СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ

УДК 669.296'1:539.89

# МЕХАНОСПЛАВЛЕНИЕ В СИСТЕМЕ Zr—Fe ПУТЕМ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ ПОД ДАВЛЕНИЕМ

© 2020 г. А. В. Добромыслов<sup>а, \*</sup>, Н. И. Талуц<sup>а</sup>, В. П. Пилюгин<sup>а</sup>

<sup>а</sup>Институт физики металлов имени М.Н. Михеева УрО РАН, ул. С. Ковалевской, 18, Екатеринбург, 620108 Россия \*e-mail: Dobromyslov@imp.uran.ru

Поступила в редакцию 04.07.2019 г. После доработки 27.08.2019 г. Принята к публикации 02.09.2019 г.

Сплавы системы Zr–Fe с содержанием железа от 5 до 90 ат. % были синтезированы из элементных порошков путем механического сплавления в наковальнях Бриджмена. Их фазовый состав и структура изучены методами рентгеноструктурного анализа и просвечивающей электронной микроскопии. Установлено, что размер зерна уменьшается при увеличении как содержания железа в сплаве, так и степени пластической деформации. Наименьший размер зерна наблюдается в сплаве Zr–50 ат. % Fe.

*Ключевые слова:* сплавы Zr–Fe, механическое легирование, деформация, давление, структура, ω-фаза **DOI:** 10.31857/S0015323020020047

## введение

Сплавы циркония с железом в настоящее время вызывают повышенный интерес из-за их использования в качестве геттерных материалов, применяющихся для снижения радиационной хрупкости конструкционных сталей в присутствии газовых примесей [1]. На эффективность действия таких материалов существенное влияние оказывает их фазовое и структурное состояние, особенно размер зерна и присутствие различных метастабильных фаз. Поэтому для получения сплавов с необходимой структурой их часто готовят путем обработки элементных порошков циркония и железа в планетарных мельницах [2].

Фазовое и структурное состояние сплавов системы Zr—Fe, полученных путем механосплавления в планетарных мельницах, было изучено в ряде работ [2–8]. Рассмотрение этих работ показывает, что изучались преимущественно сплавы с содержанием железа больше 50 ат. % и вблизи составов интерметаллических соединений Fe<sub>2</sub>Zr, FeZr<sub>2</sub> и FeZr<sub>3</sub>.

При изучении синтезированных сплавов было установлено, что структура конечного продукта существенно зависит от условий механического легирования. В большинстве работ наблюдалось образование аморфного состояния, однако время, необходимое для достижения аморфной структуры, по данным разных авторов, существенно отличалось. В ряде работ [3–5] также сообщается, что в процессе механосплавления происходит образование интерметаллидов различного состава и пересыщенного твердого раствора циркония в железе. При этом растворимость циркония в железе достигала 5 ат. %. Однако ни в одной из перечисленных выше работ не сообщалось об образовании в процессе синтеза сплавов ω-фазы — фазы высокого давления циркония.

Следует отметить, что для изучения фазового состава и структуры таких сплавов в основном применялись методы рентгеновской дифрактометрии и мёссбауровской спектроскопии. Только в работе [6] изучение структуры синтезированных из порошков сплавов проводилось с помощью сканирующей и просвечивающей электронной микроскопии.

В настоящее время наряду со способом получения сплавов из элементных порошков с помощью обработки в высокоэнергетических устройствах начинают широко применять метод интенсивной пластической деформации элементных порошков под давлением [9–23]. Преимуществами этого метода по сравнению с механическим сплавлением в планетарных мельницах является более высокая скорость синтеза, отсутствие загрязняющих примесей и получение конечного продукта сразу в виде массивного образца.

В данной работе была поставлена задача синтезировать сплавы системы Zr—Fe из элементных порошков с помощью интенсивной пластической деформации под высоким давлением и изучить их фазовый состав и структуру.



**Рис. 1.** Дифрактограммы от исходной смеси порошков для состава Zr–30 ат. % Fe (а) и от сплавов с различным содержанием железа, синтезированных путем интенсивной деформации под давлением 8 ГПа на n = 30 (б–е): б – Zr–10 ат. % Fe; в – Zr–30 ат. % Fe; r - Zr-50 ат. % Fe; d - Zr-70 ат. % Fe, е – Zr–90 ат. % Fe;  $\bigcirc$  – дифракционные максимумы  $\alpha$ -Zr;  $\bullet$  – дифракционные максимумы  $\alpha$ -Zr;  $\Box$  – дифракционные максимумы  $\alpha$ -Fe.

Ранее результаты по изучению структуры и магнитного состояния некоторых синтезированных сплавов этой системы были опубликованы в работе [10].

# ТЕХНИКА ЭКСПЕРИМЕНТА

Для приготовления сплавов были взяты порошок циркония, полученный из иодидного циркония (99.9 мас. %), и порошок железа (99.96 мас. %). Размер частиц порошков составлял 10-30 мкм. Синтез сплавов осуществляли деформацией кручением смеси элементных порошков между наковальнями Бриджмена при давлении 8 ГПа. Количество порошка для приготовления образца определяется размером площадки пуансона. В работе применяли наковальни с пуансонами из сплава ВК-6, диаметр площадок которых составлял 5.0 мм. Образующаяся из порошка после осалки таблетка имеет следующие размеры: диаметр 5 мм и толщина 0.10-0.13 мм. Число оборотов наковальни п составляло 10 и 30. Скорость вращения наковальни была 1 оборот в минуту. После деформации образцы имели следующие размеры: диаметр 5 мм, толщина 0.04-0.05 мм. В работе был скомпактирован порошок чистого циркония и были синтезированы сплавы с содержанием железа 5, 10, 20, 30, 40, 50, 60, 70, 80 и 90 ат. %.

Структура образцов была изучена с помощью рентгеноструктурного анализа и просвечивающей электронной микроскопии. Рентгеноструктурный анализ проводили на рентгеновском дифрактометре ДРОН-3 с использованием Си *К*α-излучения и графитового кристалл-монохроматора. Съемку осуществляли со всей поверхности образца. В некоторых случаях, когда дифракционные пики были очень слабые, рентгеновский фазовый анализ проводили одновременно с нескольких образцов (в основном с трех образцов). Для электронно-микроскопического исследования использовали просвечивающий электронный микроскоп JEM-200CX. Фольги готовили из средней по радиусу части образца.

## РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Из данных рентгеноструктурного анализа следует, что во всех синтезированных сплавах происходит образование  $\omega$ -фазы (рис. 1). Дифракционные пики  $\alpha$ -фазы циркония на дифрактограммах также присутствуют, однако их интенсивность существенно меньше, чем интенсивность дифракционных пиков  $\omega$ -фазы; в большинстве случаев наблюдаются только их следы. Фазовый состав синтезированных сплавов зависит от содержания железа и от степени пластической деформации.

Цирконий и сплав Zr—5 ат. % Fe являются однофазными и состоят только из  $\omega$ -фазы. На дифрактограммах сплава Zr—10 ат. % Fe после деформации на 10 оборотов наблюдается слабый дифракционный пик (011)  $\alpha$ -фазы железа, который исчезает после деформации на 30 оборотов (рис. 1б). На дифрактограммах сплавов с боль-

шим содержанием железа дифракционные пики α-фазы железа присутствуют. Поэтому можно предположить, что максимальная растворимость железа в цирконии составляет примерно 10 ат. %. О растворении атомов железа в кристаллической решетке циркония свидетельствует также смещение дифракционных пиков ω-фазы в сторону больших углов  $\theta$  по сравнению с их положением на дифрактограммах чистого циркония (параметры решетки ω-фазы уменьшаются, поскольку атомный радиус железа меньше атомного радиуса циркония). Кроме того, из сравнения дифрактограмм исходной смеси порошков состава Zr-30 ат. % Fe и синтезированного сплава Zr-30 ат. % Fe видно, что интенсивность дифракционных пиков железа в сплаве меньше, чем в исходной смеси, что также указывает на то, что железо частично входит в кристаллическую решетку циркония (рис. 1а, 1в).

С увеличением содержания железа в сплаве интенсивность дифракционных пиков железа повышается, а дифракционных пиков  $\omega$ -фазы постепенно уменьшается, и на дифрактограммах сплава Zr–90 ат. % Fe остается только один слабый дифракционный пик (110)<sub> $\omega$ </sub> (рис. 1г–1е).

На дифрактограммах от всех синтезированных сплавов при использованных степенях деформации ширина дифракционных пиков возрастает по сравнению с их шириной на дифрактограммах от исходных смесей порошков, однако переход к аморфному состоянию не происходит.

Электронно-микроскопическое исследование показывает, что структура синтезированных сплавов зависит как от содержания железа в исходной смеси порошков, так и от степени деформации. При просмотре фольг было обнаружено, что структура каждого образца слабо изменялась при переходе от одного участка к другому.

Структура чистого циркония, скомпактированного из порошка при P = 8 ГПа и n = 10, во многом аналогична структуре скомпактированного порошка титана [11]. На изображениях ω-фазы также наблюдается полосчатый контраст, связанный с присутствием в ней дефектов упаковки по плоскостям  $\{2\overline{1}\overline{1}0\}$ . В отличие от титана, структура циркония более однородна, что связано с большей степенью деформации (титан деформировали при P = 5 ГПа и n = 5). Кроме того, цирконий является однофазным (на микроэлектронограммах наблюдаются дифракционные кольца, относящиеся только к  $\omega$ -фазе), в то время как в структуре титана сохранилось небольшое количество α-фазы. Размер зерна в этом образце колеблется в пределах от 50 до 100 нм.

На микроэлектронограммах сплава Zr-5 ат. % Fe после деформации на n = 10 наблюдаются дифракционные кольца, относящиеся к  $\omega$ -фазе, с хорошо выраженными текстурными максимумами (рис. 2a). Присутствие таких текстурных мак-

симумов свидетельствует о том, что пластическая деформация сплава протекала главным образом в  $\omega$ -фазе. При получении темнопольных изображений с помощью рефлексов  $\omega$ -фазы наблюдаются зерна различной формы (рис. 26). Средний размер зерна в этом образце составляет 34 нм. Гистограммы распределения зерен по размеру для это-го сплава и для сплава с 10 ат. % железа приведены в [10]. При увеличении степени деформации до n = 30 дисперсность структуры возрастает, на дифракционных кольцах наблюдается уширение текстурных максимумов (рис. 2в), в некоторых случаях вплоть до их полного исчезновения. Средний размер зерна уменьшается до 23 нм (рис. 2г).

К такому же и даже более сильному изменению дисперсности структуры приводит повышение в сплаве содержания железа. На рис. 3 приведена структура сплава Zr–10 ат. % Fe. В этом сплаве средний размер зерна после деформации на n = 10 составляет 24 нм, т.е. совпадает со средним размером зерна в сплаве Zr–5 ат. % Fe после деформации на 30 оборотов. При увеличении n до 30 средний размер зерна уменьшается до 16 нм. Ширина текстурных максимумов на микроэлектронограммах в этом сплаве больше, чем в сплаве Zr–5 ат. % Fe (рис. 3а, 3в).

Уширение текстурных максимумов и их полное исчезновение при больших степенях деформации связано с преобладанием ротационных мод в механизме деформации.

При дальнейшем увеличении содержания железа в сплаве дисперсность структуры продолжает увеличиваться, однако не так существенно. Самое мелкое зерно наблюдается в сплаве Zr-50 ат. % Fe после деформации на n = 30 (рис. 4). Средний размер зерна в этом образце составляет 13 нм, что не намного меньше, чем в образце сплава Zr-10 ат. % Fe после такой же степени деформации. На микроэлектронограммах присутствуют дифракционные кольца от ω-фазы циркония и α-фазы железа (рис. 4б). Видно, что текстурные максимумы не наблюдаются. Интенсивность дифракционных колец α-фазы железа меньше, чем колец ω-фазы. Это может быть связно как с частичным растворением железа в цирконии, так и с тем, что измельчение железа происходит сильнее, чем циркония. Необходимо отметить, что данная микроэлектронограмма получена при меньшем диаметре селекторной диафрагмы, чем приведенные на рис. 2 и 3, поэтому дифракционные кольца более узкие и состоят из отдельных рефлексов.

При построении гистограмм распределения зерен по размерам было обнаружено, что при увеличении степени деформации размер зерен изменяется в более узком интервале.

Таким образом, из полученных результатов следует, что с увеличением содержания железа до

#### ДОБРОМЫСЛОВ и др.



**Рис. 2.** Микроструктура сплава Zr-5 at. % Fe, синтезированного путем интенсивной деформации под давлением 8 ГПа на n = 10 (a, б) и n = 30 (в, г): a, в –микроэлектронограммы; б, г – темнопольные изображения в рефлексах типа (110)  $\omega$ -Zr.

эквиатомного состава в сплавах системы Zr–Fe, синтезированных из элементных порошков путем интенсивной пластической деформации под давлением, происходит уменьшение размера зерна. Однако в отличие от работ по механическому легированию в планетарных мельницах нами не было обнаружено образование в сплавах аморфного состояния.

Характерным отличием структуры синтезированных нами сплавов от сплавов, полученных путем механосплавления в планетарных мельницах, является образование в них фазы высокого давления циркония, которая после снятия давления сохраняется в метастабильном состоянии.

В процессе синтеза сплавов происходит повышение растворимости железа в цирконии. При обычных условиях она очень низкая и при эвтектоидной температуре не превышает 0.033 ат. %. Под воздействием пластической деформации под давлением растворимость железа в цирконии увеличивается до ≈10 ат. %.

Ранее нами наблюдалось образование интерметаллида FeAl в сплавах системы Al—Fe, полученных из порошков путем интенсивной пластической деформации под давлением [12]. Однако в данном случае так же, как и в сплавах системы Ti–Fe [11] присутствие интерметаллидов не обнаруживается.

Сравнение наших результатов можно провести также с результатами, полученными при изучении фазового состава и структуры сплавов аналогичных систем после их быстрой закалки из жидкого состояния.

В наиболее широком диапазоне концентраций фазовый состав и структура сплавов систем Zr– Fe и Ti–Fe были изучены в работе [24]. Авторы установили, что в то время как в системах Zr–Ni и Ti–Ni аморфная фаза образуется в достаточно широком интервале концентраций, при переходе к системам Zr–Fe и Ti–Fe склонность к образованию аморфной фазы практически исчезает. В сплавах обеих этих систем образование аморфного состояния происходит только в очень небольшом интервале концентраций (23–25 ат. % Fe для системы Zr–Fe и 28–30 ат. % Fe для системы Ti–Fe).

Аналогичная тенденция в образовании аморфного состояния в титановых сплавах, синтезированных из элементных порошков под давлением, нами была установлена для систем Ti–Ni и Ti–Fe.



**Рис. 3.** Микроструктура сплава Zr-10 ат. % Fe, синтезированного путем интенсивной деформации под давлением 8 ГПа на n = 10 (a, б) и n = 30 (в, г): а, в – микроэлектронограммы; б, г – темнопольные изображения в рефлексах типа (110)  $\omega$ -Zr.



**Рис. 4.** Микроструктура сплава Zr-50 ат. % Fe, синтезированного путем интенсивной деформации под давлением 8 ГПа на n = 30: а – темнопольное изображение в рефлексе типа (110)  $\omega$ -Zr; б – микроэлектронограмма.

В сплавах системы Ti—Ni образование аморфного состояния происходит в широкой области составов [9]. При переходе к системе Ti—Fe склонность к образованию аморфного состояния полностью исчезает [11].

Такое же поведение мы имеем и для сплавов системы Zr–Me с *d*-металлами различных групп.

В то время как в сплавах циркония с металлами 11 и 12 группы (Zr–Cu и Zr–Zn) аморфное состояние обнаруживается [13, 25], в сплавах системы Zr–Fe оно отсутствует.

Таким образом, отсутствие аморфного состояния (или возможное формирование его в очень небольшом диапазоне концентраций) однозначно указывает на то, что с понижением номера группы легирующего *d*-металла склонность к образованию аморфного состояния в циркониевых и титановых сплавах уменьшается. В пользу такого утверждения также свидетельствуют данные о том, что как в сплавах системы Ti—Nb, полученных механическим сплавлением в высокоэнергетической шаровой мельнице [26], так и в сплавах системы Zr—Nb, синтезированных из элементных порошков путем пластической деформации под давлением [13], аморфное состояние не образуется.

### ЗАКЛЮЧЕНИЕ

Проведено изучение фазового состава и структуры сплавов системы Zr–Fe, синтезированных из элементных порошков циркония и железа путем интенсивной пластической деформации под давлением.

Обнаружено, что под действием давления в цирконии и всех синтезированных сплавах протекает  $\alpha \to \omega$ -превращение. На основе  $\omega$ -фазы циркония происходит образование пересыщенного твердого раствора с содержанием железа не более 10 ат. %.

Установлено, что структура сплавов зависит как от содержания железа, так и от степени пластической деформации. При увеличении в сплаве содержания железа до эквиатомного состава дисперсность структуры возрастает. Увеличение степени деформации приводит только к уменьшению размера зерна и повышению однородности структуры, но не приводит к переходу в аморфное состояние.

Сделано заключение, что склонность сплавов систем Zr-Me к аморфизации понижается с уменьшением номера группы легирующего металла. Максимальное значение наблюдается в системе Zr-Zn, а при переходе к металлам, имеющим номер группы 8 или меньше, аморфное состояние не формируется.

Работа выполнена в рамках государственного задания по теме "Давление" № АААА-А18-118020190104-3.

Электронно-микроскопическое исследование выполнено на просвечивающем электронном микроскопе JEM-200CX в ЦКП "Испытательный центр нанотехнологий и перспективных материалов" ИФМ УрО РАН.

# СПИСОК ЛИТЕРАТУРЫ

1. Ажажа В.М., Вьюгов П.Н., Копанец И.Е., Лавриненко С.Д., Пилипенко Н.Н., Ружицкий В.В., Свинаренко А.П., Толстолуцкая Г.Д., Пальцевич А.П., Походня И.К., Степанюк С.Н., Швачко В.И. Накопление и удержание водорода и дейтерия в сплавах циркония и низколегированных сталях с добавками геттерных сплавов на основе циркония // Вопр. атомной науки и техники. Сер. Вакуум, чистые материалы, сверхпроводники. Харьков: ННЦ ХФТИ, 2006. № 1(15). С. 41–48.

- Fox K.M. Mechanical alloying and thermal treatments for productions zirconium-iron hydrogen isotope getters // J. Ceramic Proces. Research. 2009. V. 10. P. 705–709.
- Michaelsen C., Hellstern E. Mössbauer effect on mechanically alloyed Fe–Zr glasses // J. Appl. Phys. 1987. V. 62. P. 117–119.
- Hellstern E., Schultz L. Formation and properties of mechanically alloyed amorphous Fe–Zr // Mater. Sci. Eng. 1988. V. 97. P. 39–42.
- Peña Rodríguez V.A., Medina J.M., Marcatoma J.Q., Ayala Ch.R., Landauro C.V., Baggio-Saitovitch E.M., Passamani E.C. Nanocrystalline Fe/Zr alloys: preparation by using mechanical alloying and mechanical milling processes // Hyperfine Interact. 2011. V. 202. P. 145–151.
- Mishra D., Perumal A., Srinivasan A. Magnetic properties of mechanically alloyed Fe<sub>100 − x</sub>Zr<sub>x</sub> (20 ≤ x ≤ 35) powder // J. Phys. D: Appl. Phys. 2008. V. 41. P. 215003 (8pp).
- Ennas G., Magini M., Padella F., Susini P., Boffitto G., Licheri G. Preparation of amorphous Fe–Zr alloys by mechanical alloying and melt spinning methods // J. Mater. Sci. 1989. V. 24. P. 3053–3058.
- Burgio N., Iasonna A., Magini M., Padella F. Mechanical alloying of the Fe–Zr system in different milling conditions // J. Phys. Colloques. 1990. V. 51(C4). P. C4-265–C4-271.
- Dobromyslov A.V., Churbaev R.V., Elkin V.A., Trenogina T.L. Mechanical alloying of Ti–Ni alloys under high pressure // Scr. Mater. 1999. V. 41. P. 1015–1021.
- Талуц Н.И., Добромыслов А.В., Завалишин В.А. Получение сплавов АІ-Fе и Zr-Fe из элементных порошков путем интенсивной пластической деформации // Деформация и разрушение материалов. 2017. № 4. С. 30–37.
- Добромыслов А.В., Талуц Н.И. Механосплавление в системе Ті-Fe путем интенсивной пластической деформации под давлением // ФММ. 2018. Т. 119. № 11. С. 1186–1192.
- Добромыслов А.В., Талуц Н.И., Пилюгин В.П., Толмачев Т.П. Механическое легирование сплавов системы Al–Fe путем интенсивной пластической деформации под // ФММ. 2015. Т. 116. № 9. С. 992– 1000.
- Dobromyslov A.V., Churbaev R.V. Synthesis of nanostructural and amorphous alloys from elementary powders by intensive plastic deformation under high pressure // Int. J. Mod. Phys. B. 2010. V. 24. P. 722–729.
- Добромыслов А.В., Чурбаев Р.В, Елькин В.А. Механическое легирование сплавов системы титанмедь под высоким давлением // ФММ. 1999. Т. 87. № 2. С. 59–64.
- Sauvage X., Wetscher F., Pareige P. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu–Fe composite // Acta Mater. 2005. V. 53. P. 2127– 2135.

- Sauvage X., Pippan R. Nanoscaled structure of a Cu– Fe composite processed by high-pressure torsion // Mater. Sci. Eng. A. 2005. V. 410–411. P. 345–347.
- Cubero-Sessin J.M., Horita Z. Mechanical properties and microstructures of Al–Fe alloys processed by highpressure torsion // Metall. Mater. Trans. A. 2012. V. 43A. P. 5182–5192.
- Bachmaier A., Kerber M., Setman D., Pippan R. The formation of supersaturated solid solutions in Fe-Cu alloys deformed by high-pressure torsion // Acta Mater. 2012 V. 60. P. 860–871.
- Edwards D., Sabirov I., Sigle W., Pippan R. Microstructure and thermostability of a W–Cu nanocomposite produced via high-pressure torsion // Phil. Mag. 2012. V. 92. P. 4151–4166.
- Bachmaier A., Aboulfadl H., Pfaff M., Mücklich F., Motz C. Structural evolution and strain induced mixing in Cu–Co composites studied by transmission electron microscopy and atom probe tomography // Mater. Charact. 2015. V. 100. P. 178–191.
- Толмачев Т.П., Пилюгин В.П., Анчаров А.И., Чернышев Е.Г., Пацелов А.М. Образование, структура и свойства сплавов системы Аu–Co, полученных

интенсивной пластической деформацией под давлением // ФММ. 2016. Т. 117. № 2. С. 154–162.

- Добромыслов А.В., Талуц Н.И. Структура сплавов системы Al–Fe, изготовленных разными методами, после интенсивной пластической деформации под давлением // ФММ. 2017. Т. 118. № 6. С. 595– 602.
- Kormout K.S., Ghosh P., Maier-Kiener V., Pippan R. Deformation mechanisms during severe plastic deformation of a Cu–Ag composite // J. Alloys Compd. 2017. V. 695. P. 2285–2294.
- 24. Полеся А.Ф., Слипченко Л.С. Образование аморфных фаз и метастабильных твердых растворов в двойных сплавах Ті и Zr с Fe, Ni и Cu // Известия академии наук СССР (металлы). 1973. № 6. С. 173– 178.
- 25. *Dobromyslov A.V., Taluts N.I.* Synthesis of Zr–Zn alloys from elemental powders by severe plastic deformation under pressure // Mater. Charact. 2019. V. 156.
- Kovalevskaya Zh.G., Sharkeev Yu. P., Khimich M.A., Glukhov I.A. Thermal stability of Ti-45Nb mechanically alloyed powder // Letters on Mater. 2018. V. 8. P. 443-447.