ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ, 2020, том 121, № 1, с. 18–24

ТЕОРИЯ МЕТАЛЛОВ

УДК 669.24:539.12.043

МОДЕЛИРОВАНИЕ ПЕРВИЧНЫХ РАДИАЦИОННЫХ ПОВРЕЖДЕНИЙ В НИКЕЛЕ

© 2020 г. Р. Е. Воскобойников*

Национальный исследовательский центр "Курчатовский институт", пл. академика Курчатова, 1, Москва, 123182 Россия *e-mail: roman.voskoboynikov@gmail.com Поступила в редакцию 21.06.2019 г. После доработки 06.08.2019 г. Принята к публикации 20.08.2019 г.

Методом молекулярной динамики исследован процесс радиационного дефектообразования в каскадах смещений, инициированных первично выбитыми атомами (ПВА) с энергией $E_{\Pi BA} = 5$, 10, 15 и 20 кэВ в никеле при температуре T = 100, 300, 600, 900 и 1200 К. Чтобы обеспечить статистическую достоверность результатов, для каждой пары параметров ($E_{\Pi BA}$, T) смоделирована серия из 24 каскадов. Анализ результатов моделирования позволил определить число пар Френкеля $N_{\rm FP}$, долю вакансий $\sigma_{\rm vac}$ и междоузельных атомов (SIA) $\sigma_{\rm SIA}$ в кластерах точечных дефектов, средний размер вакансионных $\langle N_{\rm vac} \rangle$ и междоузельных $\langle N_{\rm SIA} \rangle$ кластеров и среднее число вакансионных $\langle Y_{\rm vac} \rangle$ и междоузельных $\langle Y_{\rm SIA} \rangle$ кластеров, образованных в каскадах смещений, как функцию энергии ПВА и температуры моделирования ($E_{\Pi BA}$, T). Показано, что соотношение $\langle N_{\rm FP} \rangle = 2 \pm 0.9 \times E_{\Pi BA}^{1.1\pm0.1}$ выполняется при всех смоделированных условиях облучения. Величины $\langle \sigma_{\rm vac} \rangle$ и $\langle \sigma_{\rm SIA} \rangle$ демонстрируют идентичную функциональную зависимость от $E_{\Pi BA}$. При этом $\langle \sigma_{\rm vac} \rangle$ повторяет зависимость $\langle Y_{\rm vac} \rangle$, тогда как $\langle \sigma_{\rm SIA} \rangle$ определяется $\langle N_{\rm SIA} \rangle$ и подвижностью междоузлий. Значение $\langle N_{\rm vac} \rangle$ зависит от температуры облучения и термической устойчивости вакансионных кластеров. Вакансионные кластеры стабильны при $T \le 300$ К, и $\langle N_{\rm vac} \rangle \propto E_{\Pi BA}$, тогда как при 600 К $\le T \le 900$ К $\langle N_{\rm vac} \rangle \approx 6$ и 10, что соответствует размерам регулярных тетраэдров дефекта упаковки. Число $\langle Y_{\rm SIA} \rangle$ пропорционально $\langle N_{\rm FP} \rangle$, а

Ключевые слова: никель, радиационные повреждения, каскады смещений, компьютерное моделирование, молекулярная динамика, вакансии, междоузельные атомы, кластеры точечных дефектов **DOI:** 10.31857/S0015323020010192

ВВЕДЕНИЕ

значит, и $E_{\Pi BA}$ во всем диапазоне энергий ПВА.

Высокая температура эксплуатации разрабатываемых энергетических реакторов четвертого поколения по сравнению с действующими водоводяными энергетическими реакторами второго и третьего поколения [1] позволяет практически вдвое (до $\approx 60\%$) увеличить эффективность конверсии тепловой энергии в механическую за счет комбинирования термодинамических циклов Брайтона и Ранкина [2]. Однако повышение рабочей температуры реакторов зависит от создания новых конструкционных материалов, способных функционировать в условиях одновременного интенсивного термического воздействия, приложенных напряжений, в химически активной/окислительной среде под действием реакторного облучения. Благодаря своей исключительной по сравнению с аустенитными и мартенситно-ферритными сталями коррозионной стойкости и сопротивлению термической ползучести, жаропрочные никелевые сплавы рассматриваются в качестве основных конструкционных материалов для использования в трех из шести существующих дизайнов ядерных энергетических установок четвертого поколения [1, 3].

Для того чтобы сертифицировать использование существующих и разрабатываемых никелевых сплавов в предполагаемых экстремальных условиях, необходимо количественно измерить негативное воздействие операционной среды на их эксплуатационные свойства. Проведение экспериментальных исследований, направленных на решение этой задачи, часто требует больших временны́х и материальных затрат. Более того, в силу линейных и временны́х масштабов, не все протекающие процессы и явления могут быть исследованы экспериментальными методами. По этой причине представляется важным дополнить экспериментальные исследования радиационных эффектов в облучаемых материалах компьютерным моделированием.

Существующие программы моделирования радиационных эффектов в никеле (см., напр., [4, 5]), не рассматривают влияние температуры облучения на уровень остаточных радиационных повреждений и статистику кластерообразования. Чтобы восполнить этот пробел, был смоделирован процесс первичного радиационного дефектообразования в каскадах смещений в никеле в широком диапазоне температур облучения и энергий первично выбитых атомов (ПВА).

ФОРМУЛИРОВКА ЗАДАЧИ

Каскады смещений инициируются ПВА с энергиями $E_{\Pi BA} \ge 1$ кэВ и являются основным источником радиационных повреждений, создаваемых в материалах, подвергаемых облучению быстрыми частицами в режиме упругих потерь энергии. Оценка характерных линейных размеров и времени релаксации каскадов смещений составляет $\approx 5-30$ нм и $\approx 2-20$ пс соответственно в зависимости от материала мишени, энергии ПВА и температуры облучения. Малые времена и размеры не позволяют исследовать процессы, протекающие в каскадах, экспериментальными методами, но первичное дефектообразование в каскадах смещений может быть смоделировано методом молекулярной динамики (МД).

Формирование радиационных повреждений в каскадах смещений — это стохастический процесс, для статистически корректного описания которого необходима репрезентативная выборка. Для определения минимального необходимого размера статистической выборки использована простая процедура, предложенная и опробованная ранее [6, 7]. Исследование первичного дефектообразования в никеле, подвергаемом облучению быстрыми частицами, таким образом, сводится к моделированию серии каскадов смещений методом МД в широком диапазоне значений энергий ПВА и температур облучения с последующей статистической обработкой результатов моделирования и визуализацией дефектной микроструктуры материала.

ИСПОЛЬЗОВАННЫЕ МЕТОДЫ И ПОДХОДЫ

Для вычисления сил межатомного взаимодействия в никеле использован межатомный потенциал [8], построенный по методу внедренного атома. На коротких расстояниях парная часть потенциала модифицирована подстановкой универсального потенциала Зиглера—Бирсака—Литтмарка [9]. Экспериментально измеренная пороговая энергия

Таблица 1. Температурная зависимость равновесного параметра ГЦК-структуры никеля

Температура кристалла, К	Равновесный параметр решетки <i>а</i> , нм
0	0.352
100	0.35222
300	0.35277
600	0.35368
900	0.35472
1200	0.35585

смещения в никеле $E_d = 23 \pm 2$ эВ [10, 11] использована в качестве подгоночного параметра. Пороговая энергия смещения модифицированного потенциала составляет 23 < $E_d \le 24$ эВ. Для подгонки потенциала использовали процедуру, описанную в [12]. Подгонка потенциала никак не повлияла на равновесный параметр решетки, энергию когезии $E_0 = -4.45$ эВ, энергию образования вакансии $E_y^f = 1.57$ эВ, модули упругости, энергию дефектов упаковки, энергию свободной поверхности и т.п.

Каскады смещений в никеле смоделированы для температур T = 100, 300, 600, 900 и 1200 К. Теорема о вириале [13] использована для определения температурной зависимости равновесных параметров решетки, соответствующих нулевым внутренним напряжениям. Значения равновесных параметров решетки при температурах моделирования приведены в табл. 1.

Статистический ансамбль *NVE* использован для моделирования радиационных повреждений в каскадах смещений. Моделируемые кристаллы никеля имели кубическую форму с гранями {100}. Периодические граничные условия использованы на всех гранях кристалла.

Каскады смещений инициированы ПВА с энергией $E_{\Pi BA} = 5$, 10, 15 и 20 кэВ. Чтобы смоделировать изотропное пространственное и случайное временное распределение ПВА, их вводили в разных местах кристалла вдоль одного из кристаллографических направлений (123) в различные моменты времени. Для каждой пары значений параметров ($E_{\Pi BA}$, T) была смоделирована серия из 24 каскадов смещений.

Размер моделируемого кристалла масштабировали в зависимости от энергии ПВА в пропорции $\approx 10^{-2}$ эВ/атом (см. табл. 2) так, чтобы каскады смещений не пересекали границы кристалла. Перед введением ПВА кристалл никеля приводили в состояние термодинамического равновесия для температуры моделирования в течение 1 × 10⁴ МД-итераций. МД-моделирование проводили без контроля температуры. Пример характерного изменения

\mathbf{a}	1	J
Z	ι	J
_	- 7	۰.

Таблица 2. Число атомов <i>N</i> _{box} в кристалле :	никеля, ис-
пользуемом для моделирования каскадов	смещений,
инициированных ПВА с энергией <i>Е</i> _{ПВА}	

-	
$E_{\Pi \mathrm{BA}}$, кэ B	Число атомов никеля N _{box} в моделируемом кристалле
5	500000
10	1048576
15	1492992
20	2048000

эффективной температуры Максвелла на разных стадиях эволюции каскада смещений, инициированного ПВА с энергией $E_{\Pi BA} = 20$ кэВ, в никеле при температуре облучения T = 100 К показан на рис. 1. Энергия, вносимая ПВА, не извлекалась из системы, а соответствующее повышение температуры кристалла после релаксации каскада смещений не превышало ≈40 град ни в одном из смоделированных кристаллов.

На начальной стадии развития каскада смещений относительно небольшое число атомов кристалла движется с большой скоростью, в то время как основной объём материала продолжает находиться в состоянии термодинамического равновесия. В методе скоростей Верле [14], использованном для интегрирования уравнений движения в этой работе, для сходимости решения шаг интегрирования по времени τ выбирается, исходя из энергии самого быстрого атома. Сразу после введения ПВА шаг интегрирования τ , обеспечивающий сходимость, падает на три порядка величины (см. рис. 1). Таким образом, прямое интегрирование уравнений движения всего ансамбля ведет к неэффективному использованию вычислительных ресурсов. Для оптимизации вычислений на

начальной стадии развития каскадов смещений использован метод [15]. Устойчивость алгоритма [15] протестирована ранее, а сам метод неоднократно применяли при моделировании радиационных повреждений в алюминии [16, 17], меди [18, 19], α -цирконии [19, 20], интерметаллидах γ -TiAl [21], α_2 -Ti₃Al [22] и γ -Ni₃Al [23], а также при исследованиях взаимодействия каскадов смещений с дислокациями [24, 25].

Для идентификации и визуализации радиационных дефектов использованы критерий Линдеманна [26], метод ячеек Вигнера—Зейтса [27] и кластерный анализ [18]. Пороговый радиус, использованный в критерии Линдеманна, равен 0.3a, где a — это равновесный параметр решетки. Радиус первой координационной сферы $a/\sqrt{2}$ применяли при определении кластеров точечных дефектов в кластерном анализе.

АНАЛИЗ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Число пар Френкеля $N_{\rm FP}$, образованных в индивидуальных каскадах смещений в никеле, и соответствующие средние значения $\langle N_{\rm FP} \rangle$ как функция ($E_{\rm пВА}$, T) приведены на рис. 2. Зависимость $\langle N_{\rm FP} \rangle$ от $E_{\rm пВА}$ близка к линейной при всех смоделированных условиях облучения. Если энергия ПВА задана в единицах кэВ, среднее число пар Френкеля аппроксимируется соотношением $\langle N_{\rm FP} \rangle = 2 \pm 0.9 \times E_{\rm пВА}^{1.1\pm0.1}$. Простая функциональная форма позволяет легко экстраполировать зависимость $\langle N_{\rm FP} (E_{\rm пВА}) \rangle$ в область $E_{\rm пВА} > 20$ кэВ. С увеличением $E_{\rm пВА}$ наиболее резкий рост $\langle N_{\rm FP} \rangle$ происходит при низкой температуре облучения. Увеличение температуры ведет к постепенному снижению

Рис. 1. Эффективная температура Максвелла *T*, шаг интегрирования по времени τ и число пар Френкеля $N_{\rm FP}$ на различных этапах эволюции каскада смещений, инициированного ПВА с энергией $E_{\Pi BA} = 20$ кэВ в никеле при температуре 100 К.

Рис. 2. Число пар Френкеля $N_{\rm FP}$, образованных в каскадах смещений в никеле. Открытыми символами показаны значения $N_{\rm FP}$ после релаксации отдельных каскадов (показано со смещением). Соответствующие средние значения $\langle N_{\rm FP} \rangle$ в серии каскадов с одинаковыми параметрами ($E_{\Pi {\rm BA}}$, T) показаны закрашенными символами. Вертикальными отрезками здесь и далее обозначены стандартные ошибки среднего.

 $\langle N_{\rm FP} \rangle$, и наиболее резкое падение наблюдается при высоких энергиях ПВА.

Дисперсия значений N_{FP} велика даже для каскадов смещений, смоделированных при одинаковых значениях параметров ($E_{\Pi BA}$, T). Разброс N_{FP} увеличивается с ростом *Е*_{ПВА} и снижением *Т*. Чтобы получить статистически достоверные значения $N_{\rm FP}$ в зависимости от ($E_{\Pi BA}$, T), следует определить минимально необходимый размер статистической выборки. В проводимом исследовании для определения размера выборки использована зависимость $N_{\rm FP}$ от числа *n* смоделированных каскадов в серии с одинаковыми значениями $(E_{\Pi BA}, T)$ (см. пример на рис. 3). С ростом $n, \langle N_{FP} \rangle$ сходится к своему "стационарному" значению, определяя минимально необходимый размер ñ выборки (в примере на рис. 3 соответствует соотношению $\tilde{n} \ge 18$).

Доля $\sigma_{vac} = \Sigma N_{vac}/N_{FP}$ вакансий в вакансионных кластерах размером $N_{vac} \ge 3$ и $\sigma_{SIA} = \Sigma N_{SIA}/N_{FP}$ междоузлий (SIAs) в междоузельных кластерах размером $N_{SIA} \ge 4$ определены и усреднены по серии каскадов с одинаковыми значениями ($E_{\Pi BA}$, T), рис. 4. Как (σ_{vac}), так и (σ_{SIA}) демонстрируют похожую зависимость от $E_{\Pi BA}$ при всех условиях моделирования. Единственное исключение – это постоянное значение (σ_{vac}) $\approx 0.06-0.07$ при T = 1200 K, т.е. фактическое отсутствие кластерообразования и доминирование изолированных вакансий и дивакансий в облученном никеле при высоких температурах.

Рис. 3. Зависимость $\langle N_{\rm FP} \rangle$ от числа *n* каскадов в статистической выборке. Каскады инициированы ПВА с энергией $E_{\Pi BA}$ = 20 кэВ.

Зависимость $\langle \sigma_{vac} \rangle$ повторяет зависимость среднего числа вакансионных кластеров $\langle Y_{vac} \rangle$ на каскад (см. рис. 5 для сравнения). Число создаваемых радиационных дефектов в 5 кэВ каскадах смещений мало́ при всех температурах облучения за исключением T = 100 К (см. рис. 2). По этой причине как $\langle \sigma_{vac} \rangle$, так и $\langle Y_{vac} \rangle$ малы при 300 $\leq T \leq 1200$ К и относительно велики при низкой температуре.

Увеличение $\langle N_{\rm FP} \rangle$, вызванное увеличением $E_{\Pi BA}$ от 5 до 10 кэВ, сопровождается увеличением $\langle Y_{\rm vac} \rangle$ и $\langle \sigma_{\rm vac} \rangle$ при температуре 300 $\leq T \leq$ 900 К. Такое же увеличение энергии ПВА при T = 100 К не приводит к росту $\langle Y_{\rm vac} \rangle$ в силу того, что число создаваемых вакансий просто недостаточно для образования более одного кластера. Однако дальнейшее увеличение энергии ПВА и, следовательно, $N_{\rm FP}$

Рис. 4. Доля вакансий $\langle \sigma_{vac} \rangle$ и междоузлий $\langle \sigma_{SIA} \rangle$ в кластерах точечных дефектов в зависимости от ($E_{\Pi BA}$, T).

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 121 № 1 2020

Рис. 5. Зависимость среднего числа вакансионных кластеров на каскад $\langle Y_{\text{vac}} \rangle$ от условий моделирования ($E_{\Pi\text{BA}}$, T).

ведет к устойчивому росту как $\langle Y_{\text{vac}} \rangle$, так и $\langle \sigma_{\text{vac}} \rangle$ в каскадах смещений при T = 100 K.

Величины $\langle Y_{\rm vac} \rangle$ и $\langle \sigma_{\rm vac} \rangle$ принимают одни и те же значения при моделировании каскадов смещений, инициированных ПВА с энергиями $10 \le E_{\Pi BA} \le 15 \text{ кэB}$ при температуре моделирования в диапазоне $300 \le T \le 900$ К. Согласно рис. 2, число $\langle N_{\rm FP} \rangle$, создаваемое ПВА с этими энергиями при температуре $300 \le T \le 900$ К приблизительно равно числу $\langle N_{\rm FP} \rangle$, создаваемому ПВА с энергиями $5 \le E_{\Pi BA} \le 10$ кэB, но при температуре T = 100 K. Таким образом, в каскадах смещений в никеле зависимость $\langle Y_{\text{vac}} \rangle$ от $\langle N_{\text{FP}} \rangle$ имеет три стадии: рост с увеличением $\langle N_{\rm FP}
angle$ при низких значениях $\langle N_{\rm FP}
angle$, стационарное состояние при промежуточных значениях $\langle N_{\rm FP} \rangle$, когда число образованных дефектов недостаточно для образования более одного вакансионного кластера, и дальнейший рост при больших значениях (N_{FP}). Доля вакансий в вакансионных кластерах $\langle \sigma_{vac} \rangle$ повторяет функциональную зависимость $\langle Y_{\text{vac}} \rangle$ от ($E_{\Pi \text{BA}}, T$).

Средний размер вакансионных кластеров $\langle N_{\text{vac}} \rangle$, зародившихся в каскадах смещений в никеле, как функция ($E_{\Pi BA}$, T) показан на рис. 6. Три характерных типа зависимости $\langle N_{\text{vac}}(E_{\Pi BA}) \rangle$ определяются температурой облучения и термической стабильностью вакансионных кластеров. При температуре T = 100 и 300 К вакансионные кластеры стабильны, $\langle N_{\text{vac}} \rangle \propto \langle N_{\text{FP}} \rangle$ и, следовательно, $\propto E_{\Pi BA}$. При температуре T = 1200 К вакансионные кластеры нестабильны, средний размер $\langle N_{\text{vac}} \rangle$ мал и практически не зависит от $E_{\Pi BA}$. При температурах T = 600 и 900 К стабильность вакансионных кластеров определяется их размером и степенью совершенства.

Рис. 6. Зависимость среднего размера вакансионных кластеров $\langle N_{\text{vac}} \rangle$ от параметров ($E_{\Pi \text{BA}}$, T).

В никеле и никелевых сплавах экспериментально наблюдается два типа вакансионных кластеров (см, напр., [28, 29]). Маленькие вакансионные кластеры преимущественно образуют тетраэдры дефекта упаковки, которые с ростом вакансионных кластеров превращаются в вакансионные петли Франка с вектором Бюргерса 1/3(111). Термическая стабильность тетраэдров дефекта упаковки сильно зависит от их размера и уровня совершенства. Тетраэдры дефекта упаковки правильной формы с числом вакансий $N_{\text{vac}} = (k+1)k/2, k = 2, 3, 4...$ непропорционально более стабильны по сравнению с нерегулярными тетраэдрами дефекта упаковки, число вакансий в которых отклоняется от этих "магических чисел". По этой причине при температуре T = 600 К в каскадах смещений, инициируемых ПВА с энергиями $5 \le E_{\Pi BA} \le 15$ кэВ и $E_{\Pi BA} = 20 \, \kappa \Im B$, преимущественно зарождаются вакансионные кластеры размером $\langle N_{\text{vac}} \rangle = 6$ и 10 соответственно, рис. 6. По той же самой причине вакансионные кластеры с $\langle N_{\rm vac}
angle pprox 6$ и 10 образуются в каскадах смещений при T = 900 K, однако их среднее число $\langle Y_{\text{vac}} \rangle$ оказывается вдвое меньше, чем в каскадах смещений при температуре T = 600 K (см. рис. 5).

Зависимость $\langle \sigma_{SIA} \rangle$ на рис. 4 совпадает с $\langle \sigma_{vac} \rangle$, однако в отличие от $\langle \sigma_{vac} \rangle$, $\langle \sigma_{SIA} \rangle$ определяется средним числом междоузлий $\langle N_{SIA} \rangle$ в междоузельных кластерах (рис. 7). При низких энергиях ПВА $\langle N_{SIA} \rangle \approx 7$. Это число соответствует размеру икосаэдрического междоузельного кластера в ГЦКструктуре [30]. Увеличение $E_{\Pi BA}$ ведет к увеличению $N_{\rm FP}$ и вызывает рост $\langle N_{SIA} \rangle$. Немонотонный рост $\langle N_{SIA} \rangle$ связан с образованием нескольких стабильных междоузельных кластеров размером $\langle N_{SIA} \rangle = 7$, 10, 13, 15 и 19 междоузлий.

Рис. 7. Зависимость среднего размера междоузельных кластеров $\langle N_{\text{SIA}} \rangle$ от ($E_{\Pi \text{BA}}$, T).

Рис. 8. Величины $\langle Y_{\text{SIA}} \rangle$ и $\langle N_{\text{FP}} \rangle$ как функции ($E_{\Pi \text{BA}}, T$).

Термоактивируемое превращение неподвижных междоузлий, имеющих конфигурацию гантели вдоль (100), в подвижную конфигурацию вдоль (110) подавлено при температуре T = 100 К. Из-за низких температур не наблюдается изменение размеров междоузельных кластеров в сторону ближайшей стабильной конфигурации, и (N_{SIA}) изменяется пропорционально как (N_{FP}), так и $E_{\Pi BA}$.

Среднее число междоузельных кластеров на каскад $\langle Y_{\rm SIA} \rangle$ в зависимости от ($E_{\Pi BA}$, T) показано на рис. 8. Чтобы сделать корреляцию между $\langle Y_{\rm SIA} \rangle$ и $\langle N_{\rm FP} \rangle$ еще более очевидной, результаты моделирования, показанные на рис. 2, были перегруппированы и добавлены к зависимости $\langle Y_{\rm SIA} \rangle$ на рис. 8, из которого видно, что $\langle Y_{\rm SIA} \rangle \propto \langle N_{\rm FP} \rangle$ при всех смоделированных условиях облучения ($E_{\Pi BA}$, T).

выводы

Компьютерное моделирование методом МД использовано для исследования процесса первичного дефектообразования в каскадах смещений в никеле, подвергаемом облучению быстрыми частицами в режиме упругих потерь энергии. Были смоделированы каскады смещений, инициированные ПВА с энергиями $5 \le E_{\Pi BA} \le 20$ кэВ в материале при температуре $100 \le T \le 1200$ К. Число пар Френкеля, доля вакансий и междоузлий в кластерах точечных дефектов, средний размер вакансионных и междоузельных кластеров, и среднее число кластеров на каскад определены как функция ($E_{\Pi BA}$, T). Чтобы получить статистически достоверные количественные результаты, для каждой пары ($E_{\Pi BA}$, T), смоделирована серия из 24 каскадов смещений.

Зависимость $\langle N_{\rm FP} \rangle$ от энергии ПВА аппроксимируется близкой к линейной показательной функцией $\langle N_{\rm FP} \rangle = 2 \pm 0.9 \times E_{\Pi BA}^{1.1\pm0.1}$ при всех смоде-лированных параметрах ($E_{\Pi BA}$, T). Установлено, что как $\langle \sigma_{vac} \rangle$, так и $\langle \sigma_{SIA} \rangle$ демонстрируют похожую функциональную зависимость от $E_{\Pi BA}$, однако физические механизмы, определяющие их поведение, различны. Значение $\langle \sigma_{vac} \rangle$ повторяет функциональную зависимость $\langle Y_{vac} \rangle$ при всех условиях облучения $(E_{\Pi BA}, T)$. Величина $\langle \sigma_{SIA} \rangle$ определяется размером междоузельных кластеров $\langle N_{\rm SIA} \rangle$ и диффузионной подвижностью междоузлий. При температуре T = 100 К мобильность междоузлий подавлена, и $\langle \sigma_{\text{SIA}} \rangle \propto E_{\Pi \text{BA}}$. При $T \ge 300$ К, междоузлия образуют как небольшие междоузельные дислокационные петли с вектором Бюргерса 1/2(110), так и икосаэдрические кластеры с $N_{\text{SIA}} = 7$ [30] или кластеры, производные от икосаэдрических [31].

Размеры вакансионных кластеров $\langle N_{\rm vac} \rangle$ определяются температурой облучения и термической стабильностью тетраэдров дефекта упаковки. При температурах $T \leq 300$ К все вакансионные кластеры стабильны, $\langle N_{\rm vac} \rangle \propto E_{\Pi BA}$. При температурах $600 \leq T \leq 900$ К стабильны преимущественно вакансионные кластеры с $N_{\rm vac} = 6$ и 10, размер которых соответствует регулярным тетраэдрам дефекта упаковки. Значения $\langle Y_{\rm SIA} \rangle \propto \langle N_{\rm FP} \rangle$ и, следовательно, $\propto E_{\Pi BA}$ при всех условиях облучения.

Исследования выполнены при поддержке НИЦ "Курчатовский институт", проект № 1603. Программное обеспечение для моделирования радиационных эффектов методом МД, численные методы интегрирования и методы идентификации и визуализации дефектной структуры материалов разработаны при поддержке Российского фонда фундаментальных исследований, проект РФФИ № 17-03-01222а. Моделирование первичных повреждений выполнено с использованием высокопроизводительных вычислительных ресурсов центра коллективного пользования "Комплекс моделирования и обработки данных исследовательских установок мега-класса" НИЦ "Курчатовский институт", http://ckp.nrcki.ru.

СПИСОК ЛИТЕРАТУРЫ

- Handbook of Generation IV Nuclear Reactors 1st Edition / Pioro I. Eds. Woodhead Publishing Series in Energy: Number 103, Woodhead Publishing, Duxford, UK, 2016. 907 p.
- 2. *Dominic B.* Comparison of efficiency and power output of various power products / Keynote talk. 1997 International Gas Turbine Institute (IGTI) Turbo Expo.
- 3. IAEA Advanced Reactors Information System (ARIS), https://aris.iaea.org/default.html
- Nordlund K., Ghaly M., Averback R.S., Caturla M., Diaz de la Rubia T., Tarus J. Defect production in collision cascades in elemental semiconductors and fcc metals // Phys. Rev. B. 1998. V. 57. P. 7556–7570.
- Zarkadoula E., Samolyuk G., Xue H., Bei H., Weber W.J. Effects of two-temperature model on cascade evolution in Ni and NiFe // Scr. Mater. 2016. V. 124. P. 6–10.
- Воскобойников Р.Е. Радиационные дефекты в алюминии. Моделирование первичных повреждений в каскадах смещений в объеме материала // ФММ. 2019. Т. 120. № 1. С. 3–10. https://doi.org/10.1134/S0015323018110219
- Воскобойников Р.Е. Радиационные дефекты в алюминии. Моделирование первичных повреждений в каскадах смещений на поверхности // ФММ. 2019. Т. 120. №1. С. 11–17. https://doi.org/10.1134/S0015323019010066
- Mishin Y. Atomistic modeling of the γ and γ'-phases of the Ni–Al system // Acta Mater. 2004. V. 52. P. 1451– 1467.
- Biersack J.P., Ziegler J.F. Refined universal potentials in atomic collisions // Nucl. Instr. Meth. 1982. V. 194. P. 93–100.
- Dimitrov C., Sitaud B., Dimitrov O. Displacement threshold energies in Ni(Al) solid solutions and in Ni₃Al // J. Nucl. Mater. 1994. V. 208. P. 53–60.
- Was G.S. Fundamentals of Radiation Materials Science Metals and Alloys, Springer-Verlag, Berlin Heidelberg, 2007. 827p.
- Gärtner K., Stock D., Weber B., Betz G., Hautala M., Hobler G., Hou M., Sarite S., Eckstein W., Jiménez-Rodríguez J.J., Pérez-Marti'n A.M.C., Andribet E.P., Konoplev V., Gras-Marti A., Posselt M., Shapiro M.H., Tombrello T.A., Urbassek H.M., Hensel H., Yamamura Y., Takeuchi W. Round robin computer simulation of ion transmission through crystalline layers // Nucl. Instr. Meth. Phys. Res. B. 1995. V. 102. P. 183–197.
- Ландау Л.Д., Лифшиц Е.М. Теоретическая физика / Учеб. пособие. В 10 т. Т. І. Механика. 4-е изд., испр. М.: Наука, 1988. 216 с.
- 14. *Allen M P., Tildesley D.J.* Computer Simulation of Liquids. Clarendon Press, Oxford, 1987. 408 p.
- 15. Marques L.A., Rubio J.E., Jaraiz M., Enriquez L., Barbolla J. An improved molecular dynamics scheme for

ion bombardment simulations // Nucl. Instr. Meth. Phys. Res. B. 1995. V. 102. P. 7–11.

- Voskoboinikov R.E. Radiation Defects in Aluminum: MD Simulations of Collision Cascades in the Bulk of Material // Phys. Met. Metallogr. 2019. V. 120. № 1. P. 1–8.
- Voskoboinikov R.E. Radiation Defects in Aluminum. Simulation of Primary Damage in Surface Collision Cascades// Phys. Met. Metallogr. 2019. V. 120. № 1. P. 9–15.
- Voskoboinikov R.E., Osetsky Yu.N., Bacon D.J. Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics // J. Nucl. Mater. 2008. V. 377. P. 385–395.
- Voskoboinikov R.E., Osetsky Yu.N., Bacon D.J. Statistics of primary damage creation in high-energy displacement cascades in copper and zirconium // Nucl. Instr. Meth. Phys. Res. B. 2006. V. 242. № 1–2. P. 68–70.
- Voskoboinikov R.E., Osetsky Yu.N., Bacon D.J. Atomicscale simulation of defect cluster formation in high-energy displacement cascades in zirconium // ASTM STP1475. 2006. P. 299–314.
- 21. Voskoboinikov R. A contribution of $L1_0$ ordered crystal structure to the high radiation tolerance of γ -TiAl intermetallics // Article in press. Nucl. Instr. Meth. Phys. Res. B. 2019.

https://doi.org/10.1016/j.nimb.2019.04.080

- Voskoboinikov R. An insight into radiation resistance of D0₁₉ Ti₃Al intermetallics // J. Nucl. Mater. 2019. V. 519. P. 239–246.
- Voskoboinikov R. MD simulations of primary damage formation in L1₂ Ni₃Al intermetallics // J. Nucl. Mater. 2019. V. 522. P. 123–135.
- Voskoboinikov R.E. MD simulations of collision cascades in the vicinity of a screw dislocation in aluminium // Nucl. Instr. Meth. Phys. Res. B. 2013. V. 303. P. 104–107.
- Voskoboinikov R.E. Interaction of collision cascades with an isolated edge dislocation in aluminium // Nucl. Instr. Meth. Phys. Res. B. 2013. V. 303. P. 125–128.
- Lindemann F.A. The calculation of molecular vibration frequencies // Zeitschrift f
 ür Physik. 1910. V. 11. P. 609–612.
- Nordlund K., Averback R.S. Point defect movement and annealing in collision cascades // Phys. Rev. B. 1997. V. 56. № 5. P. 2421–2431.
- Judge C.D. The Effects of Irradiation on Inconel X-750. PhD Thesis. McMaster University. 2015. 258 p. http://hdl.handle.net/11375/18091
- Zhang H.K., Yao Z., Morin G., Griffiths M. TEM characterization of in-reactor neutron irradiated CANDU spacer material Inconel X-750 // J. Nucl. Mater. 2014. V. 451. № 1–3. P. 88–96.
- Ingle K.W., Perrin R.C., Schober H.R., Interstitial cluster in FCC metals // J. Phys. F: Met. Phys. 1981. V. 11. № 6. P. 1161–1173.
- 31. Borodin V.A., Voskoboinikov R.E. To be published.