СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ

УДК 669.26'71'784:548.73:537.311.3

ИССЛЕДОВАНИЕ СОСТАВА И СВОЙСТВ МАТЕРИАЛА НА ОСНОВЕ МАХ-ФАЗЫ Cr₂AIC, ПОЛУЧЕННОГО МЕТОДОМ СВС-МЕТАЛЛУРГИИ

© 2019 г. В. А. Горшков^{а,} *, П. А. Милосердов^а, А. В. Карпов^а, А. С. Щукин^а, А. Е. Сычев^а

^аИнститут структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова РАН, ул. Академика Осипьяна, 8, Черноголовка, 142432 Россия

> *e-mail: gorsh@ism.ac.ru Поступила в редакцию 01.10.2018 г. После доработки 04.12.2018 г. Принята к публикации 13.12.2018 г.

Синтезирован литой композиционный материал на основе MAX-фазы Cr₂AlC методом CBC-металлургии с использованием смеси порошков оксида хрома, алюминия и углерода. Эксперименты проведены в CBC-реакторе объемом V = 3 л в атмосфере инертного газа (Ar) при избыточном давлении (P = 5 МПа). Полученный материал охарактеризован методами рентгенофазового и локального микроструктурного анализов. Количественный анализ выполнен методом Ритвельда. Проведены измерения удельного электросопротивления в диапазоне температур от 100 до 1300 К. Полученный материал является электрическим проводником, демонстрирующим металлический характер проводимости в диапазоне температур 100–1300 К, и имеет величину удельного электросопротивления одного порядка с образцами, содержащими 100% Cr₂AlC.

Ключевые слова: СВС-металлургия, СВС-реактор, давление газа, литые материалы, МАХ-фаза Cr₂AlC

DOI: 10.1134/S0015323019050048

введение

Материалы на основе МАХ-фаз обладают большим потенциалом для использования в аэрокосмической, автомобильной и индустриальной сферах, поскольку имеют уникальное сочетание особенностей как металлов, так и керамики с отличными механическими, химическими, тепловыми и электрическими свойства [1, 2]. В настоящее время Cr₂AlC является третьим, наиболее широко изученным соединением после Ti₃SiC₂ и Ti₃AlC₂ среди семейства МАХ-фаз [3-5]. В жидком состоянии хром и углерод неограниченно растворимы. Система Cr-Al-C имеет одну тройную фазу Cr_2AlC . Cr₂AlC плавится некогерентно около 1773 К с образованием Cr_7C_3 (или Cr_3C_2) и Al_4C_3 . Равновесный состав Cr₂AlC очень близок к стехиометрии, но может растворять Al, заменяя Cr. Данная МАХ-фаза Cr₂AlC принадлежит к пространственной группе Р63/ттс. Периоды решетки гексагональной фазы равны a = 2.866 Å и c = 12.82 Å. Кристаллическая структура Cr₂AlC состоит из 6 плотноупакованных слоев, 4 из которых состоят из атомов Cr и 2- из атомов Al. Углеродные атомы расположены в октапорах между двумя соседними слоями из атомов хрома. Имеется предположение,

что при комнатной температуре Cr₂AlC может вести себя как парамагнетик [5]. На эту особенность было указано в работе [2]. Было показано, что Cr₂AlC имеет положительное значение коэффициента Холла $R_{\rm H}$, в то время как для Ti₂AlC, V₂AlC, и Nb₂AlC $R_{\rm H}$ имеет отрицательное значение.

Из способов получения MAX-фаз Cr_2AlC в литературе наиболее часто представлены методы горячего прессования и плазменного-искрового спекания [6, 7]. Материал на основе Cr_2AlC был получен методом двухстадийного спекания [8], включая: прямую реакцию жидкого Al с карбидами хрома и образование интерметаллидов Cr–Al и карбида Al_4C_3 , которые далее реагируют с формированием Cr_2AlC . Спекание осуществляли путем поверхностной диффузии и жидкофазного спекания в результате плавления интерметаллидов Al–Cr.

Порошок Cr_2AlC также был успешно синтезированы из смеси гидрата сульфата алюминия $(Al_2(SO_4)_318H_2O)$, аморфного диоксида кремния (SiO_2) в расплавленной солевой среде сульфата натрия (Na_2SO_4) [9].

В [10] описан синтез металлокерамики Cr₂AlC с высокой степенью чистоты, включающий бес-

пористое спекание (PLS) элементарных порошков с последующим плазменно-искровым спеканием (SPS) измельченного реакционного продукта.

Синтез тройного соединения Cr_2AlC из порошковой смеси Cr, Al_4C_3 и графита в соотношении Cr : Al : C = 2 : 1.1 : 1 методом спекания импульсным разрядом в вакууме в диапазоне температур от 850 до 1350°C был исследован в [11]. Было обнаружено, что количество фазы Cr₂AlC значительно увеличилось при проведении синтеза в температурном диапазоне от 950 до 1150°C. Преимущественно однофазный Cr₂AlC с небольшим количеством Cr₇C₃ образуется при температуре спекания выше 1250°C. Предполагается, что Cr₂AlC-фаза образуется вблизи частицы Al₄C₃ путем диффузии Cr и взаимного растворения Cr и Al₄C₃.

В [6] выполнено исследование керамики Cr_2AlC , изготовленной методом плазменно-искрового спекания (SPS) из крупных и тонких порошков в диапазоне температур 1100–1400°С. Для образцов, спеченных при 1400°С, всегда появляется основная фаза Cr_2AlC с незначительным количеством Cr_7C_3 и следами интерметаллида Cr_2Al . При этой же температуре спекания количество фазы Cr_2AlC в образце, начиная с тонких порошков (99 мас. %), выше, чем при использовании крупных порошков (97 мас. %).

Синтез Cr₂AlC-керамики из порошков Cr, Al и графита для состава Cr : Al : C = 1 : 1.2 : 1 методом горячего прессования в аргоне в диапазоне 850–1450°С, описан в работе [12]. Было обнаружено, что в процессе нагрева образуются промежуточные фазы Cr₅Al₈, Cr₂Al и Cr₇C₃. Количество фазы Cr₂AlC постепенно увеличивается с повышением температуры за счет реакции интерметаллических соединений Cr–Al, непрореагировавшего Cr и графита. Продукт синтеза становится однофазным выше 1250°С, при этом полностью исчезают промежуточные фазы.

Методом совмещения самораспространющегося высокотемпературного синтеза (CBC) и процесса изостатического прессования [13] синтезирован объемный нанослоистый композит, содержащий Cr₂AlC.

В [14] продемонстрирована возможность получения Cr_2AlC с использованием в качестве исходных материалов порошков $AlCr_2$ и C спеканием в температурном диапазоне 1050-1400°C. При 1050°C в результате прямой реакции между $AlCr_2$ и C начинает формироваться материал содержащий фазу Cr_2AlC с небольшим содержанием вторичной фазы Al_2O_3 .

Большинство из вышеперечисленных процессов проводят при повышенных температурах (1400°C), высоких давлениях прессования (до 20 МПа) и на сложном оборудовании. Эти процессы малопроизводительны и энергозатратны. Наиболее перспективным способом получения таких материалов является одностадийный метод – самораспространяющийся высокотемпературный синтез (СВС), одним из направлений которого является СВС-металлургия [15]. В этом методе используют исходные смеси, состоящие из оксидов металлов, металла-восстановителя (алюминия) и неметалла (углерод, бор, кремний). Температуры горения таких смесей, как правило, превышают температуры плавления исходных реагентов и конечных продуктов, получаемых в волне горения в жидкофазном (литом) состоянии.

Данный способ был использован в нашей работе при синтезе материала, имеющего высокое содержание MAX-фазы Cr₂AlC [16].

В данной работе исследованы фазовый состав, микроструктура и электропроводность в широком интервале температур (от 100 до 1300 K) композиционного материала на основе MAX-фазы Cr_2AlC , полученного методом CBC с использованием смеси порошков оксидов хрома, с алюминием и углеродом.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Для получения образцов использовали смеси порошков оксида хрома(III) и оксида хрома(VI) марки "ЧДА" с алюминием марки АСД-1 и углерода. Расчет соотношений компонентов исходной смеси производили, используя следующую химическую реакцию:

$$2CrO_3 + Cr_2O_3 + 8Al + 2C = 2Cr_2AlC + 3Al_2O_3$$
. (1)

При этом расчет содержания каждого компонента (a_i) осуществляли по формуле: $a_i = m_i/M$, где m_i – молекулярный вес компонента, M – молекулярный вес всех компонентов смеси.

Перед проведением экспериментов все реагенты просушивали в сушильном шкафу марки СНОЛ в течение 3 ч при температуре 80°С. Исходные смеси массой 20 г готовили вручную в фарфоровой ступке. При изучении закономерностей горения смесей и фазоразделения конечных продуктов реакционные смеси сжигали в кварцевых стаканчиках диаметром 16-25 мм, высотой 50-60 мм. При изучении процессов формирования состава и микроструктуры целевых продуктов исходные смеси ($M_{cm} = 20$ г и $M_{cm} = 100$ г) сжигали в кварцевых или графитовых стаканчиках диаметром 15-40 мм, высотой 50-100 мм. В экспериментах реакционную форму с шихтой помещали в CBC-реактор, объемом $V = 3 \pi$. После чего реактор герметизировали, создавали избыточное давление ($P_{\rm H} = 5 \, {\rm M}\Pi a$) инертного газа (Ar) и вос-

Рис. 1. Дифрактограмма образца, полученного из смеси, состав которой рассчитан по реакции (1). Масса смеси 20 г.

пламеняли исходную смесь с помощью металлической (Мо, NiCr) спирали путем подачи на нее напряжения U = 30 V. Процесс горения изучали визуально, а также с помощью видеокамеры. Скорость горения (V_r), прирост давления в реакторе и полноту выхода "металлической" фазы в слиток (η_1) рассчитывали по формулам: $V_r = h/t$, $\Delta P = P_{\rm K} - P_0$, $\eta_1 = m_{\rm cn}/M_{\rm cm} \times 100\%$, где h – высота слоя смеси в кварцевом стаканчике; t – время горения; P_0 и $P_{\rm K}$ – начальное и конечное давление в реакторе; $M_{\rm cm}$ – масса исходной смеси; $m_{\rm cn}$ – масса "металлической" фазы.

Фазовый состав продуктов синтеза исследован методом рентгенофазового анализа (РФА) на дифрактометре ДРОН-3М в Си K_{α} -излучении с монохроматором на вторичном пучке. Съемку вели в режиме пошагового сканирования в интервале углов 2 θ = 10°–100° с шагом 0.02° и экспозицией 2 с. Количественный анализ проводили методом Ритвельда. Исследование микроструктуры и элементного анализа образцов проводили на автоэмиссионном сканирующем электронном микроскопе сверхвысокого разрешения ULTRA Plus Zeiss с системой микроанализа INCA 350 Oxford Instruments.

Для проведения электрофизических измерений синтезированного материала вырезали образцы прямоугольного сечения размером $1.5 \times 1.5 \times 15.0$ мм³. Для снятия остаточных напряжений образцы подвергали термообработке в вакууме в течение 30 мин при температуре 1300 К. Измерения удельного электросопротивления проводили в диапазоне температур от 100 до 1300 К в вакууме 2×10^{-3} Па по 4-точечной методике [17] на постоянном токе. Скорость изменения температуры при цикле нагрев/охлаждение составляла 10 К/мин.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ И ОБСУЖДЕНИЕ

При сжигании исходных смесей со стехиометрическим соотношением реагентов, рассчитанным из формулы (1), было обнаружено, что смеси горят в стационарном режиме с ровным фронтом. Скорость горения составляет 7.2 мм/с. Разброс массы из реакционной формы (η_2) около 3%. Конечные пролукты в процессе горения нахолятся в жидком, расплавленном состоянии и из-за различных удельных весов под действием гравитации разделяются на два слоя: нижний – металлический (Cr–Al–C), верхний – оксидный (Al₂O₃). Выход целевого продукта в слиток (η_1) = 44%. По данным рентгенофазового анализа целевой продукт состоит в основном из МАХ-фазы Cr₂AlCи небольшого количества фаз: Cr₇C₃ и Cr₅Al₈. Дифракционные линии МАХ-фазы Cr₂AlC узкие, что свидетельствует о высокой степени совершенства ее кристаллической структуры (рис. 1). Параметры элементарной ячейки экспериментально полученной MAX-фазы Cr_2AlC (a = 0.286, c = 1.283) практически совпадают с теоретическими данными (a = 0.286, c = 1.282) параметров ячейки соответствующей фазы кристаллографической базы данных PDF2.

Наличие карбидов и алюминидов хрома в конечном целевом продукте объясняется тем, что во время горения исходной смеси, состав которой рассчитан в соответствии с (1), углерод и алюминий в волне горения образуют газообразные продукты (CO, CO₂, Al^r, AlO, Al₂O) и удаляются из расплава. Вследствие этого в системе образуется их "дефицит" по сравнению со стехиометрическим содержанием, что приводит к образованию фаз Cr_5Al_8 , Cr_7C_3 и Cr_3C_2 .

С целью снижения содержания алюминидов хрома и низших карбидов в конечных продуктах в исходную стехиометрическую смесь (1) добавили избыток углерода (из расчета перевода фазы Cr_7C_3 в Cr_3C_2 , а Cr_5Al_8 в Cr_2AlC).

На данном составе исходной смеси провели синтез с массой шихты, равной 100 г. Был получен слиток диаметром 40 мм, высотой 10 мм. Исследования образца рентгенофазовым анализом (рис. 2) и локальным микроструктурным анализом (рис. 3) показали, что материал состоит, в основном, из наноламинатных зерен МАХ-фазы Cr₂AlC и вытянутых зерен высшего карбида хрома Cr₃C₂ (см. рис. 3) толщиной до 40-50 мкм и длиной 300 мкм. Преимущественной ориентации наноламинатных зерен Cr₂AlC или Cr₃C₂ в объеме материала не наблюдали. Между зернами МАХфазы Cr_2AlC и карбида хрома Cr_3C_2 наблюдаются включения (твердый раствор), имеющие в своем составе около 50-55 ат. % Cr, 40 ат. % Аl и небольшого количество углерода до 4.0-4.5 ат. %. По-

Рис. 2. Дифрактограмма образца, полученного из смеси с избытком углерода. Масса смеси = 100 г.

Рис. 3. Микроструктура синтезированного материала.

верхность зерен карбида хрома Cr_3C_2 имеет тонкое покрытие около 1–3 мкм с более высоким содержанием Cr (до 5 ат. %), чем карбидные зерна. Типичные микрофотографии поверхностей поперечного сечения и разрушения образца показаны на рис. 4 и 5. Наличие областей с плоскостями спайности (рис. 46) подтверждает слоистую природу Cr₂AlC.

Интересно отметить, что формирование ламинатной структуры Cr_2AlC происходит в перпендикулярно поверхности карбидных зерен Cr_3C_2 (см. рис. 5).

Полученный композиционный материал, содержащий МАХ-фазу Cr₂AlC, является хорошим электрическим проводником, демонстрирующим металлический характер проводимости. На рис. 6 представлены кривые зависимости удельного электросопротивления от температуры в диапазоне 300-1300 К при нагреве и охлаждении полностью (скорость изменения температуры 10 К/мин), при охлаждении от 300 до 90 К (темп охлаждения 6 К/мин, температуру измеряли с помощью термопары медь/константан). Для сравнения также представлены кривые р образцов, содержащих 100% Cr₂AlC [2, 3]. В исследуемой области температур, полученные экспериментальные зависимости $\rho(T)$ при нагреве/охлаждении полностью совпадают и не имеют никаких особенностей. Температурный коэффициент электросопротивления исследованного материала $\beta = 0.0026 \text{ K}^{-1}$ при комнатной температуре близок по значению с данными [3]. Уменьшение значения В в области высоких температур может быть связано с конкурирующим механизмом, описанным в [18]. Синтезированный материал содержит две проводящие фазы – Cr_2AlC и Cr_3C_2 , имеющие разное остаточное сопротивление и температурный коэффициент сопротивления и, соответственно, дающие различный вклад в конечное значение электросопротивления при повышенных температурах. Возможно, это вызвано изменением соотношения структурного и теплового беспорядка в материале при повышении температуры.

Следует отметить, что значение удельного электрического сопротивления для Cr_3C_2 при T = 293 K

Рис. 4. Микроструктура поверхности излома литого композиционного материала (а) и фрагмент характерного вида поверхности излома MAX-фазы Cr_2AIC (б). Стрелками указаны фазы Cr_3C_2 и Cr_2AIC .

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 120 № 5 2019

Рис. 5. Микроструктура излома и ориентации Cr₂AlC между зернами Cr₃C₂.

Рис. 6. Зависимость удельного электросопротивления от температуры: 1 – нагрев до 1300 К, 2 – охлаждение до 293 К, 3 – охлаждение до 90 К, 4 – данные [2], 5 – данные [3].

составляет примерно 75 мкОм \cdot см, что ниже электросопротивления синтезированного материала. Тем не менее, синтезированный методом CBC композиционный материал на основе MAX-фазы Cr₂AlC является хорошим электрическим проводником, демонстрирующим металлический характер проводимости во всем измеренном диапазоне температур (100–1300 K) и имеет величину удельного электросопротивления одного порядка с образцами, содержащими 100% Cr₂AlC.

ЗАКЛЮЧЕНИЕ

Таким образом, в данной работе показано, что методом CBC-металлургии в условиях избыточного давления газа из смеси со стехиометрическим соотношением компонентов (1) получены литые материалы, состоящие из MAX-фазы Cr₂AlC, фаз:

 Cr_7C_3 , Cr_3C_2 и Cr_5Al_8 . Присутствие низшего карбида хрома и алюминида хрома в конечном продукте синтеза связано, по-видимому, с "дефицитом" углерода из-за его участия в окислительновосстановительной реакции с образованием газообразных оксидов, улетучивающихся из расплава в процессе горения.

Показано, что увеличение содержания (выше стехиометрического) углерода в исходной смеси и ее массы приводит к увеличению содержания MAX-фазы Cr_2AlC , уменьшению содержания фазы Cr_5Al_8 и Cr_7C_3 в конечном продукте синтеза.

Полученный материал, содержащий MAX-фазу Cr_2AlC , является электрическим проводником, демонстрирующим металлический характер проводимости в диапазоне температур 100–1300 К, и имеет величину удельного электросопротивления одного порядка с образцами, содержащими 100% Cr_2AlC .

СПИСОК ЛИТЕРАТУРЫ

- 1. *Barsoum M.W.* The MN + 1AXN phases: A new class of solids: Thermodynamically stable nanolaminates // Prog. Solid State Chem. 2000. V. 28. № 1–4. P. 201–281.
- Hettinger J.D., Lofland S.E., Finkel P., Meehan T., Palma J., Harrell K., Gupta S., Ganguly A., El-Raghy T., Barsoum M.W. Electrical Transport, Thermal Transport, and Elastic Properties of M2AIC (M = Ti, Cr, Nb, and V) // Phys. Rev. B. 2005. V. 72. P. 115120.
- Tian W.B., Wang P.L., Zhang G., Kan Y., Li Y., Yan D. Synthesis and Thermal and Electrical Properties of Bulk Cr₂AlC // Scripta Mater.2006. V. 54. Iss. 5. P. 841–846.
- Lin Z., Zhou Y., Li M. Synthesis, Microstructure, and Property of Cr₂AlC // J. Mater. Sci. Technol. 2007. V. 23. Iss. 6. P. 721–46.
- Schneider J.M., Sun Z., Mertens R., Uestel F., Ahuja R. Ab-Initio Calculations and Experimental Determination of the Structure of Cr₂AlC // Solid State Commun. 2004. V. 130. № 7. P. 445–449.
- Tian W., Vanmeensel K., Wang P., Zhang G., Li Y., Vleugels J., Van der Biest. Synthesis and characterization of Cr₂AlC ceramics prepared by spark plasma sintering // Materials Letters. 2007. V. 61. P. 4442–4445.
- Xiao Li.O., Li S.B, Song G., Sloof W.G. Synthesis and thermal stability of Cr₂AlC // J. Eur. Ceram. Soc. 2011. V. 31. P. 1497–1502.
- Panigrahi B.B., Min-Cheol Chu, Yong-Il Kim, Seong-Jai Cho, Jose J. Gracio Reaction Synthesis and Pressureless Sintering of Cr₂AlC Powder // J. American Ceramic Society. 2010. № 93. P. 1530–1533.
- Xiao D., Zhu J., Wang F., Tang Y. Synthesis of Nano Sized Cr₂AlC Powders by Molten Salt Method // J. Nanosci. Nanotechnol. 2015. V. 15. P. 7341–7345.
- Duan X., Shen L., Jia D., Zhou Y., Zwaag S., Sloof W.G. Synthesis of high-purity, isotropic or textured Cr₂AlC bulk ceramics by spark plasma sintering of pressure-less sintered powders. // J. Eur. Ceram. Soc. 2015. V. 35. P. 1393–1400.

- Tian W.B., Sun Z.M., Du Y., Hashimoto H. Synthesis reactions of Cr₂AlC from Cr–Al₄C₃–C by pulse discharge sintering // Mater. Lett. 2008 V. 62. Is. 23. P. 3852–3855.
- Tian W.B., Wang P.L., Kana Y.M., Zhang G.J., Li Y.X., Yan D.S. Phase formation sequence of Cr₂AlC ceramics starting from Cr–Al–C powders // Mater. Sci. Eng. A. 2007. V. 443. P. 229–234.
- Ying G., He X. Li M., Li Y., Du S. Synthesis and mechanical properties of nano-layered composite // J. Alloys Compd. 2010. V. 506. Is. 2. P. 734–738.
- Xiao L.O., Li S.B., Song G., Sloof W.G. Synthesis and thermal stability of Cr₂AlC // J. Eur. Ceram. Soc. 2011. V. 31. P. 1497–1502.
- 15. Левашов Е.А., Рогачев А.С., Курбаткина В.В., Максимов Ю.М., Юхвид В.И. Перспективные материа-

лы и технологии самораспространяющегося высокотемпературного синтеза. Учеб. пособие / Редактор Н.А. Фетисова. М.: Изд. Дом МИСиС, 2011. 377 с.

- Gorshkov V.A., Miloserdov P.A., Luginina M.A., Sachkova N.V., Belikova A.F. High-Temperature Synthesis of a Cast Material with a Maximum Content of the MAX Phase Cr₂AlC // Inorg. Mater. 2017. V. 53. № 3. P. 271–277.
- 17. Карпов А.В., Морозов Ю.Г., Бунин В.А., Боровинская И.П. Влияние оксида иттрия на электропроводность нитридной СВС-керамики // Неорган. матер. 2002. Т. 38. № 6. С. 762–766.
- 18. Гантмахер В.Ф. Электроны в неупорядоченных средах. М.: ФИЗМАТЛИТ. 2013. 288 с.