____ ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ _ Свойства

УДК 537.624

ВЗАИМОСВЯЗЬ ГИСТЕРЕЗИСНЫХ ХАРАКТЕРИСТИК В МАГНИТОМЯГКОМ НАНОКРИСТАЛЛИЧЕСКОМ СПЛАВЕ

© 2019 г. Ю. Н. Стародубцев^{а, b}, В. А. Катаев^{а, *}, К. О. Бессонова^а, В. С. Цепелев^а

^аУральский федеральный университет им. Б.Н. Ельцина, 620002 Россия, Екатеринбург, ул. Мира, 19 ^bНаучно-производственное предприятие "Гаммамет", 620028 Россия, Екатеринбург, ул. Татищева, 92

**e-mail: vakataev@urfu.ru* Поступила в редакцию 26.04.2018 г. После доработки 16.07.2018 г.

Получены соотношения, связывающие между собой параметры статических петель магнитного гистерезиса, а именно: гистерезисные потери, коэрцитивную силу и остаточную магнитную индукцию. Эти соотношения следуют из подобия безразмерных гистерезисных величин в области магнитного поля, в которой наблюдается рост магнитной проницаемости. Экспериментальную проверку проводили на магнитомягком нанокристаллическом сплаве $Fe_{72.5}Cu_1Nb_2Mo_{1.5}Si_14B_9$. Показано, что при заданных значениях магнитной индукции B_{max} и напряженности магнитного поля H_{max} требуемую гистерезисную величину можно вычислить из экспериментальных значений других гистерезисных величин.

Ключевые слова: безразмерная гистерезисная величина, гистерезисные потери, коэрцитивная сила, остаточная магнитная индукция, магнитомягкий нанокристаллический сплав

DOI: 10.1134/S0015323019020177

введение

Явление магнитного гистерезиса играет важную роль в ферромагнитных материалах, применяемых в устройствах распределения и преобразования электрической энергии [1, 2]. Магнитный гистерезис проявляется в отставании магнитной индукции В (или намагниченности М) от внешнего магнитного поля H[3]. Неоднозначная зависимость B = f(H) при циклическом изменении магнитного поля представляет собой непрерывную замкнутую петлю гистерезиса. Предельными величинами на этой петле являются максимальная напряженность магнитного поля $H_{\rm max}$ и максимальная магнитная индукция $B_{\rm max}$. Точки пересечения петли с координатными осями (коэрцитивная сила H_c и остаточная индукция B_r), а также площадь петли гистерезиса (гистерезисные потери $W_{\rm h}$), характеризуют гистерезисные свойства материала и называются гистерезисными величинами.

Исследование зависимости гистерезисных величин от интенсивности внешнего воздействия позволяет получить новую информацию о природе магнитного гистерезиса. Характеристикой интенсивности внешнего воздействия является напряженность магнитного поля $H_{\rm max}$. Магнитная индукция представляет отклик вещества на внешнее воздействие, а достигнутое значение *B*_{max} также выражает влияние магнитного гистерезиса. Штейнметц [4] первым получил зависимость гистерезисных потерь от магнитной индук-

ции в виде степенной функции $W_h = rB_{max}^s$. Он обнаружил, что для железа в области рабочих индукций показатель степени s = 1.6. В дальнейшем аппроксимацию гистерезисных величин в виде степенной функции $Y = rX^s$ часто использовали при исследовании магнитного гистерезиса [5–8]. Широкому применению степенной функции способствует такое ее свойство как масштабная инвариантность. Действительно, изменение независимой переменной на масштабный фактор *k* приводит только к изменению масштаба функ-

ции в k^s раз: $Y(kX) = r(kX)^s = rk^s X^s$. Следовательно, все степенные функции с одинаковым показателем степени *s* эквивалентны друг другу и отличаются только масштабом, а изменение численного значения показателя *s* влечет за собой качественное изменение характера функциональной зависимости. Отсюда появляется возможность по изменению показателя степени в формуле Штейнметца судить о появлении качественных изменений в процессе перемагничивания ферромагнитного материала.

Гистерезисные величины, а именно: коэрцитивная сила, остаточная магнитная индукция и гистерезисные потери, являются характеристика-

ми одного и того же явления. Поэтому гистерезисные величины не являются независимыми и лолжны быть связаны межлу собой. Взаимосвязь гистерезисных величин в различных магнитных материалах была одной из целей исследования в статьях [9-13]. В то же время обоснованных соотношений между гистерезисными величинами до сих пор не получено. В настоящей работе исследовали взаимосвязь величин, характеризующих петли магнитного гистерезиса магнитомягкого нанокристаллического сплава $Fe_{72.5}Cu_1Nb_2Mo_{1.5}Si_{14}B_9$, с применением метода подобия безразмерных гистерезисных величин [14, 15].

ЭКСПЕРИМЕНТ

Магнитомягкий сплав Fe_{72.5}Cu₁Nb₂Mo_{1.5}Si₁₄B₉ выплавлен в индукционной вакуумной печи. Лента толщиной 25 мкм и шириной 10 мм с аморфной структурой была получена с использованием метода закалки плоской струи расплава. Из ленты навивали образцы тороидальной формы с внешним диаметром 32 мм и внутренним диаметром 20 мм. Для формирования нанокристаллического состояния образцы подвергали термической обработке при температуре 823 К. 1 ч. Параметры статической петли магнитного гистерезиса измеряли с помощью измерительновычислительной системы ММКС-100-05. Перед измерением каждой петли гистерезиса образец размагничивали с помощью затухающего переменного магнитного поля. Измерительно-вычислительная система обеспечивала следующие погрешности определения магнитных величин: напряженность магнитного поля – 2%, магнитная индукция -3%, гистерезисные потери -5%, коэрцитивная сила – 3%, остаточная магнитная инлукция – 3%. Предельная погрешность вычисления гистерезисных величин из измеренных значений не превышала 8%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В работах [14, 15] из уравнений Рэлея были получены безразмерные гистерезисные величины:

$$\frac{B_{\rm r}}{B_{\rm max}} = \frac{1}{2(\kappa_{\rm r}+1)};\tag{1}$$

$$\frac{H_{\rm c}}{H_{\rm max}} = \frac{F}{2(\kappa_{\rm r}+1)};$$
(2)

$$\frac{W_{\rm h}}{W_{\rm max}} = \frac{4}{3(\kappa_{\rm r}+1)}.$$
(3)

Здесь величина $W_{\rm max}$, равная произведению максимальной магнитной индукции и максимального магнитного поля

$$W_{\rm max} = B_{\rm max} H_{\rm max},\tag{4}$$

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ 2019 том 120 Nº 2

представляет максимальную потенциальную энергию магнитного поля в единице объема. Гистерезисный фактор к.

$$\kappa_{\rm r} = \frac{\mu_i}{\eta H_{\rm max}},\tag{5}$$

где μ_i — начальная магнитная проницаемость; η постоянная Рэлея, характеризует соотношение обратимых и необратимых процессов перемагничивания. Если $\kappa_r > 1$, то начальная проницаемость µ, вносит наибольший вклад в численное значение магнитной проницаемости μ, учитывая, что

$$\mu = \frac{B_{\max}}{\mu_0 H_{\max}} = \mu_i + \eta H_{\max}.$$
 (6)

Безразмерная гистерезисная функция

$$F = 2(\kappa_{\rm r}+1)\left[-(\kappa_{\rm r}+1)+\sqrt{(\kappa_{\rm r}+1)^2+1}\right]$$
(7)

приблизительно равна единице в области Рэлея, в которой к_r > 1. Так, *F* = 1.000, 0.998, 0.993 и 0.944 для $\kappa_r = 25, 10, 5$ и 1 соответственно. Таким образом, в области Рэлея относительные гистерезисные величины (1)-(3) имеют одинаковую зависимость от гистерезисного фактора к, и отличаются друг от друга только масштабом.

Комбинируя относительные величины (1)–(3), можно получить выражения для безразмерных гистерезисных величин нулевого порядка [14]. В приближении $F \approx 1$ получим:

$$\frac{B_{\rm r}H_{\rm max}}{W_{\rm h}} = \frac{3}{8}; \tag{8}$$

$$\frac{B_{\rm max}H_{\rm c}}{W_{\rm h}} = \frac{3}{8};\tag{9}$$

$$\frac{B_{\max}H_c}{B_rH_{\max}} = 1.$$
 (10)

В эти выражения, связывающие гистерезисные и предельные величины, уже не входят характерные для области Рэлея магнитная начальная проницаемость μ_i, постоянная Рэлея η и гистерезисный фактор к_г. Это обстоятельство прямо указывает на их большую универсальность по отношению к выражениям (1)–(3), полученным для области Рэлея.

Из выражений для безразмерных гистерезисных величин нулевого порядка (8) и (9) следуют соотношения между гистерезисными потерями и различными сочетаниями предельных и гистерезисных величин:

$$W_{\rm h} = \frac{8B_{\rm r}H_{\rm max}}{3};\tag{11}$$

$$W_{\rm h} = \frac{8B_{\rm max}H_{\rm c}}{3};\tag{12}$$

<i>H</i> _{max} , А/м	<i>B</i> _{max} , Тл	<i>В</i> _г , Тл	<i>H</i> _c , А/м	<i>W</i> _h , Дж/м ³	μ	$\eta \times 10^{-5},$ (A/m) ⁻¹	ĸ _r
0.030	0.00274	3.06×10^{-5}	3.35×10^{-4}	2.45×10^{-6}	72600	0.54	43.1
0.055	0.00502	9.31×10^{-5}	0.00102	1.37×10^{-5}	73100	0.50	25.6
0.081	0.00747	1.94×10^{-4}	0.00210	4.19×10^{-5}	73 500	0.47	18.3
0.105	0.0099	3.17×10^{-4}	0.00336	8.87×10^{-5}	75100	0.46	14.6
0.244	0.0244	0.00202	0.0199	0.00124	79500	0.51	5.6
0.335	0.0465	0.00976	0.0719	0.0086	110300	1.36	1.5
0.395	0.0629	0.0175	0.110	0.0183	126700	1.77	1.0
0.50	0.119	0.0589	0.254	0.0817	189100	3.90	0.36
0.60	0.242	0.155	0.394	0.275	320700	7.58	0.15
0.71	0.409	0.304	0.469	0.60	458400	9.99	0.10
0.84	0.522	0.403	0.512	0.86	494000	8.64	0.10
1.56	0.769	0.583	0.608	1.60	392100	2.52	0.18
5.0	1.02	0.709	0.68	2.67	161800	1.27	1.1

Таблица 1. Параметры частных петель магнитного гистерезиса нанокристаллического сплава $Fe_{72.5}Cu_1Nb_2Mo_{1.5}Si_{14}B_9$

$$W_{\rm h} = \frac{8B_{\rm max}^2 H_{\rm c}^2}{3B_{\rm r} H_{\rm max}};$$
 (13)

$$W_{\rm h} = \frac{8B_{\rm r}^2 H_{\rm max}^2}{3B_{\rm max} H_{\rm c}};$$
 (14)

$$W_{\rm h} = \frac{8}{3} \sqrt{B_{\rm r} B_{\rm max} H_{\rm c} H_{\rm max}}.$$
 (15)

В работах [14, 15] было показано, что относительные величины B_r/B_{max} , H_c/H_{max} W_h/W_{max} подобны друг другу не только в области Рэлея. Подобие этих величин распространяется на всю об-

Рис. 1. Зависимости измеренных и рассчитанных из формул (11)–(15) гистерезисных потерь $W_{\rm h}$ от максимального магнитного поля $H_{\rm max}$.

ласть магнитного поля, в которой магнитная проницаемость вещества растет. Поэтому мы ожидаем, что и формулы для гистерезисных потерь можно использовать, по крайней мере, в этом же интервале магнитного поля.

В таблице 1 представлены измеренные значения параметров частных петель магнитного гистерезиса нанокристаллического сплава $Fe_{72.5}Cu_1Nb_2Mo_{1.5}Si_{14}B_9$. В последних столбцах приведены магнитная проницаемость μ , постоянная Рэлея η и гистерезисный фактор κ_r , которые были вычислены из измеренных значений с помощью формул (5), (6) и (16). Отметим, что в области Рэлея среднее значение постоянной Рэлея $\eta = 0.50 \times 10^{-5} (A/m)^{-1}$, а гистерезисный фактор $\kappa_r > 1$.

На рис. 1 в логарифмическом масштабе представлены зависимости измеренных (см. таблицу 1) и вычисленных по формулам (11)-(15) гистерезисных потерь $W_{\rm h}$ от максимального магнитного поля *H*_{max}. Видно, что кривые совпадают не только в области Рэлея, но и во всей области, в которой растет магнитная проницаемость. Совпадение наблюдается вплоть до магнитного поля $H_{\rm max} = 0.8$ A/м, которое соответствует максимальной магнитной проницаемости нанокристаллического сплава Fe_{72.5}Cu₁Nb₂Mo_{1.5}Si₁₄B₉. Погрешности определения гистерезисных потерь не представлены на графике, поскольку их величина в логарифмическом масштабе не превышает размера экспериментальных точек. В области за изгибом кривой намагничивания, который связан с переходом к магнитному насыщению, расчетные кривые гистерезисных потерь расходятся с результатами измерений. Отметим, что формулы (12) и (15) дают наиболее близкое совпадение с экспери-

Рис. 2. Зависимости измеренных и рассчитанных из формул (11)–(15) гистерезисных потерь W_h от максимальной магнитной индукции B_{max} .

ментальными результатами во всей области измерения.

На рис. 1 кривые в логарифмическом масштабе имеют два линейных участка, которые можно

представить в виде степенной функции $Y = rX^s$ с постоянным значением показателя *s*. В области Рэлея показатель степени *s* для зависимости гистерезисных потерь W_h от максимального магнитного поля H_{max} равен 2.97, что соответствует показателю в формуле, полученной из уравнений Рэлея [16],

$$W_{\rm h} = \frac{4\eta\mu_0 H_{\rm max}^3}{3}.$$
 (16)

В области наибольшего роста проницаемости показатель степени возрастает до 5.94.

На рис. 2 в логарифмическом масштабе приведены зависимости измеренных и рассчитанных по формулам (11)-(15) гистерезисных потерь от максимальной магнитной индукции B_{max}. Измеренная и рассчитанные кривые также совпадают не только в области Рэлея, но и во всей области роста магнитной проницаемости. В слабом магнитном поле показатель степени s = 2.88 и он близок к числу 3, которое получается из формулы (16) в приближении слабого магнитного поля $B_{\rm max} \approx$ $\approx \mu_{i}\mu_{0}H_{\text{max}}$. За пределами рэлеевской области зависимость измеренных гистерезисных потерь хорошо описывается степенной функцией с показателем степени 1.60. Такое же значение было получено Штейнметцем для железа с изотропными магнитными свойствами [4].

На рис. 3 в логарифмическом масштабе представлены зависимости измеренных и рассчитанных по формулам (11)—(15) гистерезисных потерь

Рис. 3. Зависимости измеренных и рассчитанных из формул (11)–(15) гистерезисных потерь W_h от остаточной магнитной индукции B_r .

от остаточной магнитной индукции *B*_r. Из рисунка видно также хорошее совпадение измеренной и рассчитанных кривых во всей области магнитного поля, в которой происходит рост магнитной проницаемости.

Из уравнений Рэлея можно найти зависимость остаточной индукции от магнитного поля [16]

$$B_{\rm r} = \frac{1}{2} \eta \mu_0 H_{\rm max}^2, \qquad (17)$$

а из формул (16) и (17) получить выражение, связывающее гистерезисные потери и остаточную индукцию в рэлеевской области:

$$W_{\rm h} = \frac{8\sqrt{2}}{3\left(\eta\mu_0\right)^{0.5}} B_{\rm r}^{1.5}.$$
 (18)

Следовательно, в релеевской области связь гистерезисных потерь с остаточной индукцией в виде степенной функции должна иметь показатель степени s = 1.5. Это число практически совпадает с экспериментальным значением 1.49 на рис. 3. За пределами релеевской области показатель степени снижается до 1.24. Отметим, что в работах [9, 10, 17, 18] для аналогичных зависимостей в различных ферромагнитных материалах был получен показатель степени 1.35 во всей области изменения B_r . Близкое значение s = 1.33 можно получить, если провести линейную экстраполяцию наших результатов во всей области изменения остаточной индукции.

В области Рэлея при условии $\mu_i \gg \eta H_{\text{max}}$ из формулы (2) можно получить квадратичную зависимость коэрцитивной силы от магнитного поля:

$$H_{\rm c} = \frac{\eta H_{\rm max}^2}{2\mu_i},\tag{19}$$

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 120 № 2 2019

Рис. 4. Зависимости измеренных и рассчитанных из формул (11)–(15) гистерезисных потерь $W_{\rm h}$ от коэрцитивной силы $H_{\rm c}$.

а из формул (16) и (19) найти выражение, связывающее гистерезисные потери и коэрцитивную силу в рэлеевской области:

$$W_{\rm h} = \frac{8\sqrt{2}\mu_0\mu_i^{1.5}}{3\eta^{0.5}}H_{\rm c}^{1.5}.$$
 (20)

Показатель степени s = 1.5 хорошо согласуется с экспериментальным значением s = 1.53 на рис. 4. Из рисунка видно, что измеренные и рассчитанные кривые зависимости гистерезисных потерь от коэрцитивной силы совпадают во всей области магнитного поля, в которой растет магнитная проницаемость.

Выражения для безразмерных гистерезисных величин нулевого порядка (8) и (10) позволяют также вывести соотношения, связывающие остаточную магнитную индукцию с различной комбинацией предельных и гистерезисных величин:

$$B_{\rm r} = \frac{B_{\rm max}H_{\rm c}}{H_{\rm max}};$$
(21)

$$B_{\rm r} = \frac{3W_{\rm h}}{8H_{\rm max}};\tag{22}$$

$$B_{\rm r} = \frac{8B_{\rm max}^2 H_{\rm c}^2}{3W_{\rm h} H_{\rm max}};$$
 (23)

$$B_{\rm r} = \sqrt{\frac{3W_{\rm h}B_{\rm max}H_{\rm c}}{8H_{\rm max}^2}};$$
(24)

$$B_{\rm r} = \frac{9W_{\rm h}^2}{64B_{\rm max}H_{\rm max}H_{\rm c}}.$$
 (25)

На рис. 5 в логарифмическом масштабе представлены зависимости измеренных и вычисленных по формулам (21)—(25) значений остаточной

Рис. 5. Зависимости измеренных и полученных из формул (21)—(25) значений остаточной магнитной индукции B_r от максимального магнитного поля H_{max} .

магнитной индукции $B_{\rm r}$ от максимального магнитного поля $H_{\rm max}$.

Как и ранее для гистерезисных потерь, кривые для остаточной индукции совпадают не только в области Рэлея, но также во всей области магнитного поля, в которой растет магнитная проницаемость. Показатель степени в релеевской области, найденный из линейной в логарифмическом масштабе зависимости остаточной магнитной индукции B_r от максимального магнитного поля H_{max} , равен 1.99 и практически совпадает с показателем в формуле (17). В области максимальной проницаемости показатель степени вырастает до 5.94.

Аналогичным образом из выражений (9) и (10) получим соотношения для коэрцитивной силы:

$$H_{\rm c} = \frac{B_{\rm r} H_{\rm max}}{B_{\rm max}}; \tag{26}$$

$$H_{\rm c} = \frac{3W_{\rm h}}{8B_{\rm max}};\tag{27}$$

$$H_{\rm c} = \sqrt{\frac{3W_{\rm h}B_{\rm r}H_{\rm max}}{8B_{\rm max}^2}};$$
(28)

$$H_{\rm c} = \frac{8B_{\rm r}^2 H_{\rm max}^2}{W_{\rm h} B_{\rm max}};\tag{29}$$

$$H_{\rm c} = \frac{9W_{\rm h}^2}{64B_{\rm r}B_{\rm max}H_{\rm max}}.$$
 (30)

На рис. 6 в логарифмическом масштабе представлены зависимости измеренных и вычисленных по формулам (26)—(30) значений коэрцитивной силы H_c от максимального магнитного поля H_{max} . Как и ранее, кривые для коэрцитивной си-

лы совпадают не только в области Рэлея, но также во всей области магнитного поля, в которой растет магнитная проницаемость. Показатель степени в релеевской области, который был найден из линейной в логарифмическом масштабе зависимости коэрцитивной силы H_c от максимального магнитного поля H_{max} , равен 1.94 и близок к показателю в формуле (19). В области максимальной проницаемости показатель степени вырастает до 3.52.

Полученные результаты подтверждают, что гистерезисные величины, а именно коэрцитивная сила H_c , остаточная индукция B_r и гистерезисные потери W_h , связаны между собой, и эту связь можно представить в аналитическом виде. Возможность такой взаимосвязи следует из подобия безразмерных гистерезисных величин в области магнитного поля, в которой растет магнитная проницаемость.

Природа гистерезиса в области Рэлея, по общему мнению [16], связана с необратимым скачкообразным перемещением доменных границ или их участков в результате преодоления локальных потенциальных барьеров. Процессы перемагничивания за пределами области Рэлея отличаются значительным возрастанием проницаемости. Этот факт мог бы свидетельствовать о включении нового механизма в процесс перемагничивания. Однако использование соотношений, полученных из формул Рэлея, показывает, что они дают хорошее совпадение с экспериментальными результатами также и в области наибольшего роста проницаемости. Это свидетельствует о том, что в области Рэлея и в области наибольшего роста проницаемости имеют место подобные гистерезисные процессы, а именно скачкообразное смещение доменных границ. Только в области наибольшего роста проницаемости перемагничивание представляет собой не одиночные скачки, а лавину необратимых скачков.

С другой стороны, известно [19], что после термической обработки нанокристаллический сплав характеризуется малым значением константы магнитной анизотропии и является практически магнитно изотропным. Для изотропного случая начальную проницаемость, обусловленную однородным вращением намагниченности, можно оценить с помощью формулы [16]

$$\mu_{\rm ir} = \frac{\mu_0 M_{\rm s}^2}{3K}.\tag{31}$$

После подстановки численных значений $M_s = 10^6 \text{ A/m}$ и $K = 10 \text{ J/m}^3$ получаем $\mu_{ir} = 42\,000$, что в значительной степени объясняет наблюдаемые значения начальной проницаемости. Таким образом, вследствие низкой константы магнитной анизотропии в нанокристаллическом сплаве ме-

Рис. 6. Зависимости измеренных и рассчитанных из формул (26)—(30) значений коэрцитивной силы H_c от максимального магнитного поля H_{max} .

ханизм вращения намагниченности может реализоваться уже в слабом магнитном поле.

При однородном вращении отсутствует гистерезис. Однако, как показали наблюдения доменной структуры [20, 21], вращение намагниченности в нанокристаллическом сплаве с низкой конмагнитной анизотропии стантой является неоднородным. Неоднородное вращение сопровождается значительным преобразованием доменной структуры, в частности, смещением, а также рождением и исчезновением доменных границ. Таким образом, магнитный гистерезис, возникающий вследствие неоднородного вращения намагниченности, также можно связать с движением доменных границ.

ЗАКЛЮЧЕНИЕ

В работе получены соотношения, связывающие между собой параметры статических петель магнитного гистерезиса, а именно: гистерезисные потери, коэрцитивную силу и остаточную магнитную индукцию. Взаимосвязь гистерезисных величин следует из подобного изменения безразмерных гистерезисных величин с увеличением магнитного поля. Подобие наблюдалось вплоть до магнитного поля, соответствующего максимальной магнитной проницаемости. Экспериментальную проверку проводили на магнитомягком нанокристаллическом сплаве Fe_{72.5}Cu₁Nb₂Mo_{1.5}Si₁₄B₉. Показано, что в области магнитного поля, в которой наблюдается рост магнитной проницаемости, любую гистерезисную величину для частной петли можно вычислить из экспериментальных значений других гистерезисных величин и предельных значений магнитной индукции B_{max} и напряженности магнитного поля H_{max} . Аппроксимация экспериментальных зависимостей гистерезисных величин степенной функцией в слабом магнитном поле дает хорошее совпадение показателей степени со значениями, рассчитанными из уравнений Рэлея.

Результаты были получены в рамках выполнения государственного задания Минобрнауки России 3.6121.2017/8.9 и 4.9541.2017/8.9.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Hilzinger R., Rodewald W.* Magnetic materials. Fundamentals, products, properties, applications. Publicis MCD Verlag, 2012. 600 p.
- Стародубцев Ю.Н. Магнитомягкие материалы. Энциклопедический словарь-справочник. М.: Техносфера, 2011. 664 с.
- 3. *Bertotti G.* Hysteresis in magnetism. Academic Press, 1998. 558 p.
- Steinmetz C.P. On the relationship between magnetic losses and domain structure law of hysteresis // Proc. IEEE 1989. V. 72. P. 197–221, preprinted from the Amer. Inst. Electr. Eng. Trans. 1892. V. 9. P. 3–64.
- Sakaki Y., Matsuoka T. Hysteresis losses in Mn–Zn ferrite cores // IEEE Trans. Magn. 1986. V. 22. P. 623– 625.
- Стародубцев Ю.Н., Катаев В.А. О связи магнитных потерь с характером поведения доменной структуры в монокристаллах кремнистого железа // ФММ. 1987. Т. 64. № 6. С. 1076–1083.
- He Y.-L., Wang G.C. Observation of dynamic scaling of magnetic hysteresis in ultrathin ferromagnetic Fe/Au (001) films // Phys. Rev. Lett. 1993. V. 70. P. 2336– 2339.
- Kollár P., Vojtek V., Birčakova Z., Füzer J., Fáberová M., Bureš R. Steinmetz law in iron-phenolformaldehyde resin soft magnetic composites // J. Magn. Magn. Mater. 2014. V. 353. P. 65–70.
- Kobayashi S., Fujiwara T., Takahashi S., Kikuchi H., Kamada Y., Ara K., Shishido T. The effect of temperature on laws of hysteresis loops in nickel single crystals with compressive deformation // Phil. Mag. 2009. V. 89. P. 651–664.

- 10. Kobayashi S., Takahashi S., Shishido T., Kamada Y., Kikuchi H. Low-field magnetic characterization of ferromagnets using a minor-loop scaling law // J. Appl. Phys. 2010. V. 107. № 023908.
- 11. *Tanaka R., Sasaki M., Shirane T.* Temperature dependence of minor hysteresis loop NiZn ferrite measured by lock-in amplifier //IEEE Trans. Magn. 2010. V. 51. № 6100304.
- Dutz S., Hergt R., Mürbe J., Müller R., Zeisberger M., Andrä W., Töpfer J., Bellemann M.E. Hysteresis losses of magnetic nanoparticle powders in the single domain size range // J. Magn. Magn. Mater 2007. V. 308. P. 305–312.
- Tsepelev V.S., Starodubtsev Yu.N. Tsepeleva N.P. Hysteresis properties of the amorphous high permeability Co₆₆Fe₃Cr₃Si₁₅B₁₃ alloy // AIP Advances. 2018. V. 8. № 047707.
- Starodubtsev Yu.N., Kataev V.A., Tsepelev V.S. Dimensionless quantities of hysteresis loops // J. Magn. Magn. Mater. 2018. V. 460. P. 146–152.
- Стародубцев Ю.Н., Цепелев В.С. Подобие гистерезисных величин // ФММ. 2018.
- Chikazumi S. Physics of Ferromagnetism. Oxford: University Press, 1997. 665 p.
- Takahashi S., Kobayashi S., Kamada Y., Kikuchi H., Zhang L., Ara K. Analysis of minor hysteresis loops and dislocations in Fe // Phys. B. 2006. V. 372. P. 190–193.
- Kobayashi S., Takahashi S., Kikuchi H. Kamada Y. Domain-wall pinning in Er and Dy studied by minor-loop scaling laws // J. Phys.: Conf. Ser. 2011. V.266. № 012015.
- Herzer G. Nanocrystalline soft magnetic alloys // Handbook of Magnetic Materials, vol. 10. Ed. by Buschow K.H.J. Amsterdam: Elsevier B.V., 1997. P. 415–462.
- Flohrer S., Schäfer R., Polak C., Herzer G. Interplay of uniform and random anisotropy in nanocrystalline soft magnetic alloys // Acta Mater. 2005. V. 53. P. 2937– 2942.
- 21. *Schäfer R*. The magnetic microstructure of nanostructured materials // Nanoscale magnetic materials and applications, Eds. Liu J.P., Fullrton E., Gutfleisch O., Sellmyer D.J. Dordrecht: Springer, 2009. P. 275–307.