц стабильной фазы. Данный механизм обеспечивает высокую прочность сплава и размерную стабильность его зеренно-субзеренной структуры в наномасштабном диапозоне, поскольку выделения вторых фаз, во-первых, блокируют миграцию границ зерен при рекристаллизации, а, во-вторых, они, имея иную кристаллическую решетку, упрочняют сплав по механизму огибания Орована [12, 13].

СПИСОК ЛИТЕРАТУРЫ

- 1. Валиев Р.З., Александров И.В. Объемные наноструктурные металлические материалы: получение, структура и свойства. М.: ИКЦ "Академкнига", 2007. 398 с.
- Zhilyaev A.P., Langdon T.G. Using high-pressure torsion for metal processing: Fundamentals and applications // Progress in Materials Science. 2008. V. 53. P. 893–979.
- 3. *Estrin Y., Vinogradov A.* Extreme grain refinement by severe plastic deformation: A wealth of challenging science // Acta Mater. 2013. V. 6. № 3. P. 782–817.
- Кайгородова Л.И., Пушин В.Г., Распосиенко Д.Ю., Пилюгин В.П. Влияние длительного вылеживания на стабильность зеренной структуры и фазовые превращения в нанокристаллическом сплаве 1450, легированном Sc и Mg // ФММ. 2012. Т. 113. № 6. С. 913–924.
- Hirosawa S., Hamaoka T., Horita Z., Lee S., Matsuda K., Terada D. Methods for Designing Concurrently Strengthened Severely Deformed Age-Hardenable Aluminum Alloys by Ultrafine-Grained and Precipitation Hardenings // Metal. and Mater. Trans. A. 2013. V. 44A. № 8. P. 3921–3933.

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 120 № 12 2019

1306

- Кайгородова Л.И., Распосиенко Д.Ю., Пушин В.Г., Пилюгин В.П., Смирнов С.В. Структура стареющего сплава Al–Li–Cu–Zr–Sc–Ад после мегапластической деформации и длительного вылеживания // ФММ. 2015. Т. 116. № 11. С. 1165–1172.
- Кайгородова Л.И., Распосиенко Д.Ю., Пушин В.Г., Пилюгин В.П., Смирнов С.В. Влияние отжига на структуру и свойства сплава Al–Li–Cu–Zr–Sc–Ag, подвергнутого мегапластической деформации // ФММ. 2015. Т. 116. № 9. С. 982–991.
- Кайгородова Л.И., Распосиенко Д.Ю., Пушин В.Г., Пилюгин В.П., Смирнов С.В. Влияние мегапластической деформации на структуру и свойства сплава Al–Li–Cu–Mg–Zr–Sc–Zn // ФММ. 2018. Т. 119. № 2. С. 171–181.
- Утевский Л.М. Дифракционная электронная микроскопия в металловедении. М.: "Металлургия", 1973. 583 с.
- Williams D.B., Carter C.B. Transmission Electron Microscopy: A Textbook for Materials Science. Springer US, 2009. 804 p.
- Рыбин В.В. Большие пластические деформации и разрушение металлов. М.: "Металлургия", 1986. 224 с.
- 12. *Eswara Prasad N., Gokhale Amol A., Wanhill R.J.H.* Aluminum Lithium Alloys. Processing, Properties, and Applications. Elsevier Inc, 2014. 643 p.
- 13. *Polmear I.J.* Aluminium alloys: a century of age hardening // Mater. forum. 2004. V. 28. P. 1–14.