ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ, 2019, том 120, № 7, с. 702-709

ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА

УДК 537.622:537.635

МАГНИТНАЯ СТРУКТУРА И СЕГНЕТОЭЛЕКТРИЧЕСТВО В НИЗКОРАЗМЕРНЫХ КУПРАТАХ LiCu₂O₂ И NaCu₂O₂ ПО ДАННЫМ ЯМР

© 2019 г. А. Ф. Садыков^{*a*}, *, Ю. В. Пискунов^{*a*}, В. В. Оглобличев^{*a*}, А. П. Геращенко^{*a*}, А. Г. Смольников^{*a*}, С. В. Верховский^{*a*}, И. Ю. Арапова^{*a*}, К. Н. Михалев^{*a*}, А. А. Буш^{*b*}

^а Институт физики металлов имени М.Н. Михеева УрО РАН, ул. С. Ковалевской, 18, Екатеринбург, 620108 Россия ^b Московский государственный институт радиотехники, электроники и автоматики (технический университет), Москва, 119454 Россия *e-mail: sadykov@imp.uran.ru Поступила в редакцию 10.07.2018 г. После доработки 30.10.2018 г. Принята к публикации 26.11.2018 г.

Представлено обобщение результатов ЯМР исследований магнитных структур монокристаллов LiCu₂O₂ и NaCu₂O₂. Полученные данные обсуждаются в аспекте актуальных на сегодняшний день дискуссий о типах магнитного упорядочения в этих соединениях и причинах возникновения сегнетоэлектричества в LiCu₂O₂.

Ключевые слова: ядерный магнитный резонанс, мультиферроик, спиральная магнитная структура **DOI:** 10.1134/S0015323019050152

введение

Купраты LiCu₂O₂ и NaCu₂O₂ являются фрустрированными квазидвумерными магнетиками, в которых имеет место конкуренция ферро- (ФМ) и антиферромагнитных (АФ) обменных взаимодействий между, соответственно, ближайшими и следующими за ближайшими спинами в цепочке CuO_2 . Ниже критической температуры $T_N = 23$ K $(LiCu_2O_2), T_N = 12 K (NaCu_2O_2) в данных соедине$ ниях наблюдается переход в магнитоупорядоченное состояние с несоизмеримой геликоидальной магнитной структурой [1-3]. Однако пространственная ориентация спиновых спиралей и направление их закручивания в магнитно-неэквивалентных спиновых цепочках элементарной ячейки LiCu₂O₂/NaCu₂O₂ до сих пор вызывают споры [4–12]. В LiCu₂O₂ вышеописанный переход сопровождается возникновением спонтанной макроскопической электрической поляризации Р, при этом величина и направление вектора Р зависят от внешнего магнитного поля [13]. Низкоразмерный магнетик NaCu₂O₂ является соединением, изоструктурным мультиферроику LiCu₂O₂, но в отличие от него не становится сегнетоэлектриком ниже $T_{\rm N}$. Причина этого до сих пор неизвестна. На сегодняшний день имеется несколько микроскопических теорий, объясняющих возникновение (или отсутствие) сегнетомагнетизма в соединениях со спиральной магнитной структурой [14—17]. Они дают различные предсказания относительно взаимосвязи между пространственной ориентацией спиновой спирали, наличием или отсутствием дефектов замещения в системе и направлением электрической поляризации. Для экспериментальной проверки имеющихся теоретических моделей сегнетомагнетизма крайне важно знать реальную пространственную ориентацию спиновых спиралей в кристалле и ее эволюцию в зависимости от величины и направления внешнего магнитного поля.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Кристаллическая структура изоструктурных соединений LiCu₂O₂ и NaCu₂O₂ подробно описана в работах [18–21]. Исследования были выполнены на монокристаллических образцах LiCu₂O₂, NaCu₂O₂ [8–12]. Все образцы, кроме использованного в [8], были монодоменными. Синтез и аттестация образцов, а также используемое для ЯMP/ЯKP измерений оборудование описаны в [8–12].

В магнитоупорядоченном состоянии ЯМРспектры ^{63, 65}Cu, ⁷Li, ²³Na были записаны в поле $H_0 = 94$ кЭ при T = 10 K (LiCu₂O₂) и $H_0 = 92.8$ кЭ при T = 7 K (NaCu₂O₂). Кроме того, были получены ЯМР спектры ^{63, 65}Cu в отсутствие внешнего магнитного поля. Охлаждение образцов произво-

Рис. 1. ЯМР-спектры ^{63, 65}Си в магнитоупорядоченной фазе монокристалла LiCu₂O₂ при температуре T = 10 К и ориентации внешнего магнитного поля $\mathbf{H}_0 \parallel \mathbf{a}, \mathbf{b}, \mathbf{c} (\bullet)$. Узкие спектральные пики на рисунке соответствуют ЯМР спектрам ^{63, 65}Си при комнатной температуре. Сплошные линии представляют собой результат компьютерного моделирования спектров в модели планарной спиновой спирали в Cu²⁺–O цепочках.

дили при включенном внешнем поле. По сравнению со спектрами в парамагнитном состоянии спектры, полученные ниже $T_{\rm N}$, имеют более сложный вид и значительно уширены. В результате анализа спектров ^{63, 65}Си было выяснено, что они могут быть удовлетворительно описаны в предположении преобразования каждой из узких линий, наблюдаемых в парамагнитной фазе, в характерную двугорбую спектральную линию (рис. 1). При этом центр симметрии получившегося дублета соответствует резонансной частоте нерасщепленной линии. Аналогичное поведение мы наблюдали и для мультиферроика CuCrO₂ [22]. Такое расщепление спектров при переходе в магнитоупорядоченное состояние может являться признаком того, что локальное поле $\mathbf{h}_{loc}(\mathbf{R})$ в месте расположения ионов Cu⁺ индуцируется магнитной структурой с волновым вектором, несоизмеримым с параметрами решетки [23].

Спектры ⁷Li и ²³Na, как и спектры меди при $H_0 = 0$, ниже T_N тоже приобретают вид, характерный для несоизмеримых с решеткой магнитных структур. При направлении магнитного поля вдоль кристаллографических осей **b** и **c** спектры ЯМР ⁷Li представляют собой четырехгорбые уширенные линии, а вдоль оси **a** резонансная линия лития имеет только два максимума (рис. 2).

Рис. 2. Спектры ЯМР⁷Li в магнитоупорядоченной фазе монокристалла LiCu₂O₂ при температуре T = 10 K и ориентации внешнего магнитного поля $H_0 \parallel a$, b, c (сплошные линии). Узкие спектральные пики на рисунке соответствуют ЯМР-спектрам⁷Li при комнатной температуре. Штриховые линии представляют собой результат компьютерного моделирования спектров в модели планарной спиновой спирали.

Резонансные пики ²³Na (см. рис. 4 в [10]) расщепляются лишь в двугорбые линии ЯМР во всех ориентациях поля $\mathbf{H}_0 \| \mathbf{a}, \mathbf{b}, \mathbf{c}$. Явные различия в спектрах ⁷Li и ²³Na непосредственно свидетельствуют о не идентичности магнитных структур исследуемых купратов.

Все спектры в магнитоупорядоченном состоянии были промоделированы самосогласованно в модели планарной спиральной структуры. В данной модели поворот магнитных моментов относительно друг друга при переходе с одного магнитного иона на другой, расположенный в том же слое m (m = I, II, III, IV) или в эквивалентном ему, происходит в одной плоскости – плоскости поляризации, или плоскости геликса. В такой модели пространственная ориентация магнитного момента иона меди $\mathbf{C}\mathbf{u}^{2+}\mathbf{\mu}_{m,i,j,k} = \mathbf{\mu}\mathbf{e}_{m,i,j,k}$ на позиции с радиус-вектором $\mathbf{r}_{m,i,j,k}$ определяется единичным вектором $\mathbf{e}_{m,i,j,k} = (e^a_{m,i,j,k}, e^b_{m,i,j,k}, e^c_{m,i,j,k})$. На рис. 1, 2, и в табл. 1 представлен результат моделирования спектров ЯМР для LiCu₂O₂, полученный таким же образом, как и в [9], но с учетом дипольных полей на ядрах меди и использованием выражений для $\mathbf{e}_{m,i,j,k}$, аналогичных применяемым для NaCu₂O₂ в работе [10]. В табл. 1 параметры моделирования спектров LiCu₂O₂ представлены совместно

Параметры	m	LiCu ₂ O ₂			NaCu ₂ O ₂		
		θ _{<i>m</i>} , град	<i>ψ_m</i> , град	Δφ ₃₂ , град	θ _{<i>m</i>} , град	<i>ψ_m</i> , град	∆ф ₃₂ , град
$H_0 = 0$	1	-32(3)	-45(3)	_	150(3)	-45(3)	_
	2	-32(3)			-150(3)		
	3	-32(3)			30(3)		
	4	-32(3)			-30(3)		
$\mathbf{H}_0 \ \mathbf{c}$	1	-29(3)	-45(3)	-33(5)	145(3)	-45(3)	52(5)
	2	-29(3)			-145(3)		
	3	-29(3)			35(3)		
	4	-29(3)			-35(3)		
$\mathbf{H}_0 \ \mathbf{a}$	1	-20(3)	- 0(3)	45(5)	102(3)	- 180(3)	-30(5)
	2	20(3)			-102(3)		
	3	20(3)			78(3)		
	4	-20(3)			-78(3)		
$\mathbf{H}_0 \ \mathbf{b}$	1	-60(3)	80(3) -80(3) -80(3) 80(3)	- 145(5)	128(3)	90(3)	-112(5)
	2	-60(3)			-128(3)		
	3	-60(3)			52(3)		
	4	-60(3)			-52(3)		
$ h_{ m loc,l} , \kappa \Im$		5.3(5)			5.3(3)		
μ, μ_B		1.1(3)			0.59(6)		
Δφ ₂₁ , град		90(3)			-90(3)		
Δф ₄₃ , град		90(3)			-90(3)		

Таблица 1. Значения параметров моделирования спектров ЯМР LiCu₂O₂ и NaCu₂O₂ в магнитоупорядоченной фазе

с данными NaCu₂O₂ из [10] для удобства сравнения. Здесь, θ_m (m = I, II, III, IV) — угол между осью кристалла с и нормалью $\mathbf{n}_m = [\mathbf{\mu}_{m,i,1,k} \times \mathbf{\mu}_{m,i,2,k}]$ к плоскости геликса; ψ_m — угол между проекцией \mathbf{n}_m на

 \vec{n} $\vec{\mu}$ $\vec{\mu}$

Рис. 3. Углы θ , ψ , ϕ , используемые для задания ориентации магнитного момента меди Cu²⁺.

плоскость *ab* и осью **a**, $\varphi_{m,i,j,k}$ — угол между направлением магнитного момента в спиновой спирали и линией пересечения плоскости геликса с плоскостью *ab* (угол свободного вращения) (рис. 3). Углы $\varphi_{m,i,j,k}$ для четырех плоскостей I–IV выражаются через волновой вектор магнитной структуры **q** как $\varphi_{m,i,j,k} = \mathbf{q} \cdot (ia, jb, kc) + \varphi_m \cdot |h_{loc, 1}|$ — амплитуда локального сверхтонкого поля (для спектров ^{63, 65}Cu), наводимого на позициях Cu⁺ *одним* соседним магнитным моментом иона Cu²⁺, μ — величина магнитной фазе (для спектров ²³Na, ⁷Li) $\Delta \varphi_{21} = \varphi_{II} - \varphi_{I}, \Delta \varphi_{32} = \varphi_{III} - \varphi_{II} и \Delta \varphi_{43} = \varphi_{IV} - \varphi_{III} - разности начальных фаз магнитных моментов в плоскостях$ *m*= I, II, III, IV.

В соответствии с данными, приведенными в табл. 1, картина магнитной структуры в $NaCu_2O_2$ и LiCu₂O₂ и ее эволюция во внешнем магнитном поле представляются следующими. В нулевом магнитном поле спиновые спирали во всех слоях m имеют один и тот же угол $\psi_m = -45^\circ$.

Рис. 4. Пространственная ориентация планарных спиновых спиралей в Cu^{2+} –О цепочках слоев m = I, II, III, IV в нулевом (а) и во внешнем магнитном поле $H_0 = 92.8$ кЭ, направленном вдоль осей кристалла с (а), а (б) и b (в) в случае NaCu₂O₂ (1) и $H_0 = 94$ кЭ в случае LiCu₂O₂ (2). Магнитные моменты Cu²⁺ и нормали к плоскостям их поляризации условно показаны, соответственно, стрелками, лежащими в плоскостях кругов и перпендикулярными к их плоскостям.

В случае NaCu₂O₂ в слоях I и IV плоскости спиновых геликсов параллельны так же, как и в бислое II, III. Нормаль **n** к плоскости геликса в слое I отклонена от оси **c** на угол $\theta_I = 150^\circ$, в слое IV на угол $\theta_{IV} = -30^\circ$, в слоях II, III на $\theta_{II} = -150^\circ$ и $\theta_{III} = 30^\circ$ соответственно. Таким образом, мы получили, что спиновые спирали внутри бислоя (II–III) лежат в одной плоскости, но имеют противоположные направления закручивания магнитных моментов, то же самое имеет место и в бислое (I–IV). Вышеописанная магнитная структура изображена на

рис. 4.1а. Отметим, что такая же последовательность направлений закручивания спиновых спиралей в слоях m = I, II, III, IV была предложена для объяснения результатов исследований методом нейтронной дифракции магнитной структуры NaCu₂O₂ [3].

В случае LiCu₂O₂ во всех слоях m = I, II, III, IV плоскости спиновых спиралей параллельны, направление закручивания спиновых спиралей одинаковое, а нормаль **n** к этим плоскостям отклонена от оси **c** на угол 32°. Пространственные

Таблица 2. Оценочные значения компонент нормированного вектора макроскопической поляризации P, предсказываемые различными моделями сегнетомагнетизма для предложенной нами магнитной структуры LiCu₂O₂

Модель		$\mathbf{H}_0 \parallel \mathbf{a}$	$\mathbf{H}_0 \parallel \mathbf{b}$	$\mathbf{H}_0 \parallel \mathbf{c}$	$H_0 = 0$
	P _a	3.76	3.83	3.72	3.66
КНБ	P _b	0	0	0	0
	P _c	0	1.15	1.46	1.62
	P _a	0	0	1.36	1.50
МД	P _b	0	0	0.81	0.90
	P _c	3.76	2.34	4.84	4.86

ориентации планарных геликсов в спиновых цепочках $LiCu_2O_2$ представлены на рис. 4.2а. Данный результат подтверждает вывод о неидентичности магнитных структур оксидов $LiCu_2O_2$ и $NaCu_2O_2$, а именно, о противоположности направлений вращения магнитных моментов в соседних цепочках CuO_2 в $NaCu_2O_2$ и их совпадении в $LiCu_2O_2$, впервые сделанном в работе [24].

При охлаждении образцов NaCu₂O₂ и LiCu₂O₂, соответственно, в магнитных полях $H_0 = 92.8 \text{ к}\Im$ и $H_0 = 94 \text{ к}\Im$, направленных вдоль оси кристалла с, магнитные структуры соединений практически не изменяются.

Магнитные поля H_0 , направленные вдоль оси a, поворачивают плоскости спиновых спиралей в цепочках, стремясь сориентировать нормаль n геликсов вдоль или против направления поля. При этом в LiCu₂O₂ параллельность друг другу спиновых плоскостей сохраняется только внутри бислоев (II–III) и (I–IV). Направления закручивания спиралей в бислоях: в NaCu₂O₂ – противоположное, в LiCu₂O₂ – в одном направлении.

Подобное стремление к перпендикулярному относительно магнитного поля расположению спиновых плоскостей наблюдается и при охлаждении кристаллов в поле при $\mathbf{H}_0 \parallel \mathbf{b}$ ниже температур магнитного перехода. При этом в случае NaCu₂O₂, проекции нормали **n** на плоскость *ab* в каждом слое *m* лежат вдоль оси **b**, а в случае LiCu₂O₂ отклонены от этой оси примерно на 10°. Взаимная ориентация спиновых плоскостей в бислоях и направления закручивания в них аналогичны случаю $\mathbf{H}_0 \parallel \mathbf{a}$. Пространственная ориентация планарных спиновых спиралей в слоях m = I, II, III, IV для $\mathbf{H}_0 \parallel \mathbf{a}$, **b** представлена на рис. 4. Ее вид определяется конкуренцией между магнитокристаллической анизотропией, определяющей плоскость

легкого намагничивания, и анизотропией магнитной восприимчивости ($\chi \parallel \mathbf{n} \neq \chi \perp \mathbf{n}$). В сильном внешнем магнитном поле плоскость поляризации спиновых магнитных моментов может изменять свою пространственную ориентацию [5], занимая положение, в котором общая энергия системы минимальна. Мы, однако, не можем сказать, является ли переориентационный переход, наблюдаемый нами при $\mathbf{H}_0 \parallel \mathbf{a}$, **b**, резким, типа "спинфлопа", или же имеет место постепенный поворот плоскостей геликса при возрастании величины внешнего магнитного поля.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ В АСПЕКТЕ ВОПРОСА ОБ ЭЛЕКТРИЧЕСКОЙ ПОЛЯРИЗАЦИИ

Поведение макроскопической электрической поляризации **P**, возникающей в LiCu₂O₂ ниже температуры перехода в магнитоупорядоченное состояние, рассматривается главным образом в рамках трех теоретических моделей: *спин-токовой* модели Катсуры—Нагаоши—Балатского (КНБ) [14], модели Сергиенко—Даготто (СД) или *inversion DM model* [15] и модели Москвина—Дрешлера (МД) [16, 17]. Аргументация отсутствия сегнетомагнетизма в NaCu₂O₂ в литературе также приводится в рамках этих моделей. КНБ- и СД-модели дают одни и те же предсказания о зависимости **P** от вида магнитной структуры, поэтому в дальнейшем мы рассмотрим только две модели: КНБ и МД.

Применение моделей КНБ (или СД) и МД для оценки компонент нормированного вектора поляризации $\mathbf{P} = \mathbf{P}_{I} + \mathbf{P}_{II} + \mathbf{P}_{III} + \mathbf{P}_{IV}$ вдоль кристаллографических осей **a**, **b**, **c** в рамках предлагаемой нами магнитной структуры приводит к результатам, представленным в табл. 2.

В модели КНБ поляризация определяется как $\mathbf{P} \propto (\mathbf{e}_{12} \times (\mathbf{S}_1 \times \mathbf{S}_2)) = \mathbf{e}_{12} \times \mathbf{n}$, где \mathbf{e}_{12} – единичный вектор, связывающий ближайшие спины S_1 и S_2 магнитных ионов. Таким образом, Р всегда направлен перпендикулярно как оси спирали, так и вектору, связывающему два ближайших соседних магнитных иона. Для удобства мы провели нормировку вектора поляризации в рамках модели КНБ таким образом, что его абсолютная величина $|\mathbf{P}_m|$ в каждой цепочке т взята равной единице. Что касается МД-модели, в ней авторы привели значения и направления макроскопической поляризации, индуцируемой только спиновыми спиралями, лежащими в базисных плоскостях кристалла: ab, bc и ac [16]. Плоскость геликса, произвольно ориентированного в пространстве, можно разложить на три составляющие, лежащие в плоскостях ab, bc, ac. Принимая за единицу значения P_{α} ($\alpha = a, b, c$), индуцированные спиновыми спиралями, лежащими в базисных плоскостях кристалла, мы определили величины P_{lpha} для каждой из цепочек m = I, II, III, IV. Суммарное значение находили как векторную сумму $\overline{\mathbf{P}} = \sum_{m} \mathbf{P}_{m}$. Проанализируем теперь полученные значения P_{α} на их соответствие (или несоответствие) результатам экспериментального определения компонент спонтанной поляризации в работах Парка и др. [13] и Жао и др. [25], а также выясним, какая из моделей сегнетомагнетизма (КНБ или МД) лучше описывает эти результаты при использовании определенной нами магнитной структуры (рис. 4) кристалла LiCu₂O₂.

В работе Парка и др. [13] сообщается о $P_c \neq 0$ в отсутствие внешнего магнитного поля Н₀ и увеличении этой компоненты при увеличении поля, направленного вдоль оси с. Следуя табл. 2, ненулевые значения вектора поляризации вдоль оси с при $H_0 = 0$ и $H_c = 94$ кЭдают и КНБ, и МД модели. Однако КНБ предсказывает $P_{\rm a} \sim 2.5 P_{\rm c}$, что полностью противоречит результатам работы [13], в которой было установлено, что в нулевом магнитном поле $P_{\rm c} \gg P_{\rm a}$. Подобного противоречия не возникает в МД модели, в которой P_c в несколько раз превышает Ра, что, по крайней мере, качественно согласуется с результатами Парка и др. С другой стороны, как видно из табл. 2, при включении поля $H_c = 94$ кЭ не происходит увеличения *P*_c, которое наблюдали в экспериментах Парка и др. [13] и Жао и др. [25]. С точки зрения наших результатов, неизменность $P_{\rm c}$ в высоком магнитном поле $H_{\rm c} = 94 \text{ к} \Theta$ объясняется устойчивостью пространственной ориентации геликса к внешнему полю, направленному вдоль оси с кристалла. В связи с этим можно предположить, что рост $P_{\rm c}$ во внешнем магнитном поле H_c обусловлен, помимо изменения пространственной ориентации геликсов, какой-то еще дополнительной причиной.

При включении внешнего магнитного поля вдоль плоскости *ab* примерно под углом 45° к осям **a**(**b**) взаимно перпендикулярных доменов наблюдается рост поляризации в плоскости аb (у Парка она обозначается P_a) как вдоль приложенного магнитного поля, так и в направлении, ему перпендикулярном. При этом *P*_с уменьшается. Мы не проводили ЯМР-исследований при таком направлении внешнего магнитного поля, поэтому не можем сказать, как ориентируются геликсы, если направить магнитное поле под углом 45° градусов к оси b (или a) нашего монодоменного кристалла. Если же предположить, что и при таком "диагональном" направлении Н₀ геликсы (как и в случаях $\mathbf{H}_0 \parallel \mathbf{a}, \mathbf{b}, \mathbf{c}$) стремятся сориентироваться так, чтобы их нормаль п была параллельна полю, то мы получим следующие предсказания эволюции Р в рамках моделей КНБ и МД. Первая модель предсказывает увеличение P_c и уменьшение *P*_a, т.е. результат обратный тому, что наблюдали Парк и др. В рамках второй модели ожидается уменьшение P_c и рост P_a (из-за уменьшения проекции геликсов на плоскость *ab* и роста таковой на плоскость *ac*), что и наблюдали в экспериментах Парка и др.

В отличие от [13], в работе Жао и др. [25] измерения спонтанной электрической поляризации Р_с в зависимости от величины и направления внешнего магнитного поля были выполнены на монодоменном кристалле LiCu₂O₂. Авторы обнаружили, что при включении магнитного поля либо вдоль оси а, либо вдоль оси b в монокристалле LiCu₂O₂ величина поляризации P_c уменьшается по сравнению с ее значением в нулевом поле. Как видно из табл. 2, результаты применения обеих, КНБ и МД, моделей сегнетомагнетизма к предложенной нами магнитной структуре при $\mathbf{H}_0 \parallel \mathbf{b}$ и $\mathbf{H}_0 \| \mathbf{a}$ не противоречат экспериментальным данным [25]. Поэтому по данным работы [25] мы не можем судить, какая из двух моделей лучше описывает эволюцию поляризации в LiCu₂O₂. Теории КНБ и МД дают принципиально разные предсказания о величине поляризации вдоль оси кристалла а, при наличии внешнего магнитного поля, направленного вдоль а или b. Модель МД, в отличие от КНБ, предсказывает нулевое значение P_a при $\mathbf{H}_0 \parallel \mathbf{b}$ и $\mathbf{H}_0 \parallel \mathbf{a}$. К сожалению, авторы [25] ограничились измерениями лишь Р_с компоненты электрической поляризации в LiCu₂O₂.

На основании вышеизложенного анализа поведения макроскопической электрической поляризации в монокристалле LiCu₂O₂ можно заключить следующее. Приложение теории КНБ к определенной нами магнитной структуре мультиферроика LiCu₂O₂ приводит к серьезным несоответствиям результатам экспериментальных исследований электрической поляризации в этом соединении. Что же касается теории МД, то она, по крайней мере, качественно описывает все особенности эволюции поляризации в зависимости от величины и направления внешнего магнитного поля. Соединение NaCu₂O₂, в отличие от LiCu₂O₂, не подвержено дефектам замещения, поэтому в рамках МД-модели не должно демонстрировать сегнетоэлектрических свойств. Мы также не можем исключить и возможность того, что в NaCu₂O₂ внутри каждого бислоя происходит взаимная компенсация противоположно направленных макроскопических электрических моментов, как предсказывает КНБ модель, или, другими словами, того, что $NaCu_2O_2$ является антисегнетоэлектриком.

Резюмируя вышесказанное, можно заключить, что из сравнений имеющихся теоретических и экспериментальных данных однозначность выбора между двумя моделями, КНБ и МД, не обеспечивается. Да, теория МД в целом описывает результаты Парка и др. при использовании вида магнитной структуры, определенного в данной работе. Однако не стоит забывать, что работа Парка и др. была выполнена на двойниковых кристаллах. На монодоменных образцах ${\rm LiCu}_2{\rm O}_2$ были выполнены измерения лишь компоненты поляризации $P_{\rm c}$. Необходимым условием для подтверждения применимости какой-либо модели сегнетомагнетизма к исследуемым системам является измерение электрической поляризации в монодоменных идеальных по составу образцах в различных кристаллографических направлениях.

ЗАКЛЮЧЕНИЕ

В работе обобщены и дополнены результаты экспериментальных исследований особенностей магнитной структуры в квазидвумерных магнетиках LiCu₂O₂ и NaCu₂O₂ в зависимости от величины и направления внешнего магнитного поля методами ЯМР, ЯКР и магнитной восприимчивости. Все спектры ЯМР ядер, входящих в состав $LiCu_2O_2$ и NaCu_2O_2, были удовлетворительно описаны в единой модели планарной спиральной магнитной структуры. Установлена пространственная ориентация спиновых спиралей в LiCu₂O₂ и NaCu₂O₂ в отсутствие внешнего магнитного поля и в поле $H_0 = 94 \text{ к}\Theta/H_0 = 92.8 \text{ к}\Theta$, направленным вдоль той или иной оси кристалла. Выяснено, что спиновые спирали в данных соединениях не лежат ни в одной из кристаллографических плоскостей ab, bc или ac. Плоскости спиралей параллельны только в цепочках, образующих бислой: $-O-Cu^{2+}-O-Li(Na)-$ и $-Li(Na)-O-Cu^{2+}-O-$. Направления закручивания магнитных моментов в этих цепочках в NaCu₂O₂ – противоположны, а в LiCu₂O₂ - совпадают. Внешнее магнитное поле $H_0 = 94 \text{ к}\Theta/H_0 = 92.8 \text{ к}\Theta$, направленное вдоль оси с кристалла, практически не изменяет пространственной ориентации спиновых спиралей в цепочках Cu^{2+} , имеющей место при $H_0 = 0$. Внешнее магнитное поле, направленное вдоль осей а и **b**, поворачивает плоскости спиновых спиралей, стремясь сориентировать их нормаль n вдоль поля. Однозначная верификация имеющихся теоретических моделей сегнетомагнетизма в LiCu₂O₂ по данным ЯМР требует дополнительных экспериментальных исследований электрической поляризации.

Исследование выполнено за счет гранта Российского научного фонда (проект № 16-12-10514).

СПИСОК ЛИТЕРАТУРЫ

1. *Masuda T., Zheludev A., Bush A., Markina M., Vasiliev A.* Competition between helimagnetism and commensurate quantum spin correlations in LiCu₂O₂ // Phys. Rev. Lett. 2004. V. 92. № 17. P. 177201.

- Gippius A.A., Morozova E.N., Moskvin A.S., Zalessky A.V., Bush A.A., Baenitz M., Rosner H., Drechsler S.-L. NMR and local-density-approximation evidence for spiral magnetic order in the chain cuprate LiCu₂O₂ // Phys. Rev. B. 2004. V. 70. № 2. P. 020406.
- Capogna L., Reehuis M., Maljuk A., Kremer R.K., Ouladdiaf B., Jansen M., Keimer B. Magnetic structure of the edge-sharing copper oxide chain compound NaCu₂O₂ // Phys. Rev. B. 2010. V. 82. № 1. P. 014407.
- Bush A.A., Büttgen N., Gippius A.A., Horvatić M., Jeong M., Kraetschmer W., Marchenko V.I., Sakhratov Yu.A., Svistov L.E. Exotic phases of frustrated antiferromagnet LiCu₂O₂ // Phys. Rev. B. 2018. V. 97. № 5. P. 054428.
- Bush A.A., Glazkov V.N., Hagiwara M., Kashiwagi T., Kimura S., Omura K., Prozorova L.A., Svistov L.E., Vasiliev A.M., Zheludev A. Magnetic phase diagram of the frustrated S = 1/2 chain magnet LiCu₂O₂ // Phys. Rev. B. 2012. V. 85. № 5. P. 054421.
- Xie Y.LYing, J.J., Wu G., Liu R.H., Chen X.H. Spin orientation in spin frustrated system LiCu₂O₂ // Physica E. 2010. V. 42. P. 1579–1582.
- Furukawa S., Sato M., Onoda S. Chiral Order and Electromagnetic Dynamics in One-Dimensional Multiferroic Cuprates // Phys. Rev. Lett. 2010. V. 105. № 25. P. 257205.
- Садыков А.Ф., Геращенко А.П., Пискунов Ю.В., Оглобличев В.В., Бузлуков А.Л., Верховский С.В., Якубовский А.Ю, Кумагаи К. Исследование спиральной магнитной структуры квазиодномерного мультиферроика LiCu₂O₂ методами ЯМР ^{63, 65}Cu // Письма в ЖЭТФ. 2010. Т. 92. № 8. С. 580–584.
- Садыков А.Ф., Геращенко А.П., Пискунов Ю.В., Оглобличев В.В., Смольников А.Г., Верховский С.В., Якубовский А.Ю., Тищенко Э.А., Буш А.А. Магнитная структура низкоразмерного мультиферроика LiCu₂O₂: исследование методами ЯМР ^{63, 65}Cu, ⁷Li // ЖЭТФ. 2012. Т. 142. № 4. С. 753–760.
- Садыков А.Ф., Геращенко А.П., Ю.В. Пискунов, Оглобличев В.В., А.Г. Смольников, Верховский С.В., Бузлуков А.Л., Арапова И.Ю., Furukawa Y., Якубовский А.Ю., Буш А.А. Магнитная структура низкоразмерного магнетика NaCu₂O₂: исследования методами ЯМР ^{63, 65}Cu, ²³Na // ЖЭТФ. 2014. Т. 146. № 5. С. 990–1001.
- Садыков А.Ф., Пискунов Ю.В., Геращенко А.П., Оглобличев В.В., Смольников А.Г., Верховский С.В., Арапова И.Ю., Волкова З.Н., Михалев К.Н., Буш А.А. ЯМР-исследование парамагнитного состояния низкоразмерных магнетиков LiCu₂O₂ и NaCu₂O₂ // ЖЭТФ. 2017. Т. 151. № 2. С. 335–345.
- Садыков А.Ф., Пискунов Ю.В., Геращенко А.П., Оглобличев В.В., Смольников А.Г., Арапова И.Ю., Волкова З.Н., Буш А.А. Спиновая динамика в низкоразмерных геликоидальных магнетиках LiCu₂O₂ и NaCu₂O₂ // Письма в ЖЭТФ. 2017. Т. 151. № 11. С. 685-690.
- Park S., Choi Y.J., Zhang C.L., Cheong S-W. Ferroelectricity in an S = 1/2 Chain Cuprate // Phys. Rev. Lett. 2007. V. 98. № 5. P. 057601.
- Katsura H., Nagaosa N., Balatsky A.V. Spin Current and Magnetoelectric Effect in Noncollinear Magnets // Phys. Rev. Lett. 2005. V. 95. № 5. P. 057205.

709

- 15. Sergienko I.A., Dagotto E. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites // Phys. Rev. B. 2006. V. 73. № 9. P. 094434.
- Moskvin A.S., Panov Y.D., Drechsler S.-L. Nonrelativistic multiferrocity in the nonstoichiometric spin-1/2 spiralchain cuprate LiCu₂O₂ // Phys. Rev. B. 2009. V. 79. № 10. P. 104112.
- Panov Yu.D., Moskvin A.S., Fedorova N.S., Drechsler S.-L. Nonstoichiometry Effect on Magnetoelectric Coupling in Cuprate Multiferroics // Ferroelectrics. 2013. V. 442. P. 27–41.
- Berger R., Meetsma A., van Smaalen S., Sundberg M. The structure of LiCu₂0₂ with mixed-valence copper from twin-crystal data // J. Less-Common Met. 1991. V. 175. P. 119–129.
- Maljuk A., Kulakova A.B., Sofin M., Capogna L., Strempfera J., Lin C.T., Jansen M., Keimer B. Fluxgrowth and characterization of NaCu₂O₂ single crystals // J. Crystal Growth. 2004. V. 263. P. 338–343.
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides // Acta Crystallographica A. 1976. V. 32. P. 751–767.

- Буш А.А., Каменцев К.Е., Тищенко Э.А., Черепанов В.М. Выращивание и свойства кристаллов системы LiCu₂O₂-NaCu₂O₂ // Неорганические материалы. 2008. Т. 44. № 6. С. 720-726.
- Смольников А.Г., Оглобличев В.В., Верховский С.В., Михалев К.Н., Якубовский А.Ю., Furukawa Y., Пискунов Ю.В., Садыков А.Ф., Барило С.Н., Ширяев С.В. Особенности магнитного порядка в мультиферроике CuCrO₂ по данным ЯМР и ЯКР ^{63, 65}Cu // ФММ. 2017. Т. 118. № 2. С. 142–150.
- 23. *Blinc, R.* Magnetic Resonance and Relaxation in Structurally Incommensurate System // Physics Reports. 1981. V. 79. № 5. P. 331–398.
- 24. Охотников К.С. Магнитные взаимодействия в сильно коррелированных электронных системах на основе 3d элементов: дис. канд. физ.-мат. наук: 01.04.09. М., 2009. 133 с.
- Zhao L., Yeh K.-W., Rao S.M., Huang T.-W., Wu P., Chao W.-H., Ke C.-T., Wu C.-E., Wu M.-K. Anisotropic dielectric and ferroelectric response of multiferroic LiCu₂O₂ in magnetic field // Europhys. Lett. 2012. V. 97. P. 37004.