СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ

УДК 669.24'74:538.91

ДИНАМИЧЕСКИЕ СЦЕНАРИИ ФОРМИРОВАНИЯ МАРТЕНСИТА С ГАБИТУСАМИ {110} В СПЛАВЕ Ni₅₀Mn₅₀

© 2019 г. М. П. Кащенко^{а, b,} *, Н. М. Кащенко^а, В. Г. Чащина^{а, b}, Е. С. Белослудцева^с, В. Г. Пушин^{а, c}, А. Н. Уксусников^с

^аУральский федеральный университет, ул. Мира, 18, Екатеринбург, 620002 Россия ^bУральский государственный лесотехнический университет, ул. Сибирский тракт, 37, Екатеринбург, 620100 Россия ^cИнститут физики металлов УрО РАН, ул. С. Ковалевской, 18, Екатеринбург, 620108 Россия

> *e-mail: mpk46@mail.ru Поступила в редакцию 18.02.2019 г. После доработки 19.02.2019 г. Принята к публикации 18.03.2019 г.

Мартенситное превращение $B2-L1_0$ в упорядоченном сплаве Ni₅₀Mn₅₀, протекающее при сравнительно высоких температурах (980–920 K), обсуждается с использованием динамических представлений о волновом управлении пороговой деформацией. Близость наблюдаемых ориентаций габитусов (и двойниковых границ) к семейству {110} позволяет использовать в качестве управляющих продольные волны вдоль осей (001) (в базисе исходной фазы). Показано, что при температурах начала превращения между расчетными и экспериментальными данными о тетрагональности мартенсита и объемном эффекте имеется удовлетворительное соответствие. Отмечается возможность различных динамических сценариев формирования конечной фазы: обособленные кристаллы, слоистые структуры, в которых кристаллы мартенсита с одинаковыми ориентационными соотношениями чередуются с непревращенными областями аустенита, и пакеты из попарно двойникованных кристаллов. Приводятся примеры соответствующих указанным сценариям наблюдаемых морфотипов.

Ключевые слова: мартенситные превращения, динамическая теория, габитусы, двойники превращения, тетрагональность, объемный эффект

DOI: 10.1134/S0015323019080060

введение

При относительно низких температурах формирование кристаллов мартенсита, обладающих тонкой внутренней двойниковой структурой (ДС), достаточно типично для мартенситных превращений (МП): от ярко выраженных переходов первого рода (например, в неупорядоченных сплавах на основе железа [1, 2]) вплоть до термоупругих превращений (например, в сплавах на основе никелида титана и многих цветных сплавах [3-5]). Двойники превращения, как правило, представляют совокупность чередующихся областей с ортогональными (в исходной фазе) ориентациями главных осей деформации. При феноменологическом кристаллогеометрическом анализе [6-10] двойникование относят к неоднородной деформации, необходимой для сохранения макроскопической инвариантности габитусной плоскости, причем заданной ориентации габитуса соответствует вполне определенное соотношение η основной и двойниковой компонент ДС.

Однако эксперименты [11] показали, что величина η может варьироваться в пределах одного и того же кристалла, а в [12, 13] фиксировались недвойникованные тонкопластинчатые кристаллы либо мидрибы линзовидных кристаллов. В динамической теории МП [14-19] формирование габитусов обусловлено действием относительно длинноволновых смещений (*l*-волны), а образование ДС определяется в составе управляющего волнового процесса (УВП) относительно коротковолновыми смещениями (s-волны). Следовательно, ориентация габитуса не связана с величиной п. В качестве базовой принимается модель образования регулярной ДС с согласованным действием *s*- и ℓ-волн [18, 19]. Возникновение кооперативных волновых смещений атомов (в виде волновых пучков) обусловлено начальными возбужденными (колебательными) состояниями. Причем ℓ-волны продуцируют области в форме вытянутых прямоугольных параллелепипедов, выделенных упругими полями дислокационных центров зарождения, а s-волны порождаются спонтанно возникающими возбужденными ячейками кристаллической решетки при оптимальном (для реализации МП) соотношении фаз *l*-и *s*-колебаний.

Рис. 1. Динамическая модель формирования регулярной слоистой (в частности, двойниковой) структуры с соотношением долей компонент 2/1 [19].

Основная компонента ДС физически выделена, так как именно ее формирование инициируют, главным образом, *s*-волны. Двойниковая же компонента возникает в качестве прослойки между ближайшими основными компонентами (в силу когерентной связи контактирующих областей решетки), то есть процесс ее образования имеет подчиненный характер. Волновые векторы продольных *s*-волн направлены вдоль ортогональных осей симметрии 4-го порядка (100) исходной фазы. В области наложения фронтов s-волн инициируется плоская деформация типа растяжениесжатие. В паре квазипродольных ℓ -волн первая волна обеспечивает общее для обеих компонент ДС бейновское растяжение ε_{1B} вдоль третьей оси из семейства (100). Вторая ℓ -волна инициирует деформацию сжатия, выделяя одновременно в качестве главной оси сжатия основной компоненты ДС ту из осей (100), которая составляет наименьший угол с направлением $\mathbf{n}_{2\ell}$ ее волнового вектора. Индуцированное воспроизводство возбужденной *s*-ячейки (возникшей первоначально спонтанно) в ходе распространения УВП предполагает, что ближайшая к исходной *s*-ячейка возникает после прохождения суперпозицией s-волн за время $T_s/2$ (T_s – период s-колебаний) двух катетов треугольника в направлениях [110] и [110], причем гипотенуза треугольника за то же время проходится со скоростью $v'_{2\ell}$, равной проекции на плоскость (001) скорости ℓ -волны $\mathbf{v}_{2\ell}$, обеспечивающей деформацию сжатия (см. рис. 1).

В предположении, что оба катета проходятся со скоростью $\sqrt{2}v_{sA}$, получаем условие

$$v_{s\Delta} = v'_{2\ell} \cos \psi, \tag{1}$$

где ψ — острый угол между $\mathbf{v}'_{2\ell}$ и $\mathbf{v}_{s\Delta}$ (001). В рамках гармонического описания пороговой деформации считается, как видно из рис. 1, что потеря устойчивости решетки исходной фазы, соответствующей основной компоненте ДС, происходит в области с поперечным размером

$$d_s < \lambda_s/2, \quad d_s^* = d_s/\lambda_s < 1/2. \tag{2}$$

Тогда легко убедиться, что для отношения долей компонент ДС выполняется равенство

$$\beta_{\rm tw} = 4d_s^* / (1 + \mathrm{tg}\psi - 4d_s^*).$$
 (3)

Модель формирования регулярной ДС служит основой для перехода к описанию реальных распределений двойников превращения, как правило, фрагментированных, причем каждый из фрагментов можно связать со своей спонтанно возникшей активной ячейкой [19–22].

Представляет интерес установить возможность использования развитых представлений для описания высокотемпературных МП. В данной работе мы обсудим формирование кристаллов мартенсита в сплаве $Ni_{50}Mn_{50}$ при $B2-L1_0$ МП, обладающих внешними и внутренними границами, близкими по ориентации к семейству {110}, используя результаты динамической теории для регулярной ДС.

ТЕТРАГОНАЛЬНОСТЬ И ОБЪЕМНЫЙ ЭФФЕКТ ДЛЯ КРИСТАЛЛОВ С ГАБИТУСАМИ {110}

Согласно [23–28], в эквиатомном упорядоченном сплаве Ni₅₀Mn₅₀ при охлаждении от температур выше 1000 К наблюдается $B2-L1_0$ или кратко (β - Θ) МП с начальной температурой $M_s \approx (980-$ 970) К и конечной $M_f \approx 920$ К. Тепловой эффект, скачок электросопротивления, как и заметное уменьшение удельного (на атом) объема (относительный объемный эффект $\delta \sim -10^{-2}$) позволяют отнести МП к фазовым переходам I рода, а высокообратимый термоупругий характер МП указывает на достаточно высокую степень когерентности контактирующих фаз, способствующую реализации эффекта памяти формы.

Будем полагать, что скачкообразное изменение состояния при температуре $M_{\rm s}$ сопровождается быстрым волновым ростом тонкой центральной части мартенситного кристалла (задающим ориентацию габитуса) с последующим (в процессе охлаждения) относительно медленным боковым ростом. Ясно, что при такой картине роста кристалла основное внимание при сравнении экспериментальных данных с результатами расчета уделяется данным при температуре $M_{\rm s}$.

Морфологический анализ показывает, что для этого МП типичны кристаллы с габитусами, близкими $\{110\}_{\beta}$. Дальнейший теоретический анализ выполняется для предельного случая совпадения ориентаций границ с $\{110\}_{\beta}$.

Если кристалл возникает как обособленный объект и не имеет тонкой внутренней структуры двойников превращения, то описание его морфологии возможно, как минимум, двумя динамическими вариантами [29]. В первом варианте рассматривается волновой носитель трехмерной пороговой деформации, инициирующий деформацию Бейна и приводящий к вырожденной двойниковой структуре (ВДС), согласно (3), при $d_s^* = 1/4$. Второй вариант связан с волновым носителем, инициирующим плоскую деформацию, дополняемую деформацией в направлении, ортогональном к деформируемой плоскости.

Волновой носитель трехмерной пороговой деформации, включающий пару *s*- и пару ℓ -волн, естественно приводит к двухэтапному описанию деформации в работах [18, 29]. Принципиальным является учет конечной деформации после *s*-этапа, отражаемый введением множителя (1 + ϵ_{1B}).

Если же кристаллы объединяются в пакеты из попарно сдвойникованных кристаллов, причем ориентация границ пакета также принадлежит к совокупности $\{110\}_{\beta}$, то возникший пакет естественно интерпретировать как двойникованный макрокристалл с "внешним" габитусом, например $(101)_{\beta}$, и "внутренними" габитусами (границами двойников превращения), не совпадающими с "внешним", например $(110)_{\beta}$ или $(011)_{\beta}$. Достаточно большие толщины компонентов двойниковой структуры обусловлены высокотемпературным диапазоном МП, когда относительно слабо затухающими могут быть лишь сравнительно низкочастотные моды, входящие в состав УВП.

В принципе, возможен и вариант промежуточной слоистой структуры, в которой вместо двойниковой компоненты макрокристалла присутствуют слои остаточного аустенита.

Далее считаем, что $B2-L1_0$ МП аналогично ОЦК-ГЦК (ГЦТ)-превращению с бейновским типом деформации, обозначения плоскостей и направлений относим к базису исходной фазы, используя символ β . Полагаем, что волновой процесс переносит пороговую деформацию, инициирующую деформацию Бейна, схема которой представлена на рис. 2: в четырех элементарных ячейках ОЦК-фазы (центры масс атомов считаются расположенными в вершинах и центрах кубических ячеек, но не изображены), толстыми линиями выделен прообраз ячейки ГЦТ (или

Рис. 2. Один из трех вариантов выбора элементарной ячейки при деформации Бейна ОЦК-решетки [3] (подстрочные индексы b и f эквивалентны β и Θ).

ГЦК)-фазы. Главная ось растяжения ориентирована вдоль направления $[010]_{\beta} \parallel [001]_{\Theta}$ (ребра ОЦК-ячейки), а главные оси сжатия в равной мере можно выбрать либо вдоль диагоналей граней ОЦК-ячейки, либо вдоль пары ребер $[100]_{\beta}$ и $[001]_{\beta}$. В последнем случае описание формирования основной компоненты ДС для β - Θ МП аналогично механизму образования ДС при γ (ГЦК) — α (ОЦК) МП, и соотношения (1)–(3) не требуют изменений.

Согласно (3), кристаллам с ВДС и габитусами {110}_в сопоставляются значения

$$\Psi = 0 \rightarrow d_s^* = 1/4. \tag{4}$$

Действительно, нормаль N к габитусной плоскости в динамической теории МП [16, 17] сводится к линейной комбинации пары скоростей *ℓ*-волн:

$$\mathbf{N}_{1,2\ell} \parallel \mathbf{n}_{2\ell} \pm \boldsymbol{x}_{\ell\ell} \mathbf{n}_{1\ell}, \quad \boldsymbol{x}_{\ell\ell} = v_{2\ell}/v_{1\ell}, \quad (5)$$

$$|\mathbf{n}_{1,2\ell}| = 1, \ \mathbf{n}_{1\ell} = \mathbf{v}_{1\ell}/v_{1\ell}, \ \mathbf{n}_{2\ell} = \mathbf{v}_{2\ell}/v_{2\ell}.$$
 (6)

Тогда в случае $\psi = 0$ имеем

$$\mathbf{n}_{1\ell} = [001]_{\beta}, \ \mathbf{n}_{2\ell} = [100]_{\beta}, \ N_{1,2\ell} \| [101]_{\beta}, [10-1]_{\beta}.$$
 (7)

Значит, при $\psi = 0$ УВП включает пару продольных ℓ -волн, одна из которых распространяется вдоль $[001]_{\beta}$ и несет деформацию сжатия, а другая распространяется вдоль $[100]_{\beta}$ и несет деформацию растяжения. Пара *s*-волн аналогична представленным на рис. 1, они распространяются вдоль ортогональных направлений Δ -осей симметрии четвертого порядка и несут деформацию типа "растяжение—сжатие", согласованную с ℓ -волнами.

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 120 № 8 2019

Таблица 1. Значения t_{γ} в зависимости от $-\varepsilon_{2B}$

$-\epsilon_{2B}$	0	0.11	$-\epsilon_{2B}^{*}$	0.12	0.13
tγ	$1/\sqrt{2}$	0.979	1	1.008	1.038

При $\psi = 0$ соотношение (1) принимает вид:

$$v_{\ell\Delta}/v_{\ell\Sigma} = \mathfrak{a}_{\ell s} = 1. \tag{8}$$

Ясно, что условие (8) легко выполняется в области волновых векторов, для которых без существенной потери точности можно пренебречь различием скоростей из-за дисперсии, например, до волновых векторов $q \sim 0.1q_{\text{max}} = 0.2 \pi/a$, где a – параметр решетки исходной фазы.

Заметим, что ориентировки нормалей

$$\mathbf{N}_{1,2s} \| [110]_{\beta}, [1-10]_{\beta} \tag{9}$$

к плоскостям двойникования тривиально находятся из (6) при заменах

$$\begin{aligned} \mathbf{\mathfrak{x}}_{\ell\ell} \to \mathbf{\mathfrak{x}}_{ss} &= 1, \quad \mathbf{n}_{1\ell} \to \mathbf{n}_{1s} = \begin{bmatrix} 010 \end{bmatrix}_{\beta}, \\ \mathbf{n}_{2\ell} \to \mathbf{n}_{2s} &= \begin{bmatrix} 100 \end{bmatrix}_{\beta}. \end{aligned} \tag{10}$$

В случае кристаллов с габитусами (110)_β легко связать тетрагональность *t* мартенсита с одним из главных значений тензора деформации Бейна.

В динамической теории МП кинематическому описанию габитуса в пороговом режиме соответствует деформационное описание. Из требования совпадения этих описаний следует, что отношения модулей деформаций сжатия $\varepsilon_2 < 0$ и растяжения $\varepsilon_1 > 0$ в пороговом режиме совпадают с отношениями квадратов скоростей волн:

$$\varepsilon_1 / |\varepsilon_2| = (\alpha_{\ell \ell})^2. \tag{11}$$

Тогда естественно считать, что потерявшая устойчивость решетка аустенита, трансформируясь в новые устойчивые положения атомов, сохраняет отношение деформаций в диапазоне от пороговых до финишных значений. Дополнительно полагаем, что первый быстрый этап превращения связан с коротковолновыми s-деформациями (за время порядка T_s периода s-колебаний), причем уже на этом этапе достигается финишная (бейновская ϵ_{2B}) деформация сжатия в $[100]_{\beta}$ направлении $\epsilon_{2s} = \epsilon_{2B} < 0$. Так как $\mathfrak{a}_{ss} = 1$, то и деформация растяжения вдоль [010]_в на первом этапе достигает значения $\varepsilon_{1s} = -\varepsilon_{2s} = -\varepsilon_{2B}$. Поскольку на втором этапе (за время порядка T_{ℓ} периода ℓ -колебаний) сжатие и растяжение осуществляются также волнами с одинаковыми скоростями, то деформационные вклады $\varepsilon_{2\ell} = -\varepsilon_{1\ell}$. Из ГЦТ-симметрии решетки мартенсита следует, что деформация сжатия $\epsilon_{2\ell}$ вдоль оси [001]_в равна деформации $\varepsilon_{2s} = \varepsilon_{2B}$. Следовательно, $\varepsilon_{1\ell} = -\varepsilon_{2B}$,

то есть на втором этапе вклад ℓ -волны в главную бейновскую деформацию растяжения равен вкладу от *s*-волны на первом этапе. Учтем далее, что, в силу неравенства $T_{\ell} \ge T_s$, ℓ -растяжение действует уже на растянутую решетку. В результате, линейный размер *a* (параметр решетки ОЦКаустенита) в направлении [010]_β увеличивается в $(1 + |\varepsilon_{2B}|)^2$ раз, тогда как поперечный размер $a/\sqrt{2}$ убывает в $(1 - |\varepsilon_{2B}|)$ раз. Значит, для определения *t* сцелует взять отношение размера ребра куба ис-

следует взять отношение размера ребра куба исходной элементарной ячейки ОЦК-решетки после деформации растяжения к размеру половины диагонали грани после деформации сжатия:

$$t_{\gamma} = (1 + |\varepsilon_{2B}|)^2 / [(1 - |\varepsilon_{2B}|)\sqrt{2}].$$
 (12)

Согласно (12), отсутствию тетрагональности ($t_{\gamma} = 1$) удовлетворяет значение $|\varepsilon_{2B}^*| \approx 0.1173$, $t_{\gamma} < 1$ при $|\varepsilon_{2B}| < |\varepsilon_{2B}^*|$ и $t_{\gamma} > 1$ при $|\varepsilon_{2B}| > |\varepsilon_{2B}^*|$. Это иллюстрируют данные табл. 1.

При тех же допущениях легко находим относительное изменение удельного (на атом) объема δ:

$$\delta_{\Theta} = -\varepsilon_{2B}^2 (2 - \varepsilon_{2B}^2) \approx -2\varepsilon_{2B}^2 < 0.$$
 (13)

Т.е. при значениях $\epsilon_{2B} \sim 0.1$ объемный эффект $\delta \sim \sim -0.02.$

Строго говоря, снятие вырождения по ориентировкам плоскостей двойникования предполагает выполнение перехода по значениям $\psi: \psi \leq 0$ либо $\psi \geq 0$.

СРАВНЕНИЕ РАСЧЕТНЫХ И ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Как отмечалось ранее, наибольший интерес представляет сравнение данных при температуре *М_s*. В цикле работ [24–28] данные для температурных зависимостей параметров ГЦТ a_{Θ} и c_{Θ} решетки мартенсита (и тетрагональности $t_{\Theta} = c_{\Theta}/a_{\Theta}$) приведены в графической форме в интервале от комнатной температуры до 950 К < M_s ≈ (980-970) К. Если использовать численные данные измерений при температурах 900 и 950 К для линейной экстраполяции, то значению температуры $M_{s1} = 980$ K соответствуют: параметры решетки $a_{\Theta 1} \approx 0.389482$ нм, $c_{\Theta 1} \approx 0.3482$ нм, величина $t_{\Theta 1} \approx 0.894$ и удельный (на атом) объем $V_{\Theta 1} \approx 0.01320515$ нм³. При параметре решетки *B2* фазы $a_{\beta} \approx 0.2988$ нм удельный (на атом) объем $V_{\beta} \approx 0.01333865$ нм³ (на графиках в [24] приведена несколько меньшая величина). Тогда в качестве экспериментального значения принимаем

$$\delta_{\Theta,e1} = (V_{\Theta 1} - V_{\beta})/V_{\beta} \approx -0.01001 \ (\approx -1\%).$$

Рис. 3. Типичные электронно-микроскопические изображения одиночного кристалла мартенсита с внутренней двойниковой структурой ДС (а) и пакета кристаллов мартенсита с ВДС, разделенной АФГ (б).

Рис. 4. Типичные электронно-микроскопические изображения систем пакетов (а) и отдельного пакета (б) с иерархией вариантов попарно двойникованных кристаллов мартенсита.

С другой стороны, полагая в (12) $t_{\Theta 2} \approx 0.894$, находим $|\varepsilon_{2B}|_1 \approx 0.07905$ и, подставляя $|\varepsilon_{2B}|_1$ в (13), получаем расчетный объемный эффект:

 $\delta_{\Theta_{c1}} \approx -0.01246 \ (\approx -1.25\%).$

Для значения температуры $M_{s2} = 970$ К при той же экстраполяции получаем:

 $a_{\Theta 2} \approx 0.38899 \approx 0.389$ нм, $c_{\Theta 2} \approx 0.3483$ нм, $t_{\Theta 2} \approx 0.8954$, а затем $V_{\Theta 2} \approx 0.01317546$ нм³ и

$$\delta_{\Theta,e2} \approx -0.01223 \ (\approx -1.22\%).$$
 (14)

При $t_{\Theta 3} \approx 0.8954$ из (12) находим $|\varepsilon_{2B}|_2 \approx 0.079586$ и из (13)

$$\delta_{\Theta_{c2}} \approx -0.01263 \ (\approx 1.26\%).$$
 (15)

Соответствие между экспериментальными данными (14) и расчетными (15) выглядит удовлетворительным.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Прежде всего отметим, что часть наблюдаемых морфологических вариантов МП может быть сопоставлена с отмеченными выше сценариями (см. рис. 3–5). Полезно иметь в виду, что в [29] переход к ВДС допускал идеальное смыкание соседних основных компонент ДС. Однако для реальной дискретной решетки вместо идеального сочленения следует ожидать появления неоднородностей, например, антифазных границ (АФГ) или дислокаций. В связи с этим, не исключено, что кристаллу на рис. 3, содержащему АФГ, соответствует вариант ВДС. Морфотип на рис. 4 отвечает пакету из пар кристаллов с чередующимися двойниковыми ориентировками, который можно рассматривать как двойникованный "макрокристалл". Наконец, вариант на рис. 5 соответствует промежуточной слоистой структуре, в которой вместо двойниковой компоненты присутствует непревращенная исходная фаза.

Разумеется, более полный морфометрический анализ наблюдаемых структурных вариантов представляет отдельную задачу. Традиционный интерес вызывают, например, особенности сочленений кристаллов [23].

Интересно отметить, что внутри попарно сдвойникованных крупных компонент макрокристалла наблюдаются (по крайней мере, при комнатных температурах) и нанодвойники, физическая природа возникновения которых требу-

Рис. 5. Типичные электронно-микроскопические изображения пакетной морфологии кристаллов мартенсита, чередующихся со слоями остаточного непревращенного (а–в) или ревертированного (г) аустенита.

ет отдельного объяснения. В [23-27] они условно отнесены к "вторичным". Формально их появление можно рассматривать как следствие аналогичного механизма динамического двойникования, происходящего в более коротковолновом диапазоне *s*-волн, где еще оправданно пренебрежение нелинейностью закона дисперсии фононов в направлениях (001). Тогда пакет кристаллов интерпретировался бы как иерархическая структура с тремя масштабными уровнями согласованно действующих чисто продольных волн с волновыми векторами вдоль осей симметрии четвертого порядка.

Однако появление нанодвойников по тому же динамическому механизму при высокотемпературном МП должно быть затруднено из-за сильного затухания коротковолновых смещений. Поэтому при толщинах "вторичных" двойников порядка параметра решетки, их возникновение может быть обусловлено протеканием низкотемпературного аккомодационного этапа МП (без изменения макроскопических морфологических признаков), либо адаптацией системы к внутренним напряжениям посредством механического нанодвойникования или наследования поперечных коротковолновых смешений атомов (но с конечными частотами) в направлениях (110), соответствующих стоячим волнам, явно отражающих тенденцию, проявляющуюся еще в предпереходном состоянии [30, 31].

Удовлетворительное соответствие между расчетными и экспериментальными значениями объемного эффекта и тетрагональности (особенно для температуры $M_s \approx 970$ К, соответствующей большей степени переохлаждения ниже температуры равновесия фаз), по-видимому, свидетельствует в пользу волнового носителя трехмерной пороговой деформации. Разумеется, само превращение носит "размытый" характер, и, абсолютно строго, выделить единственное значение M_s нельзя.

Полезно также иметь в виду, что в случае волнового носителя, инициирующего плоскую деформацию, возможно не только последующее однородное деформирование, но и неоднородный коротковолновый (перетасовочный) сдвиг [30–33].

ЗАКЛЮЧЕНИЕ

Выполненный анализ показывает, что наблюдаемым в сплаве $Ni_{50}Mn_{50}$ при $B2-L1_0$ МП кристаллам мартенсита с наборами ориентаций внешних и внутренних границ, близких к семейству {110}_β, в динамической теории МП естественно сопоставляются наборы чисто продольных ℓ - и *s*-волн с волновыми векторами, коллинеарными $\langle 001 \rangle_{\beta}$. По-видимому, часть одиночных недвойникованных кристаллов можно интерпретировать как кристаллы с вырожденной структурой двойников превращения. Напротив, пакет попарно двойникованных кристаллов можно интерпретировать как двойникованный макрокристалл.

Преимущество формирования кристаллов с наборами ориентаций границ $\{110\}_{\beta}$ обусловлено возможностью согласования скоростей ℓ - и *s*-волн независимо от степени упругой анизотропии кристаллов в широком диапазоне волновых векторов.

Изложенный вариант механизма термоупругого мартенситного превращения является дополнительным к принимаемому обычно качественному варианту сдвиговой перестройки, ассоциируемой с наиболее мягкой поперечной модой.

Работа выполнена в рамках государственного задания Минобрнауки России (шифр "Структура", № АААА-А18-118020190116-6) и при частичной поддержке УрО РАН (проект № 18-10-2-39) и РФФИ (проект № 18-32-00529 мол_а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Билби Б.А., Христиан И.В. Мартенситные превращения // УФН. 1960. Т. 70. № 3. С. 515-564.
- 2. *Курдюмов Г.В., Утевский Л.М., Энтин Р.И.* Превращения в железе и стали. М.: Наука, 1977. 238 с.
- 3. *Варлимонт Х., Дилей Л*. Мартенситные превращения в сплавах на основе меди, серебра и золота. М.: Наука, 1980. 205 с.
- Knowles K.M., Smith D.A. The crystallography of the martensitic transformation in equiatomic nickel-titanium // Acta Metal. 1981. V. 29. P. 101–110.
- Miyazaki S., Otsuka K., Wayman C.M. The Shape Memory Mechanism Associated with the Martensitic Transformation in Ti-Ni alloys–I. Self-accommodation // Acta Metal. 1989. V. 37. № 7. P. 1873–1884.
- Wechsler M.S., Lieberman D.S., Read T.A. On the theory of the formation of martensite // J. Metals. 1953. November. P. 1503–1515.
- Bowles J.S., Mackenzie J.K. The crystallography of martensite transformations I // Acta Metal. 1954. V. 2. № 1. P. 129–137.
- Bowles J.S., Mackenzie J.K. The crystallography of martensite transformations II // Acta Metal. 1954. V. 2. № 1. P. 138–147.
- Bowles J.S., Mackenzie J.K. The crystallography of martensite transformations III. Face-centered cubic to bodycentered tetragonal transformations // Acta Metal. 1954. V. 2. № 3. P. 224–234.
- Greninger A.B., Troiano A.R. The mechanism of martensite formation // Metal. Trans. 1949. V. 185. P. 590–598.
- Maki T., Wayman C.M. Transformation Twin Width Variation in Fe–Ni and Fe–Ni–C Martensites // Proc. 1st JIM Int. Symp. On New Aspects of Martensitic Transformation. Suppl. Trans. JIM. 1976. V. 17. P. 69–74.
- 12. Счастливцев В.М., Калетина Ю.В., Фокина Е.А. Мартенситное превращение в магнитном поле. Екатеринбург: УрО РАН, 2007. 322 с.
- 13. Сагарадзе В.В., Катаева Н.В., Кабанова И.Г., Завалишин В.А., Валиуллин А.И., Клюкина М.Ф. Струк-

турный механизм обратного $\alpha \rightarrow \gamma$ превращения и упрочнение Fe–Ni сплавов // ФММ. 2014. Т. 115. № 7. С. 704–715.

- Кащенко М.П., Чащина В.Г., Вихарев С.В. Динамические модели формирования двойникованных кристаллов. І. Управляющий волновой процесс и снятие вырождения по ориентации двойниковых границ при мартенситных превращениях // ФММ. 2010. Т. 110. № 3. С. 212–222.
- Кащенко М.П., Чащина В.Г., Вихарев С.В. Динамические модели формирования двойникованных кристаллов. П. Предпереходные состояния и соотношения объемов двойниковых компонент // ФММ. 2010. Т. 110. № 4. С. 323–335.
- Кащенко М.П., Чащина В.Г. Динамическая модель сверхзвукового роста мартенситных кристаллов // УФН. 2011. Т. 181. № 4. С. 345–364.
- 17. *Kashchenko M.P., Chashchina V.G.* Formation of martensite crystals in the limiting case of a supersonic growth rate // Letters Mater. 2014. V. 4. № 4. P. 308–315.
- 18. Kashchenko M.P., Chashchina V.G. Dynamic Theory of $\gamma-\alpha$ Transformation in Iron Based Alloys. Solving the Problem of the Formation of Twinned Martensite Crystals. Saarbrucken (Germany). Lambert Academic., 2012. 110 p.
- Kashchenko M.P., Kashchenko N.M., Chashchina V.G. Dynamic options for forming transformation twins // Materials Today: Proceedings. 2017. V. 4. P. 4605–4610.
- Кащенко М.П., Чащина В.Г. Ключевая роль двойников превращения при сравнении результатов кристаллогеометрического и динамического анализа для тонкопластинчатого мартенсита // ФММ. 2013. Т. 114. № 10. С. 894–898.
- 21. Кащенко М.П., Кащенко Н.М., Чащина В.Г. Влияние изменения длин волн коротковолновых смещений на формирование фрагмента двойниковой структуры кристаллов α-мартенсита // ФММ. 2018. Т. 119. № 1. С. 3–8.
- 22. *Kashchenko M.P., Latypov I.F., Chashchina V.G.* Correlation of velocities of the waves controlling the thin-plate α-martensite formation and the modulation of the transformation twin structure // Letters Mater. 2017. V. 7. № 2. P. 146–150.
- Adachi K., Wayman C.M. Electron microscopic study of θ-phase martensite in Ni–Mn alloys // Metal. Trans. A. 1984. V. 16. № 9. P. 1581–1597.
- 24. Пушин В.Г., Белослудцева Е.С., Казанцев В.А., Коуров Н.И. Особенности мартенситного превращения и тонкая структура интерметаллического соединения Ni₅₀Mn₅₀ // Материаловедение. 2012. № 11. С. 3–10.
- Пушин В.Г., Куранова Н.Н., Марченкова Е.Б., Белослудцева Е.С., Казанцев В.А., Коуров Н.И. Высокотемпературный эффект памяти формы и термоупругое мартенситное превращение B2-L1₀ в интерметаллическом соединении NiMn // ЖТФ. 2013. Т. 83. № 6. С. 104–113.
- 26. Белослудцева Е.С., Куранова Н.Н., Коуров Н.И., Пушин В.Г., Стукалов В.Ю., Уксусников А.Н. Влияние легирования алюминием на структуру, фазовый состав и термоупругие мартенситные превращения в

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 120 № 8 2019

тройных сплавах Ni-Mn-Al // ЖТФ. 2015. Т. 85. № 7. С. 55-59.

- Белослудцева Е.С., Куранова Н.Н., Коуров Н.И., Пушин В.Г., Уксусников А.Н. Влияние легирования титаном на структуру, фазовый состав и термоупругие мартенситные превращения в тройных сплавах Ni-Mn-Ti // ЖТФ. 2015. Т. 85. № 9. С. 71–76.
- 28. Пушин В.Г., Белослудцева Е.С., Марченкова Е.Б. Многокомпонентные интерметаллические сплавы на основе Ni–Mn с термо-, механо- и магнитоуправляемыми эффектами памяти формы // ФММ. 2018. Т. 119. № 12. С. 1191–1195.
- 29. Kashchenko M.P., Kashchenko N.M., Chashchina V.G. The formation of martensite crystals with a degenerate structure of transformation twins // Letters Mater. 2018. V. 8. № 4. P. 429–434.

- Пушин В.Г., Кондратьев В.В., Хачин В.Н. Предпереходные явления и мартенситные превращения. Екатеринбург: УрО РАН, 1998. 368 с.
- Лободюк В.А., Коваль Ю.Н., Пушин В.Г. Кристаллоструктурные особенности предпереходных явлений и термоупругих мартенситных превращений в сплавах цветных металлов // ФММ. 2011. Т. 111. № 2. С. 169–194.
- 32. *Кащенко М.П., Чащина В.Г.* Кристаллодинамика ОЦК-ГПУ мартенситного превращения. І. Управляющий процесс // ФММ. 2008. Т. 105. № 6. С. 571–577.
- Кащенко М.П., Чащина В.Г. Кристаллодинамика ОЦК-ГПУ мартенситного превращения. П. Морфология мартенсита // ФММ. 2008. Т. 106. № 1. С. 16–25.