ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ

УДК 669.1'539.12.043

ПАРАМЕТРЫ ЗАРОЖДЕНИЯ ШЕЙКИ В ДЕФОРМИРУЕМЫХ ОБРАЗЦАХ ХРОМОНИКЕЛЕВОЙ СТАЛИ, ОБЛУЧЕННЫХ НЕЙТРОНАМИ

© 2019 г. М. С. Мережко^{*a*, *, О. П. Максимкин^{*a*, *c*}, Д. А. Мережко^{*a*}, А. А. Шаймерденов^{*a*}, М. Р. Short^{*b*, *c*}}

^aИнститут ядерной физики МЭ, ул. Ибрагимова, 1, Алматы, 050032 Республика Казахстан ^bMassachusetts Institute of Technology, Massachusetts av., 77, Cambridge, MA, 02139 USA ^cНациональный исследовательский ядерный университет "МИФИ", Каширское ш., 31, Москва, 115409 Россия *e-mail: merezhko@inp.kz

"е-тан: тегеглко@пр.кг Поступила в редакцию 10.10.2018 г. После доработки 27.11.2018 г. Принята к публикации 11.12.2018 г.

Проведены механические испытания промышленной нержавеющей стали 12X18H10T (Аналог AISI 321, Fe – основа, Ni – 10, C – 0.12, Ti – 0.5, Cr – 18, Mn – <2), облученной нейтронами до максимального флюенса 1 × 10^{23} н/м² (E > 1 МэВ) с параллельным использованием методов "цифровой маркерной экстензометрии" и магнитометрии. Определены критические характеристики прочности и пластичности, соответствующие началу шейкообразования. Показано хорошее соответствие результатов, полученных тремя независимыми способами. Установлено, что величина "истинной" локальной деформации, соответствующая началу шейкообразования в стали 12X18H10T, с ростом флюенса снижается, в то время как величина "истинного" критического напряжения практически остается постоянной.

Ключевые слова: шейкообразование, нейтронное облучение, аустенитная сталь **DOI:** 10.1134/S0015323019050127

ВВЕДЕНИЕ

Известно, что значительную роль в формировании механических свойств металлических материалов (в том числе облученных) играет локализация деформации [1] – самопроизвольное расслоение материала образца на области, активно участвующие в деформационном процессе, и области, индифферентные к нему. Локализация пластического течения развивается последовательно или одновременно на разных иерархически организованных масштабно-структурных уровнях [2] - на микроскопическом [3], мезоскопическом [4] и макроскопическом [5]. В последнем случае наряду с распространением автоволн, различают также виды макролокализации деформации, сопровождающие такие процессы как динамическое деформационное старение [6], образование полос Людерса [7] и другие.

В цилиндрических образцах пластичных материалов непосредственно перед разрушением наблюдается еще один объект макролокализации – образование видимой геометрической шейки, которая представляет собой значительное сужение рабочей части образца в месте будущего разрыва. Было замечено [8], что появление видимой шейки на рабочей части цилиндрического металлического образца совпадает с максимумом на кривой "нагрузка–удлинение". Равномерная деформация в материалах протекает за счет перемещения очага пластической деформации по рабочей длине образца. На этом этапе пластическое течение локализуется в наименее прочном сечении материала, которое со временем испытания становится прочнее соседних и перестает деформироваться, очаг перемещается в другое сечение образца. Постепенное упрочнение различных сечений материала является причиной роста внешней нагрузки. Уменьшение нагрузки свидетельствует о том, что несущая способность сечения образца по мере протекания деформации в нем снижается, деформация ограничивается только этим сечением и соседними с ним. Начинается процесс образования шейки. Другими словами, шейка образуется, когда деформационное упрочнение ($d\sigma_{true}/d\epsilon$) перестает компенсировать приложенное извне напряжение (σ_{true}):

$$\frac{d\sigma_{\rm true}}{d\varepsilon} < \sigma_{\rm true}.$$
 (1)

Определение параметров зарождения шейки в стальных образцах по инженерным диаграммам сопровождается некоторыми методическими сложностями в связи с размытием максимума величины нагрузки (см. рис. 1). Авторы работы [9] предприняли попытку определить конкретный момент на площадке максимальной нагрузки, соответствующий образованию шейки, на основании наблюдаемых неравномерностей в распределении локальных деформаций вдоль длины деформируемых образцов (см. вставку на рис. 1).

Данный методический подход удовлетворительно подходит для описания процессов локализации в области равномерной деформации (полосы Людерса, эффект Портевена-Ле Шателье и др.). Однако для определения начала шейкообразования он, скорее всего, неприменим, поскольку неравномерности в распределении локальных условных удлинений свидетельствуют не о том, что начался процесс шейкообразования, а о том, что, упрочняясь в процессе равномерного пластического течения, различные сечения образца деформируются неоднородно. Подобные рассуждения вполне справедливы и для исследований неравномерности распределения других локальных величин, например, намагниченности, вызванной протекающим в процессе деформации некоторых аустенитных сталей мартенситным $\gamma \rightarrow \alpha$ превращением.

Анализ литературных данных [10] показал, что при определении величины деформации, соответствующей началу образования шейки (ε_{loc}) предпочтительно использовать простое соотношение

$$n = \varepsilon_{\rm loc}, \tag{2}$$

где *n* — показатель деформационного упрочнения в уравнении Холломона [11], аппроксимирующего "истинные" кривые упрочнения:

$$\sigma_{\rm true} = K \varepsilon^n, \tag{3}$$

где K – коэффициент деформационного упрочнения, σ_{true} и ε – "истинное" напряжение и "истинная" локальная деформация соответственно.

Данное соотношение (2) получается, если подставить значение напряжения из уравнения Холломона (3) в уравнение Консидера (1) и продифференцировать.

Для сохранения длительной работоспособности конструкционных реакторных материалов в поле нейтронного облучения требуется определенный запас их пластичности. В то же время хорошо известен эффект существенного уменьшения равномерной деформации в результате длительного воздействия ускоренных частиц. Вследствие этого наблюдается преждевременный переход от однородного удлинения всей рабочей части образца к преимущественному его течению в образующейся стабильной шейке. При этом определение параметров начала шейкообразования затруднено в связи с тем, что уравнение Холломона недостаточно корректно для аппроксимации "истинных" кривых деформационного упрочнения облученных материалов [12].

В рамках данной работы определяли механические параметры зарождения шейки в образцах стали 12X18H10T, облученной нейтронами.

Рис. 1. Типичная кривая растяжения цилиндрического образца стали СтЗ [9]. Крайне затруднительно определить, когда начался процесс шейкообразования, в точке *a* или *b*.

ИССЛЕДУЕМЫЙ МАТЕРИАЛ, МЕТОДЫ ИССЛЕДОВАНИЯ

Исследовали коррозионностойкую хромоникелевую сталь аустенитного класса 12Х18Н10Т — широко распространенный конструкционный материал для чехлов тепловыделяющих сборок и элементов конструкций ядерных энергетических установок на быстрых нейтронах. Химический состав, вес. %: Fe — основа, Ni — 9.38, C — 0.07, Ti — 0.4, Cr — 18.86, Mn — 1.86, прочие элементы — менее 1. Расчетное значение энергии дефекта упаковки (по формуле из работы [13]) $\gamma_{SFE} = 25.1 \pm 1.2 \text{ мДж/м}^{-2}$).

Для проведения механических испытаний на одноосное растяжение использовали образцы гантелеобразной формы с длиной рабочей части 10 мм и диаметром 1.7 мм.

Материал для исследований подвергли отжигу при 1050°С в вакууме в течение 30 мин, с последующим охлаждением вакуумированной сборки с образцами в воде. Часть аустенизированных образцов была облучена в активной зоне исследовательского реактора ВВР-К (ИЯФ, Алматы) при температуре не выше 50°С до максимального флюенса 1×10^{23} н/м² (E > 1 МэВ).

Механические испытания "на растяжение" проводили при комнатной температуре со скоростью 8×10^{-4} с⁻¹ на универсальной испытательной установке "Instron 1195" (Англия). Для исследования процесса шейкообразования строили "истинные" кривые в координатах " σ_{true} — ε ", при этом использовали разработанный метод "цифровой маркерной экстензометрии" [14]. Полученные "истинные" кривые деформационного упрочнения аппроксимировали уравнением Холломона (3) и другими известными уравнениями физики прочности [15]:

$$\sigma_{\rm true} = \sigma_0 + h\epsilon^m; \tag{4}$$

$$\sigma_{\rm true} = K_2 (\varepsilon + \varepsilon_0)^{n_2}; \tag{5}$$

$$\sigma_{\rm true} = B - (B - A)e^{-n_3\varepsilon},\tag{6}$$

Рис. 2. Изменение предела текучести, предела прочности и полного относительного удлинения образцов стали 12X18H10T, облученных различными флюенсами нейтронов ([н/м²], указан на рисунке).

где $\sigma_0, h, K_2, A, B, m, n_2, n_3$ – коэффициенты, определяющие упрочнение материала.

"Истинные" характеристики прочности и пластичности, при которых начинается процесс шейкообразования, определяли по методу Консидера (1), по величине показателя деформационного упрочнения из уравнения Холломона (3) и из геометрических соображений. Они основаны на том, что несмотря на структурные и фазовые изменения, протекающие в материале в процессе растяжения, объем рабочей части образца в процессе равномерной деформации остается в целом постоянным. Следовательно, существует линейная зависимость между сужением (ψ) и относительным удлинением (δ), которая нарушается в момент начала процесса образования шейки.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 2 представлены рассчитанные из инженерных диаграмм механические характеристики стали. Видно, что нейтронное облучение приводит к улучшению прочностных свойств материала, причем наиболее значительно повышается условный предел текучести (σ_{02}). Упрочнение обусловлено накоплением в кристаллической структуре радиационных дефектов в виде кластеров и дислокационных петель, повышающих напряжение, необходимое для начала движения и размножения дислокаций. Пластичность материала с увеличением повреждающей дозы монотонно снижается.

Для определения момента начала пластической неустойчивости в исследуемых образцах использовали соотношение Консидера (формула 1). Однако было замечено, что сравнительно небольшие погрешности при определении величин σ_{true} и є (8 и 6% соответственно), полученных в результате маркерной экстензометрии, значительно увеличиваются после дифференцирования. Большой разброс данных на кривой $\frac{d\sigma_{true}}{r} - \sigma_{true}$ не позволяет

брос данных на кривой $\frac{denome}{d\epsilon} - \sigma_{true}$ не позволяет определить напряжение начала локализации деформации с достаточной точностью. Для решения данной проблемы деформационное упрочнение рассчитывали из "истинных" кривых после их аппроксимации известными из литературы аналитическими уравнениями (3)–(6). Результаты сведены в табл. 1 и 2.

Из табл. 1 и 2 видно, что наиболее высокий коэффициент детерминации (R^2) наблюдается при аппроксимации "истинных" кривых упрочнения стали 12X18H10T уравнением Свифта (5).

Таблица 1. Результаты аппроксимации "истинных" кривых деформационного упрочнения стали 12X18H10T уравнениями Людвика и Холломона

	Параметры деформационного упрочнения, рассчитанные по формулам:							
Флюенс, H/M^2		Холломона (3)	Людвика (4)				
	K	п	R^2	$\sigma_{ heta}$	h	т	R^2	
Без облучения	1443	0.37	0.97	172	1282	0.45	0.99	
9.9×10^{20}	1458	0.37	0.97	200	1266	0.46	0.99	
2.3×10^{21}	1440	0.34	0.96	257	1199	0.47	0.99	
9.5×10^{21}	1443	0.31	0.93	323	1133	0.46	0.99	
4.5×10^{22}	1406	0.26	0.83	440	1001	0.48	0.99	

Флюенс, н/м ²	Параметры деформационного упрочнения, рассчитанные по формулам:							
	Свифта (5)				Войса (6)			
	<i>K</i> ₂	ϵ_0	<i>n</i> ₂	R^2	A	В	<i>n</i> ₃	<i>R</i> ²
Без облучения	1443	0.01	0.38	0.99	307	1511	2.49	0.98
9.9×10^{20}	1459	0.02	0.4	0.99	331	1561	2.34	0.99
2.3×10^{21}	1441	0.01	0.36	1	382	1574	2.17	0.99
9.5×10^{21}	1443	0.01	0.33	1	473	2138	1.08	0.95
4.5×10^{22}	1417	0.02	0.3	1	539	1513	2.26	0.98

Таблица 2. Результаты аппроксимации "истинных" кривых деформационного упрочнения стали 12Х18Н10Т уравнениями Свифта и Войса

Видно также, что уравнение Холломона неприменимо при обработке данных для облученных материалов. Оно не учитывает изменение величины предела текучести в результате радиационного упрочнения (см. рис. 2). Как следствие, с ростом дозы нейтронного облучения снижается коэффициент детерминации данных, аппроксимированных уравнением Холломона. Это приводит к уменьшению коэффициента детерминации данных, аппроксимированных уравнением Холломона.

В формуле Людвика (4) данный недостаток учтен введением коэффициента σ_0 , который по своей величине очень близок к σ_{02} .

Пластическая деформация во всех исследуемых в данной работе образцах стали 12X18H10T заканчивалась образованием "шейки" — значительному утонению образца в месте будущего разрушения (см. фотографию на рис. 3), локальная деформация в которой превышает 150%. Столь высокая степень деформации может значительно изменить структуру материала. В месте наибольшего сужения образца значительно повышается микротвердость материала (на ~40%), образуется большое количество мартенситной α '-фазы, фиксируемой даже на металлографических снимках.

Из "истинных" кривых деформационного упрочнения стали 12Х18Н10Т рассчитывали "истинную" локальную деформацию и "истинное" напряжение, при которых начинается процесс шейкообразования, используя соотношение 1. Полученные величины приведены в табл. 3. Для сравнения также продублированы значения показателя деформационного упрочнения в уравнении Холломона из табл. 1, который, как было сказано выше (формула (2)), численно равен ε_{loc} . "Истин-

Рис. 3. Микроструктура (а) и распределение микротвердости (б) по рабочей длине образца (в) стали 12X18H10T, облученного до 1×10^{23} н/м² и деформированного до $\delta = 33\%$.

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 120 № 7 2019

Флюенс, н/м ²	"Истинная" локальная деформация (%) и "истинное" напряжение (МПа)								
	$\frac{d\sigma_{\rm true}}{d\epsilon} < \sigma_{\rm true}$		$n = \varepsilon_{\rm loc}$		перегибы на кривой "ψ"—"δ"				
					перегиб 1		перегиб 2		
	ϵ_{loc}	$\sigma_{\rm loc}$	ϵ_{loc}	σ_{loc}	ϵ_{loc}	$\sigma_{\rm loc}$	ϵ_{loc}	σ_{loc}	
Без облучения	37	998	37	999	37	1008	53	1123	
9.9×10^{20}	37	1010	37	1009	35.5	1009	48	1099	
2.3×10^{21}	34.5	998	34	998	36.5	1023	47	1111	
9.5×10^{21}	32	999	31	1004	32	1005	40	1071	
4.5×10^{22}	27.5	987	26	990	26	971	36.5	1054	

Таблица 3. "Истинная" локальная деформация и "истинное" напряжение, соответствующие началу процесса шейкообразования

ное" напряжение в этом случае рассчитывали по формуле (3), подставив ε_{loc} вместо ε . Хорошая корреляция полученных данных свидетельствует об отсутствии ошибок и значительных погрешностей построении и аппроксимации "истинных" кривых.

Для определения "истинной" локальной деформации и "истинного" напряжения, соответствующих началу процесса шейкообразования, применялся также графический подход. Для этого строили кривые в координатах "сужение (ψ)"— "относительное удлинение (δ)", перегиб на которых свидетельствовал о моменте начала шейкообразования (рис. 4).

Было замечено, что на исследуемых кривых наблюдается два перегиба, первый из которых с хорошей точностью соответствует началу шейкообразования, определенному по методу Консидера (см. табл. 3). Второй перегиб происходит гораздо позже по шкале деформаций. Физический

Рис. 4. Типичная кривая "сужение (ψ)"—"относительное удлинение (δ)", (сталь 12Х18Н10Т, облученная до флюенса 9.5 × 10²¹ н/м²).

процесс, вызывающий появление второго перегиба, в настоящее время остается невыясненным.

Из данных, представленных в табл. 3, видно, что "истинная" локальная деформация, необходимая для начала шейкообразования, с ростом флюенса снижается, в то время как "истинное" напряжение остается практически постоянным.

На рис. 5 и 6 представлено распределение намагниченности и "истинных" локальных деформаций по рабочей длине образцов стали 12X18H10T.

Рис. 5. Намагниченность (а) и "истинная" локальная деформация (б), соответствующая разным реперным отметкам на рабочей поверхности (в) необлученного образца стали 12Х18Н10Т.

Рис. 6. Намагниченность (а) и "истинная" локальная деформация (б) соответствующая разным реперным отметкам на рабочей поверхности (в) образца стали 12X18H10T облученного нейтронами до флюенса $9.5 \times 10^{21} \text{ н/м}^2$.

Видно, что значительные неравномерности в распределении данных величин по поверхности образца начинаются задолго до начала процесса шейкообразования, параметры которого приведены в табл. 3, и обусловлены неоднородностями структуры, которые изначально были в материале образцов.

Работа выполнена при финансовой поддержке Министерства образования и науки Республики Казахстан (грант № АР 05130527).

ЗАКЛЮЧЕНИЕ

В ходе выполнения данной работы получены следующие основные результаты:

Проведены механические испытания промышленной нержавеющей стали 12Х18Н10Т, облученной нейтронами до максимального флюенса 10²³ н/м² с параллельным использованием разработанного метода "цифровой маркерной экстензометрии".

Построены локальные "истинные" кривые деформационного упрочнения. При этом экспериментальные данные были аппроксимированы известными уравнениями. Лучший коэффициент детерминации (R²) наблюдается при аппроксимации "истинных" кривых упрочнения стали 12X18H10T уравнением Свифта (5). Более часто используемое в материаловедении уравнение Холломона (3) не вполне корректно аппроксимирует "истинные" кривые облученных материалов, поскольку в нем не учитывается сдвиг кривых по оси ординат из-за роста предела текучести в процессе облучения.

Определены критические характеристики прочности и пластичности, соответствующие началу шейкообразования, и показано хорошее соответствие результатов, полученных двумя независимыми способами. Установлено, что величина "истинной" локальной деформации, соответствующая началу образования стабильной шейки в стали 12X18H10T, с ростом флюенса снижается, в то время как величина "истинного" критического напряжения практически остается постоянной.

Замечены значительные неоднородности в распределении намагниченности и "истинных" локальных деформаций по рабочей длине образцов.

СПИСОК ЛИТЕРАТУРЫ

- Antolovich S.D., Armstrong R.W. Plastic strain localization in metals: origins and consequences // Progress Mater. Sci. 2014. V. 59. P. 1–160.
- 2. Панин В.Е., Гриняев Ю.В., Елсукова Т.Ф., Иванчин А.Г. Структурные уровни деформации твердых тел // Изв. вузов. Физика. 1982. № 6. С. 5–24.
- 3. *Kuhlmann-Wilsdorf D*. Dislocations in Solids. Amsterdam, Boston: Elsevier. 2002. 632 p.
- 4. *Панин В.Е., Гриняев Ю.В., Данилов В.И. и др.* Структурные уровни пластической деформации и разрушения. Новосибирск: Наука. 1990. 255 с.
- Zuev L.B., Danilov V.I. A self-excited wave model of plastic deformation in solids // Philosoph. Mag. A. 1999. V. 79. № 1. P. 43–57.
- Gupta C., Murty K.L. Aging: Dynamic Strain, Neutron Irradiation Effect on // Chapter in Encyclopedia of Iron, Steel, and Their Alloys. Boca Raton: CRC Press. 2016. P. 129–146.
- 7. *Hertzberg R.W., Vinci R.P., Hertzberg J.L.* Deformation and fracture mechanics of engineering materials. Fifth edition. Hoboken, NJ: John Wiley & Sons Inc. 2012. 755 p.
- 8. *Considère M*. Memoire sur l'emploi du fer et de l'acier dans les constructions. Dunod, 1885.
- 9. Томенко Ю.С., Христенко И.Н., Пащенко А.А. Определение равномерного удлинения по кривым деформации // Заводская лаборатория. 1981. № 2. С. 76–77.
- 10. *Wilson D.V.* Relationships between microstructure and behaviour in the uniaxial tensile test // J. Phys. D: Appl. Phys. 1974. V. 7. № 7. P. 954–968.

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 120 № 7 2019

- 11. Bowen A.W., Partridge P.G. Limitations of the Hollomon strain-hardening equation // J. Physics D: Appl. Phys. 1974. V. 7. № 7. P. 969–978.
- 12. *Максимкин О.П., Гусев М.Н., Токтогулова Д.А.* Деформационное упрочнение облученных металлических материалов. Аналитическое описание // Вестник НЯЦ. 2009. № 2. С. 11–17.
- 13. *Meric de Bellefon G., Duysen J.C. van, Sridharan K.* Composition-dependence of stacking fault energy in austenitic stainless steels through linear regression with

random intercepts // J. Nucl. Mater. 2017. V. 492. P. 227-230.

- 14. *Gusev M.N., Maksimkin O.P., Osipov I.S., Garner F.A., Sokolov M., Dean S.W.* Application of Digital Marker Extensometry to Determine the True Stress-Strain Behavior of Irradiated Metals and Alloys // J. ASTM International. 2008. V. 5. № 4. P. 1–10.
- 15. *Maheshwari A.K., Pathak K.K., Ramakrishnan N., Narayan S.P.* Modified Johnson–Cook material flow model for hot deformation processing // J. Mater Sci. 2010. V. 45. № 4. P. 859–864.