# ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА

УДК 537.633

# ЭЛЕКТРОННЫЙ СПИНОВЫЙ ТОК И СПИН-ЗАВИСИМЫЕ ГАЛЬВАНОМАГНИТНЫЕ ЯВЛЕНИЯ В МЕТАЛЛАХ

© 2020 г. В. В. Устинов<sup>а, b,</sup> \*, И. А. Ясюлевич<sup>а</sup>

<sup>а</sup>Институт физики металлов им. М.Н. Михеева УрО РАН, ул. С. Ковалевской, 18, Екатеринбург, 620108 Россия <sup>b</sup>Институт естественных наук и математики УрФУ, ул. Куйбышева, 48, Екатеринбург, 620002 Россия

> \**e-mail: ustinov@imp.uran.ru* Поступила в редакцию 16.09.2019 г. После доработки 03.10.2019 г. Принята к публикации 10.10.2019 г.

На основе квантового кинетического уравнения получена система связанных кинетических уравнений для функции распределения электронной плотности и функции распределения спиновой плотности. Интегралы столкновений в кинетических уравнениях записаны для произвольного рассеивающего потенциала с учетом спин-орбитального взаимодействия электронов проводимости с рассеивающими дефектами. Применительно к спиновой системе электронов проводимости последовательно реализована идея "сокращенного" описания транспортных явлений. Описание системы на языке функций распределения, зависящих от квазиимпульса электронов, сводится к описанию на языке макроскопических средних величин: плотности электронов, спиновой плотности, потока электронов и спинового тока.

*Ключевые слова:* электрон, спин, спиновый ток, спиновая релаксация, электросопротивление, магнитосопротивление, эффект Холла, спиновый эффект Холла

DOI: 10.31857/S0015323020030079

#### **ВВЕДЕНИЕ**

Известные гальваномагнитные явления в металлах и полупроводниках — магниторезистивный эффект и эффект Холла — обусловлены влиянием магнитного поля **B** на движение электронов проводимости, вызываемое электрическим полем **E** [1]. Влияние магнитного поля на переносимый электронами электрический ток плотности **j** обу-

словлено силой Лоренца  $e\mathbf{E} + \frac{e}{c}[\mathbf{v} \times \mathbf{B}]$ , которая

действует на движущийся со скоростью v электрон, несущий на себе электрический заряд e. Исторически первая работа по наблюдению влияния магнитного поля на электрический ток была опубликована Эдвином Холлом еще в 1879 г. [2]. Эффект Холла проявляется как появление в образце электрического поля, перпендикулярного направлению пропускаемого через образец тока, при помещении образца в поперечное магнитное поле. Для реального образца конечных размеров эффект Холла приводит к появлению вблизи граней образца областей накопления электрического заряда, которые и являются источником поперечного электрического поля.

Помимо электрического заряда, электроны несут на себе собственный механический момент, спин и соответствующий ему магнитный момент. Спин-орбитальное взаимодействие электронов с кристаллической решеткой и ее дефектами ведет к тому, что электроны с разным значением проекции спина, участвующие в создании электрического тока, будут отклоняться в разные стороны перпендикулярно направлению плотности тока і. Это явление, получившее название спинового эффекта Холла, было теоретически предсказано Дьяконовым и Перелем в 1971 г. [3, 4]. В отличие от классического эффекта Холла [2], спиновый эффект Холла [3, 4] возникает при протекании тока в отсутствие какого-либо внешнего магнитного поля и проявляется в появлении вблизи граней образца областей аккумуляции неравновесной спиновой плотности. Наличие у электронов проводимости спина ведет естественным образом и к спиновой зависимости классического эффекта Холла. В работе [5] описан спин-зависящий классический эффект Холла без учета спин-орбитального взаимодействия - возбуждение электрическим током перпендикулярного ему спинового потока в геометрии классического эффекта Холла, когда поперечным к току магнитным полем создана спиновая поляризация Паули.

Спин-орбитальное взаимодействие в условиях протекания электрического тока в поперечном магнитном поле приводит к появлению спиновой

аккумуляции вблизи граней образца, зависящей от величины магнитного поля. Как было показано в работе [6], приложенное магнитное поле уменьшает величину спиновой поляризации в области поверхностной аккумуляции, что в результате приводит к эффекту положительного магнитосопротивления. Этот эффект дает возможность изучать явление спиновой аккумуляции с помощью гальваномагнитных измерений.

Во всех вышеупомянутых гальваномагнитных эффектах магнитное поле **B** по умолчанию предполагается однородным. Между тем неоднородность магнитного поля может играть в спинтранспортных явлениях существенную роль. Отвлечемся (в дидактических целях) от квантовой природы спина и представим электрон как классическую частицу, обладающую магнитным моментом  $\mu$ . Тогда при рассмотрении движения электрона в неоднородном магнитном поле мы должны принять во внимание действующую на него силу  $\nabla(\mu \cdot \mathbf{B})$ , равную с обратным знаком пространственному градиенту от энергии взаимодействия магнитного момента  $\mu$  с полем **B**.

Здесь уместно будет упомянуть работу Штерна и Герлаха [7], в которой именно особенности движения частиц — носителей спина в неоднородном магнитном поле были использованы для доказательства квантовой природы спина.

В выполненных к настоящему времени работах по спин-зависящим гальваномагнитным явлениям вопросы учета неоднородностей магнитного поля рассматривали лишь фрагментарно. Поэтому сегодня актуальной задачей является построение квантовой теории спин-транспортных явлений, пригодной для описания спиновых токов и гальваномагнитных явлений в металлах и полупроводниках в неоднородных внешних полях с учетом спин-орбитальных взаимодействий.

Вопросы описания спиновых транспортных явлений в проводящих твердых телах составляют предмет многочисленных исследований в области спинтроники. Исследование эффектов, для которых понятие "спиновый ток" является ключевым, является одним из "горячих" направлений современной физики конденсированного состояния вещества. Здесь уместно будет сослаться на монографию [8], 25 глав которой дают полное представление о прогрессе в изучении эффектов, связанных со спиновыми токами, а также на коллективную монографию [9], в которой описан широкий круг спин-зависимых оптических, электрических и магнитных свойств полупроводников.

Главная задача настоящей работы — сформулировать основные уравнения для описания электрических и спиновых токов, протекающих в системе, помещенной в неоднородное магнитное поле. В случае, когда речь идет об электронах проводимости парамагнитных металлов и полупроводников, действующие на электрон силы могут создаваться неоднородным внешним магнитным полем. Если же нас интересует электронный спиновый транспорт в магнитоупорядоченных проводниках, в которых реализуется неоднородное магнитное состояние, то под неоднородным магнитным полем, действующем на спин электрона, можно понимать эффективное обменное поле, усредненное по элементарному объему магнетика и пропорциональное неоднородной спонтанной намагниченности вещества. Задача последнего раздела – дать описание спинового и электрического транспорта в киральных гелимагнетиках, где эффекты неоднородноя могут наблюдаться экспериментально.

## ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ. СПИНОВЫЙ ТОК

Последовательное описание транспорта заряда и спина в электронной системе в металлах и полупроводниках может быть реализовано с помощью аппарата квантового кинетического уравнения для квантовой функции распределения

 $\hat{f}(\mathbf{r}, \mathbf{p}, t)$ , зависящей от координаты  $\mathbf{r}$ , электронного квазиимпульса  $\mathbf{p}$  и времени t, но являющейся оператором в спиновом пространстве. Будучи квантовым обобщением хорошо известного и повсеместно применяемого уравнения Больцмана на случай наличия у носителей заряда спинового момента, квантовое кинетическое урав-

нение для  $\hat{f}(\mathbf{r}, \mathbf{p}, t)$  является, возможно, наиболее простым и эффективным теоретическим инструментом для изучения транспорта заряда и спина в условиях, когда орбитальное движение электронов может быть рассмотрено на языке классической механики.

Итак, наша задача — описание кинетических явлений в системе электронов проводимости твердого тела, которые являются носителями электрического заряда *e*, а также спинового и связанного с ним магнитного момента **µ**. Величина магнитного момента µ определяется значением *g*-фактора электрона соотношением  $\mu = g\mu_B/2$ , где  $\mu_B$  — магнетон Бора. Результатом решения поставленной задачи должны стать материальные уравнения — соотношения, связывающие потоки электрического заряда и спинового (магнитного) момента электронов с индуцирующими их внешними электрическим и магнитным полями.

Пусть  $\varepsilon_p$  – энергетический спектр электронов проводимости кристалла. Закон зависимости энергии  $\varepsilon_p$  от квазиимпульса **p** определяет скорость электрона **v** =  $(\partial/\partial \mathbf{p})\varepsilon_p$ . Пусть  $\hat{\boldsymbol{\mu}}$  – оператор магнитного момента электрона. Ниже мы будем использовать известное представление оператора  $\hat{\boldsymbol{\mu}}$  через спиновые матрицы Паули  $\hat{\boldsymbol{\sigma}}$ :

$$\hat{\boldsymbol{\mu}} = -\boldsymbol{\mu}\hat{\boldsymbol{\sigma}}.$$
 (1)

Поскольку квантовая функция распределения  $\hat{f}(\mathbf{r}, \mathbf{p}, t)$  представляет собой оператор в спиновом пространстве, который может быть представлен как матрица по спиновым переменным, без каких-либо ограничений общности можно представить  $\hat{f}$  в виде

$$\hat{f}(\mathbf{r},\mathbf{p},t) = \frac{1}{2}n(\mathbf{r},\mathbf{p},t) + \frac{1}{2}\mathbf{s}(\mathbf{r},\mathbf{p},t) \cdot \hat{\mathbf{\sigma}}.$$
 (2)

Вновь введенные функции  $n(\mathbf{r}, \mathbf{p}, t)$  и  $\mathbf{s}(\mathbf{r}, \mathbf{p}, t)$  определяются следующими соотношениями:

$$n(\mathbf{r},\mathbf{p},t) = \mathrm{Tr}\hat{f}(\mathbf{r},\mathbf{p},t), \qquad (3)$$

$$\mathbf{s}(\mathbf{r},\mathbf{p},t) = \mathrm{Tr}\hat{\boldsymbol{\sigma}}\hat{f}(\mathbf{r},\mathbf{p},t). \tag{4}$$

Здесь и ниже  $Tr\hat{M}$  — операция взятия следа (шпура) матрицы  $\hat{M}$ .

Функция  $n(\mathbf{r}, \mathbf{p}, t)$  имеет смысл функции распределения электронной плотности в импульсном пространстве. Суммируя  $n(\mathbf{r}, \mathbf{p}, t)$  по всем возможным **p**, получаем величину  $N(\mathbf{r}, t)$  – плотность числа электронов в данной точке пространства в заданный момент времени:

$$N(\mathbf{r},t) = \sum_{\mathbf{p}} n(\mathbf{r},\mathbf{p},t).$$
 (5)

Просуммировав по всем **р** произведение  $vn(\mathbf{r}, \mathbf{p}, t)$ , получаем величину  $I(\mathbf{r}, t)$  – плотность потока электронов в точке пространства **r** в момент времени *t*:

$$\mathbf{I}(\mathbf{r},t) = \sum_{\mathbf{p}} \mathbf{v}n(\mathbf{r},\mathbf{p},t).$$
(6)

Произведение  $eN(\mathbf{r},t)$  дает нам плотность электрического заряда, тогда как  $e\mathbf{I}(\mathbf{r},t)$  суть плотность электрического тока  $\mathbf{j}(\mathbf{r},t)$ .

Введенная определением (4) функция  $\mathbf{s}(\mathbf{r}, \mathbf{p}, t)$  по аналогии с  $n(\mathbf{r}, \mathbf{p}, t)$  может быть названа функцией распределения спиновой плотности. Суммируя  $\mathbf{s}(\mathbf{r}, \mathbf{p}, t)$  по всем возможным  $\mathbf{p}$ , получаем величину  $\mathbf{S}(\mathbf{r}, t)$ , которую ниже будем называть спиновой плотностью:

$$\mathbf{S}(\mathbf{r},t) = \sum_{\mathbf{p}} \mathbf{s}(\mathbf{r},\mathbf{p},t).$$
(7)

Просуммировав по **р** тензорное произведение векторов  $\mathbf{v} \otimes \mathbf{s}(\mathbf{r}, \mathbf{p}, t)$ , получаем величину  $J(\mathbf{r}, t)$ , которую мы будем называть плотностью спинового тока:

$$\boldsymbol{J}(\mathbf{r},t) = \sum_{\mathbf{p}} \mathbf{v} \otimes \mathbf{s}(\mathbf{r},\mathbf{p},t).$$
(8)

Здесь необходимо сделать одно важное замечание. При записи определения спинового тока (8) мы использования знак  $\otimes$  для обозначения математической операции тензорного произведения векторов. В результате выполнения операции тензорного произведения векторов **v** и **s** получается тензор – диада **v**  $\otimes$  **s**, который в матричном представлении имеет компоненты (**v**  $\otimes$  **s**)<sub>*ij*</sub> = *v<sub>i</sub>s<sub>j</sub>*. Для обозначения тензоров мы будем использовать "наклонный жирный" шрифт, тогда как векторы будут обозначаться "прямым жирным" шрифтом. Таким образом, введенная нами величина *J*(**r**,*t*) – тензор плотности спинового тока. Произведение

 $\frac{\hbar}{2} \mathbf{S}(\mathbf{r}, t)$  дает нам вектор плотности спинового мо-

мента электронов, тогда как  $\frac{\hbar}{2} J(\mathbf{r},t)$  суть тензор плотности потока спинового момента электронов. Заметим здесь также, что введенная нами величина спиновой плотности  $\mathbf{S}(\mathbf{r},t)$  имеет ту же самую размерность, что и электронная плотность  $N(\mathbf{r},t)$ . Аналогично, одинаковую размерность имеют плотность потока электронов  $\mathbf{I}(\mathbf{r},t)$  и плотность спинового тока  $J(\mathbf{r},t)$ .

Тензор спинового тока в конкретном базисе ортогональных единичных векторов  $\{e_i\}$ , может быть представлен как  $J = J_{ij} \mathbf{e}_i \otimes \mathbf{e}_j$ , где  $J_{ij}$  – координаты тензора спинового тока. Иногда вместо тензора Ј удобно использовать его проекции на орты  $\{e_i\}$ . Этими проекциями могут быть либо три вектора  $\mathbf{P}_i = \mathbf{e}_i \cdot \mathbf{J}$ , либо тройка векторов  $\mathbf{Q}_i =$  $= \mathbf{J} \cdot \mathbf{e}_i$ . В матричном представлении  $\mathbf{P}_i = J_{ij} \mathbf{e}_j$  и  $\mathbf{Q}_i = J_{ii} \mathbf{e}_i$ . Последние равенства показывают, что векторы  $\mathbf{P}_i$  — это вектор-строки, а векторы  $\mathbf{Q}_i$  это вектор-столбцы матрицы  $J_{ij}$ , представляющей тензор J. Вектор  $P_i$  по способу определения может быть назван поляризацией спинового тока, текущего в направлении *i*. Вектор  $Q_i$  характеризует направление, в котором течет компонента спиновой плотности S<sub>i</sub>, и может быть назван потоком і-той компоненты спиновой плотности. Таким образом, получаем два альтернативных представления тензора спинового тока:

$$J = \begin{bmatrix} J_{11} & J_{12} & J_{13} \\ J_{21} & J_{22} & J_{23} \\ J_{31} & J_{32} & J_{33} \end{bmatrix} = \begin{bmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_3 \end{bmatrix},$$
$$J = \begin{bmatrix} J_{11} & J_{12} & J_{13} \\ J_{21} & J_{22} & J_{23} \\ J_{31} & J_{32} & J_{33} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_1 & \mathbf{Q}_2 & \mathbf{Q}_3 \end{bmatrix}.$$

Иллюстрация представления произвольного тензора спинового тока J на языке векторов  $P_i$  и  $Q_i$  дана на рис. 1. На рис. 2 приведены P- и Q-

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 121 № 3 2020



**Рис. 1.** Иллюстрация представления произвольного тензора спинового тока с компонентами  $J_{ij}$  на языке векторов поляризаций  $\mathbf{P}_i$  спинового тока и векторов потоков компонент спиновой плотности  $\mathbf{Q}_i$ .



**Рис. 2.** Иллюстрация **Р**- и **Q**-представлений тензора спинового тока, у которого отличны от нуля только компоненты одной *z*-строки (i = 3).

представления тензора спинового тока J для случая, когда отличны от нуля только три компоненты одной *z*-строки матрицы  $J_{ij}$ . В этом случае среди всех векторов  $P_i$  отличен от нуля только один вектор поляризации тока  $P_3$ , который может иметь произвольное направление, а все три вектора  $Q_i$  направлены вдоль одной оси *z*.

## КВАНТОВОЕ КИНЕТИЧЕСКОЕ УРАВНЕНИЕ

Квантовое кинетическое уравнение для  $\hat{f}(\mathbf{r}, \mathbf{p}, t)$  может быть получено последовательным образом из уравнения для одночастичного статистического оператора  $\hat{\rho}$ , удовлетворяющего уравнению фон Неймана

$$\frac{\partial \hat{\rho}}{\partial t} + \frac{i}{\hbar} \Big[ \hat{H}_0 + \hat{H}_E + \hat{H}_B + \hat{V}, \hat{\rho} \Big] = 0, \qquad (9)$$

в котором  $\hat{H}_0$  – оператор кинетической и потенциальной энергии электрона в поле идеальной кристаллической решетки,  $\hat{H}_E = -e\mathbf{E}\cdot\mathbf{r}$  и  $\hat{H}_B = \mu \mathbf{B} \cdot \hat{\mathbf{\sigma}}$  – операторы взаимодействия с электрическим полем напряженности  $\mathbf{E}(\mathbf{r},t)$  и магнитным полем индукции  $\mathbf{B}(\mathbf{r},t)$  соответственно. Оператор  $\hat{V} = U - \frac{\hbar}{4m^2c^2}\hat{\mathbf{\sigma}} \cdot \left[\mathbf{p} \times \frac{\partial}{\partial \mathbf{r}}U\right]$  описывает спин-орбитальное взаимодействие электрона с рассеивателями – всевозможными дефектами кристаллической решетки, создающими потенциал U. Собственные значения гамильтониана  $\hat{H}_0$  – суть энергетический спектр электрона  $\varepsilon_{\mathbf{p}}$ .

Квантовое кинетическое уравнение для  $\hat{f}(\mathbf{r}, \mathbf{p}, t)$ может быть получено из (9) путем записи уравнения для оператора  $\langle \hat{\mathbf{p}} \rangle$ , где скобки  $\langle ... \rangle$  означают операцию усреднения по всем возможным конфигурациям рассеивающего потенциала  $\hat{V}$ . Последующий переход к квазиклассическому пределу в уравнении для  $\langle \hat{\rho} \rangle$  при описании только орбитального движения электронов и дает интересующее нас квантовое кинетическое уравнение для  $\hat{f}(\mathbf{r}, \mathbf{p}, t)$ . Не имея возможности описать в данном сообщении детали этой довольно громоздкой процедуры, мы приведем здесь только конечное уравнение:

$$\frac{\partial \hat{f}}{\partial t} + \mathbf{v} \cdot \frac{\partial \hat{f}}{\partial \mathbf{r}} + \left( e\mathbf{E} + \frac{e}{c} [\mathbf{v} \times \mathbf{B}] \right) \cdot \frac{\partial \hat{f}}{\partial \mathbf{p}} - \frac{\partial \left( \hat{\mathbf{\sigma}} \cdot \mathbf{B} \right)}{\partial \mathbf{r}} \cdot \frac{\partial \hat{f}}{\partial \mathbf{p}} + \mu \frac{i}{\hbar} [\hat{\mathbf{\sigma}}, \hat{f}] \cdot \mathbf{B} + \hat{R} = 0.$$
(10)

В уравнении (10) сумма второго и третьего члена – это квазиклассический предел квантовой скобки Пуассона  $\frac{i}{\hbar} [\hat{H}_0 + \hat{H}_E, \langle \hat{\rho} \rangle]$ , тогда как сумма четвертого и пятого членов – это квазиклассический предел от  $\frac{i}{\hbar} [\hat{H}_B, \langle \hat{\rho} \rangle]$ . Последний член  $\hat{R}$  – это квазиклассический предел усредненной по конфигурациям рассеивающего потенциала квантовой скобки Пуассона  $\langle \frac{i}{\hbar} [\hat{V}, \hat{\rho}] \rangle$ . Этот член описывает релаксацию квантовой функции распределения  $\hat{f}$  к своему локально-равновесному значению  $\hat{f}_L$  и выражается через отклонение  $\delta \hat{f} = \hat{f} - \hat{f}_L$ .

Заметим, что сумма четвертого и пятого членов в уравнении (10) может быть записана как скалярное произведение векторного оператора  $\hat{\mathbf{F}} = e\mathbf{E} + \frac{e}{c}[\mathbf{v} \times \mathbf{B}] - \mu \frac{\partial}{\partial \mathbf{r}} (\hat{\mathbf{\sigma}} \cdot \mathbf{B})$  и производной  $\frac{\partial \hat{f}}{\partial \mathbf{p}}$ . Последнее слагаемое в выражении для оператора  $\hat{\mathbf{F}}$  можно трактовать как квантовую добавку к классической силе Лоренца  $e\mathbf{E} + \frac{e}{c}[\mathbf{v} \times \mathbf{B}]$ , действующей на электрон в неоднородном поле в силу наличия у него спина.

Уравнение (10) для  $\hat{f}$  с точностью до использованных обозначений совпадает с уравнением, приведенным в работах [10, 11], в которых интерал столкновений  $\hat{R}$  был записан феноменологически в приближении времени релаксации. В отличие от этих работ, мы в следующем разделе приведем строгий результат квантовомеханического рассмотрения интеграла столкновений, справедливый для любого рассеивающего потенциала  $\hat{V}$ . Отметим, что продуктивность идеи использования аппарата квантового кинетического уравнения для построения теории спин-транспортных явлений была продемонстрирована в работах [12, 13] по выводу граничных условий для функций распределения, описывающих спино-

вые процессы рассеяния электронов на дефектах поверхности металла.

Возьмем след от уравнения (10) и выполним ту же операцию после умножения уравнения (10) на  $\hat{\sigma}$ , в результате получим систему связанных кинетических уравнений для функций распределения электронной плотности и спиновой плотности электронов:

$$\frac{\partial}{\partial t}n + \mathbf{v} \cdot \frac{\partial}{\partial \mathbf{r}}n + \left(e\mathbf{E} + \frac{e}{c}[\mathbf{v} \times \mathbf{B}]\right) \cdot \frac{\partial}{\partial \mathbf{p}}n - -\mu \frac{\partial B_i}{\partial \mathbf{r}} \cdot \frac{\partial s_i}{\partial \mathbf{p}} + R = 0,$$
(11)

$$\frac{\partial}{\partial t}\mathbf{s} + \mathbf{v} \cdot \frac{\partial}{\partial \mathbf{r}}\mathbf{s} + \left(e\mathbf{E} + \frac{e}{c}[\mathbf{v} \times \mathbf{B}]\right) \cdot \frac{\partial}{\partial \mathbf{p}}\mathbf{s} + \frac{2\mu}{\hbar}[\mathbf{s} \times \mathbf{B}] - \mu \frac{\partial}{\partial \mathbf{p}}n \cdot \frac{\partial}{\partial \mathbf{r}}\mathbf{B} + \mathbf{R} = 0,$$
(12)

где введены обозначения  $R = \text{Tr}\hat{R}, \mathbf{R} = \text{Tr}\hat{\sigma}\hat{R}$ .

Кинетические уравнения (11), (12) необходимо использовать при описании транспортных свойств систем, в которых длина свободного пробега электронов проводимости сравнима или превышает характерный масштаб изменения полей В и Е, а также характерные линейные размеры образца. В этом случае из уравнений (11), (12) после их решения будет получена существенно нелокальная связь потоков и полей. В обратном предельном случае, когда длина свободного пробега электронов является наименьшим параметром размерности длины, можно существенно упростить решение задачи, если перейти от описания системы на языке функций распределения к описанию на языке плотностей и потоков. Пренебрегая в этом случае пространственной дисперсией, исходя из уравнений (11), (12) для функций распределения, ниже мы получим замкнутую систему уравнений для плотностей  $N(\mathbf{r},t)$ ,  $\mathbf{S}(\mathbf{r},t)$  и потоков  $\mathbf{I}(\mathbf{r},t)$ ,  $\boldsymbol{J}(\mathbf{r},t)$ .

## ПЕРЕХОД К "СОКРАЩЕННОМУ" ОПИСАНИЮ СПИНОВОЙ КИНЕТИКИ

В отсутствие внешних полей система находится в состоянии полного термодинамического равновесия и описывается статистическим оператором  $\hat{f}_0 = F(\varepsilon_p - \zeta_0)$ , где  $F(\varepsilon) = 1/(\exp(\varepsilon/k_B T) + 1)$ функция Ферми,  $\zeta_0$  – химический потенциал, определяемый из условия  $\sum_p 2F(\varepsilon_p - \zeta_0) = N_0$ , где  $N_0$  – равновесная плотность электронов.

Определим мгновенное локально-равновесное значение квантовой функции распределения системы, помещенной в магнитное поле  $\mathbf{B}(\mathbf{r},t)$ , как оператор  $\hat{f}_{\rm L} = F(\varepsilon_{\rm p} + \mu \mathbf{B} \cdot \hat{\boldsymbol{\sigma}} - \zeta_{\rm L})$ . Здесь  $\zeta_{\rm L}$  – локальный химический потенциал, определяемый

I

из условия  $\sum_{\mathbf{p}} \operatorname{Tr} F(\varepsilon_{\mathbf{p}} + \mu \mathbf{B} \cdot \hat{\mathbf{\sigma}} - \zeta_{\mathrm{L}}) = N$ . Считая энергию спинового расщепления  $\mu B$  и изменения химпотенциала  $\zeta_{\mathrm{L}} - \zeta_{0}$  малыми по сравнению с энергией Ферми, запишем  $\hat{f}_{\mathrm{L}}$  в линейном по внешним полям приближении как

$$\hat{f}_{\rm L} = F\left(\varepsilon_{\rm p} - \zeta_0\right) + + F'\left(\varepsilon_{\rm p} - \zeta_0\right)\left(\mu\hat{\boldsymbol{\sigma}}\cdot\boldsymbol{B} - (\zeta_{\rm L} - \zeta_0)\right),$$
(13)

где  $F'(\varepsilon)$  — производная функции  $F(\varepsilon)$ . Соответствующая этому состоянию спиновая функция распределения  $\mathbf{s}_{L}(\mathbf{r},\mathbf{p},t) = 2F'(\varepsilon_{p} - \zeta_{0})\mu\mathbf{B}$ , тогда как спиновая плотность  $S_{L}(\mathbf{r},t) = 2\sum_{p} F'(\varepsilon_{p} - \zeta_{0})\mu\mathbf{B}$ . Локально равновесная спиновая функция распределения  $\mathbf{s}_{L}(\mathbf{r},\mathbf{p},t)$  может быть выражена через спиновую плотность  $S_{L}$  соотношением

$$s_{\mathrm{L}}(\mathbf{r},\mathbf{p},t) =$$

$$= F'(\varepsilon_{\mathbf{p}} - \zeta_{0}) \left[ \sum_{\mathbf{p}} F'(\varepsilon_{\mathbf{p}} - \zeta_{0}) \right]^{-1} \mathbf{S}_{\mathrm{L}}(\mathbf{r},t).$$
(14)

Локальное изменение химпотенциала  $\zeta_{\rm L} - \zeta_0$ определяет отклонение локально-равновесной функции распределения числа частиц  $n_{\rm L}(\mathbf{r}, \mathbf{p}, t)$ от равновесного значения  $n_0 = 2F(\varepsilon_{\rm p} - \zeta_0)$  как  $n_{\rm L} - n_0 = -2F'(\varepsilon_{\rm p} - \zeta_0)(\zeta_{\rm L} - \zeta_0)$ . Это отклонение выражается через отклонение локальной плотности электронов *N* от  $N_0$  соотношением

$$n_{\rm L}(\mathbf{r},\mathbf{p},t) - n_0 =$$
  
=  $F'(\varepsilon_{\mathbf{p}} - \zeta_0) \left[ \sum_{\mathbf{p}} F'(\varepsilon_{\mathbf{p}} - \zeta_0) \right]^{-1} [N(\mathbf{r},t) - N_0].$  (15)

Переход от описания системы на языке функций распределения к "сокращенному" описанию на языке плотностей и потоков подразумевает возможность непосредственного выражения функций распределения через плотности и потоки.

"Сокращенное" представление  $\hat{f}_{\rm R}$  оператора  $\hat{f}$  мы определим формальным операторным уравнением  $\hat{f}_{\rm R} = F(\varepsilon_{{\rm p}-\hat{\pi}} + \mu {\bf B} \cdot \hat{\bf \sigma} - \hat{\zeta})$ , в котором  $\hat{\zeta}$ описывает локальные изменения энергии электронов из-за изменения плотностей  $N({\bf r},t)$ ,  ${\bf S}({\bf r},t)$ , а вектор  $\hat{\pi}$  определяет локальный сдвиг распределения квантовой функции распределения в импульсном пространстве, обусловленный потоками заряда и спина  ${\bf I}({\bf r},t)$ ,  ${\bf J}({\bf r},t)$ . В линейном по внешним полям приближении для  $\hat{f}_{\rm R}$  получаем уравнение

$$\hat{f}_{R} = F(\varepsilon_{p} - \zeta_{0}) + F'(\varepsilon_{p} - \zeta_{0}) \times \\ \times (\mu \hat{\boldsymbol{\sigma}} \cdot \mathbf{B} - (\hat{\boldsymbol{\zeta}} - \zeta_{0}) - \mathbf{v} \cdot \hat{\boldsymbol{\pi}}).$$
(16)

Химпотенциал  $\zeta$  и векторный оператор  $\hat{\pi}$  определяются из уравнений

$$N = \sum_{\mathbf{p}} \operatorname{Tr} \hat{f}_{\mathbf{R}}, \quad \mathbf{S} = \sum_{\mathbf{p}} \operatorname{Tr} \hat{\mathbf{\sigma}} \hat{f}_{\mathbf{R}},$$
$$= \sum_{\mathbf{p}} \operatorname{Tr} \mathbf{v} \hat{f}_{\mathbf{R}}, \quad \boldsymbol{J} = \sum_{\mathbf{p}} \operatorname{Tr} \mathbf{v} \otimes \hat{\mathbf{\sigma}} \hat{f}_{\mathbf{R}}.$$
(17)

После нахождения из уравнений (16), (17) операторов  $\hat{\zeta}$  и  $\hat{\pi}$  получаем выражение для  $\hat{f}_{R}$ :

$$\hat{f}_{\rm R} = \frac{1}{2}n_{\rm R} + \frac{1}{2}\mathbf{s}_{\rm R}\cdot\hat{\boldsymbol{\sigma}},\tag{18}$$

$$n_{\rm R} = 2F + F' \left[ \sum_{\mathbf{p}} F' \right]^{-1} \left[ N - N_0 + \frac{1}{v_E^2} \mathbf{v} \cdot \mathbf{I} \right], \quad (19)$$

$$\mathbf{s}_{\mathrm{R}} = F' \left[ \sum_{\mathbf{p}} F' \right]^{-1} \left[ \mathbf{S} + \frac{1}{V_E^2} \mathbf{v} \cdot \mathbf{J} \right], \qquad (20)$$

где  $\overline{v_E^2} = \sum_{\mathbf{p}} v_E^2 F' \left[ \sum_{\mathbf{p}} F' \right]^{-1}$ ,  $\mathbf{v}_E$  – проекция скорости электрона на направление электрического поля. При получении соотношений (19), (20) для простоты мы считали спектр  $\varepsilon_{\mathbf{p}}$  электронов изотропным. Далее мы будем считать спектр  $\varepsilon_{\mathbf{p}}$  изотропным и квадратичным, введя в рассмотрение эффективную массу электронов *m*.

Перейдем теперь непосредственно к получению уравнений для плотностей и токов из уравнений (11), (12) для функций распределения. Просуммируем по **р** уравнения (11) и (12), а затем просуммируем эти же уравнения после умножения их на скорость **v**, в результате получим систему уравнений вида

$$\frac{\partial}{\partial t}N + \frac{\partial}{\partial \mathbf{r}} \cdot \mathbf{I} + \sum_{\mathbf{p}} R = 0, \qquad (21)$$

$$\frac{\partial}{\partial t}\mathbf{S} + \frac{\partial}{\partial \mathbf{r}} \cdot \mathbf{J} + [\mathbf{S} \times \mathbf{\Omega}_{L}] + \sum_{\mathbf{p}} \mathbf{R} = 0, \qquad (22)$$

$$\frac{\partial}{\partial t}\mathbf{I} + \sum_{\mathbf{p}} \mathbf{v} \left( \mathbf{v} \cdot \frac{\partial}{\partial \mathbf{r}} n \right) - \frac{e}{m} \mathbf{E} N - [\mathbf{\Omega}_{\mathrm{C}} \times \mathbf{I}] + \frac{\mu}{m} \frac{\partial}{\partial \mathbf{r}} \otimes \mathbf{B} \cdot \mathbf{S} + \sum_{\mathbf{p}} \mathbf{v} R = 0,$$
(23)

$$\frac{\partial}{\partial t} \mathbf{J} + \sum_{\mathbf{p}} \mathbf{v} \otimes \left( \mathbf{v} \cdot \frac{\partial}{\partial \mathbf{r}} \mathbf{s} \right) - \frac{e}{m} \mathbf{E} \otimes \mathbf{S} - - \left[ \mathbf{\Omega}_{\mathrm{C}} \times \mathbf{J} \right] + \left[ \mathbf{J} \times \mathbf{\Omega}_{\mathrm{L}} \right] + + \frac{\mu}{m} \frac{\partial}{\partial \mathbf{r}} \otimes \mathbf{B} N + \sum_{\mathbf{p}} \mathbf{v} \otimes \mathbf{R} = 0,$$
(24)

где введены обозначения  $\Omega_{\rm L} = \frac{2\mu}{\hbar} \mathbf{B}$  и  $\Omega_{\rm C} = \frac{|e|}{mc} \mathbf{B}$ . Величина  $\Omega_{\rm L}$  – это Ларморовская частота, характеризующая прецессионное движение спина электронов, тогда как  $\Omega_{\rm C}$  – циклотронная частота, отвечающая движению электрона по циклотронным орбитам вследствие действия на заряд электрона силы Лоренца.

Система уравнений (21)—(24) не является замкнутой, поскольку вторые слагаемые в левых частях уравнений (23) и (24) выражаются через свертку функций распределения с квадратичными комбинациями вектора скорости электрона. Чтобы замкнуть систему уравнений, мы при вычислении вышеуказанных слагаемых пренебрежем отличием функций распределения n и **s** от функций  $n_{\rm R}$  и  ${\bf s}_{\rm R}$ , определенных уравнениями (19) и (20) соответственно. В результате получаем

$$\sum_{\mathbf{p}} \mathbf{v} \left( \mathbf{v} \cdot \frac{\partial}{\partial \mathbf{r}} n \right) = \overline{v_E^2} \frac{\partial}{\partial \mathbf{r}} N, \qquad (25)$$

$$\sum_{\mathbf{p}} \mathbf{v} \otimes \left( \mathbf{v} \cdot \frac{\partial}{\partial \mathbf{r}} \mathbf{s} \right) + \frac{\mu}{m} \frac{\partial}{\partial \mathbf{r}} \otimes \mathbf{B} N =$$

$$\overline{v_E^2} \frac{\partial}{\partial \mathbf{r}} \otimes (\mathbf{S} - \mathbf{S}_L) + \frac{\mu}{m} (N - N_0) \frac{\partial}{\partial \mathbf{r}} \otimes \mathbf{B}.$$
(26)

Аналогично мы поступим и при вычислении сумм по квазиимпульсам от интегралов столкновений R и  $\mathbf{R}$ .

## ИНТЕГРАЛ СТОЛКНОВЕНИЙ

Дальнейшее рассмотрение требует конкретизации вида интегралов столкновений R и **R**. Можно показать, что описывающий релаксацию интеграл столкновений  $\hat{R}$  может быть записан в следующем виде:

$$\hat{R} = \frac{i}{\hbar} \left\{ \left\langle \hat{T}_{\mathbf{pp}}^{+}(\varepsilon_{\mathbf{p}}) \right\rangle \delta \hat{f}_{\mathbf{p}} - \delta \hat{f}_{\mathbf{p}} \left\langle \hat{T}_{\mathbf{pp}}^{-}(\varepsilon_{\mathbf{p}}) \right\rangle \right\} - \frac{2\pi}{\hbar} \sum_{\mathbf{p}'} \left\langle \hat{T}_{\mathbf{pp}'}^{+}(\varepsilon_{\mathbf{p}}) \delta \hat{f}_{\mathbf{p}} \hat{T}_{\mathbf{p'p}}^{-}(\varepsilon_{\mathbf{p}}) \right\rangle \delta \left(\varepsilon_{\mathbf{p}} - \varepsilon_{\mathbf{p}'}\right),$$
(27)

где  $\delta \hat{f}_{\mathbf{p}} \equiv \delta \hat{f}(\mathbf{r}, \mathbf{p}, t), \hat{T}_{\mathbf{pp}'}^{\pm}(E)$  – матричные элементы оператора амплитуды рассеяния, который определяется рассеивающим потенциалом  $\hat{V}$  и находится как решение уравнения Липпмана– Швингера

$$\hat{T}^{\pm}(E) = \hat{V} + \hat{V} \left( E - \hat{H}_0 \pm i0 \right)^{-1} \hat{T}^{\pm}(E).$$
(28)

Первое слагаемое в (27), выражающееся через  $\delta \hat{f}_{\mathbf{p}}$ , — это так называемый "уходный" член интеграла стокновений, описывающий уход электронов из состояния **p** во все возможные состояния при рассеянии на потенциале  $\hat{V}$ . Второе слагаемое в (27), выражающееся через сумму по **p**' от слагаемых, содержащих  $\delta \hat{f}_{\mathbf{p}'}$  — это так называемый "приходный" член интеграла столкновений, описывающий приход электронов в состояние **p** из всех других состояний **p**'.

Мы ограничимся здесь рассмотрением случая, когда рассеиватели электронов, формируюшие потенциал  $\hat{V}$  и определяющие вид оператора амплитуды рассеяния  $\hat{T}$ , не обладают соб-ственным спином. Некоторые важные данные о структуре оператора  $\hat{T}$  можно получить путем анализа свойств симметрии взаимодействия  $\hat{V}$ . поскольку амплитулу рассеяния можно представить в виде матричного элемента оператора рассеяния, а свойства симметрии оператора  $\hat{T}$  совпадают со свойствами симметрии гамильтониана системы. Гамильтониан рассматриваемой системы предполагаем инвариантым относительно произвольных поворотов и пространственной инверсии. Следовательно, и оператор амплитуды рассеяния должен быть инвариантен относительно этих преобразований. Опираясь на эти фундаментальные свойства оператора  $\hat{T}$ , найдем его общий вид. Поскольку  $\hat{T}$  является оператором в пространстве спиновых функций, его всегда можно представить в виде линейной комбинации матриц Паули  $\hat{\sigma}$  и единичного оператора:

$$\hat{T} = A + \mathbf{C} \cdot \hat{\mathbf{\sigma}}.$$
(29)

В разложении (29) величины A и C являются комплексно-значными функциями квазиимпульсов **р** и **р**'. Оператор амплитуды рассеяния  $\hat{T}$  будет инвариантом произвольного поворота и инверсии только в том случае, если A будет скаляром, а величина C – некоторым псевдовектором.

Введем в рассмотрение три единичных вектора:

$$\mathbf{c} = \frac{\mathbf{p} \times \mathbf{p}'}{|\mathbf{p} \times \mathbf{p}'|}, \quad \mathbf{c}_{+} = \frac{\mathbf{p} + \mathbf{p}'}{|\mathbf{p} + \mathbf{p}'|}, \quad \mathbf{c}_{-} = \frac{\mathbf{p} - \mathbf{p}'}{|\mathbf{p} - \mathbf{p}'|}.$$
(30)

Векторы **c**, **c**<sub>+</sub>, **c**<sub>-</sub> попарно ортогональны, а поэтому могут быть взяты в качестве базиса трехмерного пространства. Тогда вектор **C** можно представить в виде разложения  $\mathbf{C} = C\mathbf{c} + C_+\mathbf{c}_+ + C_-\mathbf{c}_-$ , где *C*,  $C_+$ ,  $C_-$  – некоторые скалярные или псевдоскалярные функции **p** и **p**'. При инверсии векторы **p** и **p**' изменяют знак, а поэтому изменяют знак также векторы **c**<sub>+</sub> и **c**<sub>-</sub>. Поэтому из инвариантности опе-

ратора  $\hat{T}$  относительно пространственной инверсии следует, что  $C_+ = 0$ ,  $C_- = 0$ , а зависящие от **p** и **p**' величины A и C — скаляры. Эти функции зависят от **p** и **p**' только через скалярные комбинации **p** · **p**, **p**' · **p**' и **p** · **p**', т.е. являются функциями энергии и угла рассеяния — угла между **p** и **p**'. Таким образом, оператор амплитуды рассеяния имеет следующий общий вид:

$$\hat{T} = A + C(\mathbf{c} \cdot \hat{\mathbf{\sigma}}), \qquad (31)$$

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 121 № 3 2020

где **с** — единичный вектор нормали к плоскости рассеяния, определяемый первым из выражений (30).

Можно показать, что определяющие оператор

 $\hat{T}$  величины A и C связаны следующим соотношением, которое известно как "оптическая теорема":

$$-\frac{2}{\hbar} \mathrm{Im} A_{\mathbf{p}\mathbf{p}} = \frac{2\pi}{\hbar} \sum_{\mathbf{p}'} \left( \left| A_{\mathbf{p}\mathbf{p}'} \right|^2 + \left| C_{\mathbf{p}\mathbf{p}'} \right|^2 \right) \delta\left( \varepsilon_{\mathbf{p}} - \varepsilon_{\mathbf{p}'} \right). \quad (32)$$

С использованием определения (27) для оператора интеграла столкновений  $\hat{R}$ , уравнений (31) и (32), интегралы столкновений  $R = \text{Tr}\hat{R}$  и  $\mathbf{R} = \text{Tr}\hat{\sigma}\hat{R}$  можно представить в виде:

$$R = \sum_{\mathbf{p}'} \left\{ \left( W_{\mathbf{p}\mathbf{p}'}^{(\mathrm{nsf})} + W_{\mathbf{p}\mathbf{p}'}^{(\mathrm{sf})} \right) \left( \delta n_{\mathbf{p}} - \delta n_{\mathbf{p}'} \right) - \\ -2\mathrm{Re} W_{\mathbf{p}\mathbf{p}'}^{(\mathrm{as})} \left( \mathbf{c} \cdot \delta s_{\mathbf{p}'} \right) \right\};$$

$$\mathbf{R} = \sum_{\mathbf{p}'} \left\{ \left( W_{\mathbf{p}\mathbf{p}'}^{(\mathrm{nsf})} + W_{\mathbf{p}\mathbf{p}'}^{(\mathrm{sf})} \right) \left( \delta \mathbf{s}_{\mathbf{p}} - \delta \mathbf{s}_{\mathbf{p}'} \right) + \\ + 2W_{\mathbf{p}\mathbf{p}'}^{(\mathrm{sf})} \left( \delta s_{\mathbf{p}'} - \mathbf{c} \left( \mathbf{c} \cdot \delta s_{\mathbf{p}'} \right) \right) - 2\mathrm{Re} W_{\mathbf{p}\mathbf{p}'}^{(\mathrm{as})} \left( \mathbf{c} \cdot \delta n_{\mathbf{p}'} \right) - (34) \\ - 2\mathrm{Im} W_{\mathbf{p}\mathbf{p}'}^{(\mathrm{as})} \left[ \mathbf{c} \times \delta s_{\mathbf{p}'} \right] \right\}.$$

При записи интегралов столкновений (33), (34) мы для краткости использовали обозначения  $\delta n_{\mathbf{p}}$  и  $\delta \mathbf{s}_{\mathbf{p}}$  для функций  $\delta n(\mathbf{r}, \mathbf{p}, t)$  и  $\delta \mathbf{s}(\mathbf{r}, \mathbf{p}, t)$  соответственно, а также ввели следующие величины:

$$W_{\mathbf{p}\mathbf{p}'}^{(\mathrm{nsf})} = \frac{2\pi}{\hbar} \left\langle \left| A_{\mathbf{p}\mathbf{p}'} \right|^2 \right\rangle \delta\left( \varepsilon_{\mathbf{p}} - \varepsilon_{\mathbf{p}'} \right), \tag{35}$$

$$W_{\mathbf{p}\mathbf{p}'}^{(\mathrm{sf})} = \frac{2\pi}{\hbar} \left\langle \left| C_{\mathbf{p}\mathbf{p}'} \right|^2 \right\rangle \delta\left( \varepsilon_{\mathbf{p}} - \varepsilon_{\mathbf{p}'} \right), \tag{36}$$

$$W_{\mathbf{p}\mathbf{p}'}^{(\mathrm{as})} = \frac{2\pi}{\hbar} \left\langle A_{\mathbf{p}\mathbf{p}'} C_{\mathbf{p}\mathbf{p}'}^* \right\rangle \delta\left(\varepsilon_{\mathbf{p}} - \varepsilon_{\mathbf{p}'}\right). \tag{37}$$

Величина  $W_{pp'}^{(nsf)}$  имеет смысл дифференциальной вероятности рассеяния электрона без изменения спинового состояния (non spin-flip) из состояния с квазиимпульсом **p**' в состояние с квазиимпульсом **p** за единицу времени, тогда как  $W_{pp'}^{(sf)}$  – это дифференциальная вероятность рассеяния с переворотом спина (spin-flip) за единицу времени. Величина  $W_{pp'}^{(as)}$  характеризует асимметричное, так называемое "косое" (askew) спиновое рассеяния квазиимпульсов электрона до и после рассеяния и поэтому не имеет простого смысла вероятности какого-либо процесса. Суммируя дифференциальную вероятность  $W_{pp'}^{(sf)}$  рассеяния электрона из состояния с квазиимпульсом **p**' в состояние с квазиимпульсом **p**' в состояние с квазиимпульсом **p** в состояние с квазиимпульсом **b** в состояни

зиимпульсом **p** за единицу времени с переворотом спина по всем возможным состояниям электрона **p** после рассеяния, получаем интегральную вероятность рассеяния из состояния с квазиимпульсом **p**' за единицу времени с переворотом спина

$$w_{\mathbf{p}'}^{(sf)} = \sum_{\mathbf{p}} W_{\mathbf{p}\mathbf{p}'}^{(sf)}.$$
 (38)

Интегральную вероятность изменения орбитального состояния электрона с квазиимпульсом **p**', от величины которой будут зависеть транспортные характеристики электронной системы, определим как

$$w_{\mathbf{p}'}^{(tr)} = \sum_{\mathbf{p}} \left[ W_{\mathbf{p}\mathbf{p}'}^{(nsf)} + W_{\mathbf{p}\mathbf{p}'}^{(sf)} \right] \left[ 1 - \cos(\mathbf{p}, \ \mathbf{p}') \right].$$
(39)

Интегральная вероятность процессов "косого" спинового рассеяния из состояния **p**' характеризуется величиной

$$w_{\mathbf{p}'}^{(\mathrm{as})} = \sum_{\mathbf{p}} \frac{pp'}{|\mathbf{p} \times \mathbf{p}'|} \operatorname{Re} W_{\mathbf{pp}'}^{(\mathrm{as})}.$$
 (40)

#### БАЗОВЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ДЛЯ ПЛОТНОСТЕЙ И ПОТОКОВ

Подставим (33), (34) в уравнения (21)–(24), с использованием соотношений (25), (26) и определений (35)–(40), после выполнения всех суммирований получим искомую систему уравнений для плотностей и потоков:

$$\frac{\partial}{\partial t}N + \frac{\partial}{\partial \mathbf{r}} \cdot \mathbf{I} = 0; \tag{41}$$

$$\frac{\partial}{\partial t}\mathbf{S} + \frac{\partial}{\partial \mathbf{r}} \cdot \boldsymbol{J} + [\mathbf{S} \times \boldsymbol{\Omega}_{\mathrm{L}}] + \frac{1}{\tau_{\mathrm{S}}} \delta \mathbf{S} = 0; \qquad (42)$$

$$\frac{\partial}{\partial t}\mathbf{I} + \overline{v_E^2} \frac{\partial}{\partial \mathbf{r}} \delta N - \frac{e}{m} \mathbf{E}N - [\mathbf{\Omega}_C \times \mathbf{I}] + \frac{\mu}{m} \frac{\partial}{\partial \mathbf{r}} \otimes \mathbf{B} \cdot \mathbf{S} + \frac{1}{\tau_0} \mathbf{I} + \frac{1}{\tau_{SO}} \mathbf{e} \cdot \mathbf{J} = 0;$$
(43)

$$\frac{\partial}{\partial t} \boldsymbol{J} + \overline{v_E^2} \frac{\partial}{\partial \mathbf{r}} \otimes \delta \mathbf{S} - \frac{\boldsymbol{e}}{m} \mathbf{E} \otimes \mathbf{S} - [\boldsymbol{\Omega}_{\rm C} \times \boldsymbol{J}] + \left[ \boldsymbol{J} \times \boldsymbol{\Omega}_{\rm L} \right] + \frac{\mu}{m} \frac{\partial}{\partial \mathbf{r}} \otimes \mathbf{B} \delta N + \frac{1}{\tau_{\rm O}} \boldsymbol{J} + \frac{1}{\tau_{\rm SO}} \boldsymbol{e} \cdot \mathbf{I} = 0.$$
(44)

Здесь введены следующие величины, характеризующие скорость различных процессов релаксации:

– скорость релаксации спина  $1/\tau_s$  (как характеристика процессов рассеяния с переворотом спина)

$$\frac{1}{\tau_{\rm S}} = 2\overline{w_{\rm p}^{\rm (sf)}};\tag{45}$$

– скорость релаксации импульса  $1/\tau_0$  (как характеристика влияния рассеяния на изменение орбитального движения электронов, определяющее их транспортные свойства):

$$\frac{1}{\tau_{\rm O}} = \overline{v^2 w_{\rm p}^{\rm (tr)}} / \overline{v^2}; \qquad (46)$$

– скорость релаксации, обусловленной "косым" рассеянием электронов  $1/\tau_{so}$  (как характеристика интенсивности асимметричного спинорбитального рассеяния)

$$\frac{1}{\tau_{\rm SO}} = \frac{2}{3} \frac{v^2 w_{\rm p}^{(\rm as)}}{\sqrt{v^2}} \,. \tag{47}$$

В определениях (45)–(47) чертой над функцией обозначена операция ее усреднения по **р** с весом  $F: \overline{(...)} = \sum_{\mathbf{p}} (...) F' / \sum_{\mathbf{p}} F'$ , а величина *е* в уравнениях (43), (44) есть абсолютно антисимметричный единичный тензор 3-го ранга.

Легко видеть, что уравнение (41) не что иное, как уравнение непрерывности для потока электронов. Наличие в левой части этого уравнения двух членов отражает выполнение закона сохранения числа частиц: скорость изменения плотности частиц в данной точке равна с обратным знаком дивергенции вектора плотности потока частиц в этой точке.

Уравнение (42) – известное уравнение движения для спиновой плотности, которое также можно рассматривать как уравнение непрерывности для спинового тока, однако в этом уравнении заложена возможность диссипации спина, которая описывается последним членом в левой части уравнения. Скорость спиновой релаксации электронов проводимости  $1/\tau_s$  и, соответственно, время спиновой релаксации  $\tau_{s}$  определяются, как можно видеть из уравнений (45) и (36), процессами рассеяния с переворотом спина. Третий член в левой части (42) описывает прецессионное движение электронов с частотой Ω<sub>1</sub>. Второй член отвечает за локальное изменение спиновой плотности, обусловленное переносом спина, который имеет место при протекании спинового тока J из одной области пространства с фиксированной спиновой плотностью в другую область, имеющую иную по величине или направлению спиновую плотность. В силу малости времени релаксации квазиимпульса  $\tau_0$  по сравнению с временем спиновой релаксации  $\tau_s$ , описанное выше движение спина электрона можно описывать как диффузионный процесс. При этом коэффициент спиновой диффузии определяется как  $D = v_E^2 \tau_0$ .

Уравнение (43) — уравнение для нахождения вектора плотности потока электронов или связанного с ним вектора плотности электрического тока  $\mathbf{j} = e\mathbf{I}(\mathbf{r}, t)$  при заданных полях **E** и **B**. Второй член в левой части описывает диффузионную компоненту потока частиц, величина которой определяется коэффициентом диффузии  $D = \overline{v_E^2} \tau_0$ . Третий член описывает ток проводимости, индуцируемый полем Е, величина которого определяется удельной электропроводностью металла  $\sigma = Ne^2 \tau_0 / m$ . Четвертый описывает изменение плотности электрического тока из-за действия силы Лоренца, заставляющей электроны двигаться по циклотронным орбитам с частотой Ω<sub>С</sub> и приводящей к появлению эффекта Холла. Пятое слагаемое учитывает изменение проводимости металла из-за зависимости действующего в металле магнитного поля от координат. Именно этот вклад определяет новые эффекты в проводимости неоднородно-намагниченных проводников. Шестое слагаемое описывает скорость изменения орбитального состояния электронов, определяемую транспортным временем релаксации импульса то. Наконец, последнее слагаемое в левой части уравнения (43) отвечает за учет асимметричного спинового рассеяния электронов, интенсивность которого задается временем релаксации  $\tau_{so}$ . Это слагаемое, как и последний член в левой части уравнения (44), описывает специфические особенности физического явления, получившего название "спиновый эффект Холла".

Уравнение (44) — уравнение для нахождения тензора спинового тока J. Второй член в левой части (44) описывает диффузионную компоненту потока спина, величина которой определяется коэффициентом диффузии спина  $D = v_E^2 \tau_0$ . Третий член описывает эффекты дрейфа спиновой плотности под действием электрического поля. Четвертое слагаемое, векторное произведение вектора  $\Omega_{\rm C}$  и тензора спинового тока J, описывает влияние силы Лоренца, аналогично четвертому члену уравнения (43). Пятый член, векторное произведение тензора спинового тока *J* и вектора  $\Omega_{\rm L}$ , описывает спиновую прецессию движущихся электронов. Шестое слагаемое описывает влияние неоднородностей магнитного поля на спиновый транспорт, а седьмое учитывает затухание спинового тока со скоростью релаксации импульса  $1/\tau_{0}$ . Последний член в левой части (44), как уже отмечалось, отражает существование спинового эффекта Холла.

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 121 № 3 2020

## СПИНОВЫЙ ТРАНСПОРТ В КИРАЛЬНЫХ ГЕЛИМАГНЕТИКАХ

Для иллюстрации влияния неоднородного магнитного поля на спиновый транспорт применим полученные уравнения для описания транспортных свойств киральных гелимагнетиков. Интерес к спиновому транспорту в киральных гелимагнетиках обусловлен возможностью использования их уникальных свойств при создании магнитокиральных наноструктур для применений в спинтронике [14–16].

Пусть ось простой магнитной спирали гелимагнетика и электрическое поле Е направлены вдоль оси *OZ*:  $\mathbf{E} = E_{z}\mathbf{e}_{z}$ . Помимо внешнего магнитного поля на электронные спины действует эффективное магнитное поле обменного происхождения **H**<sup>(ex)</sup>. Для геликоидального магнетика со спиновым упорядочением типа "простая спираль" поле **H**<sup>(ex)</sup> может быть представлено в виде  $\mathbf{H}^{(ex)}(z) = H^{(ex)}\mathbf{h}(z)$ , где  $H^{(ex)}$  – величина обменного поля,  $\mathbf{h}(z)$  – единичный вектор, характеризующий направление  $H^{(ex)}(z)$  в плоскости ху в точке z. Введем в рассмотрение вектор производной вектора  $\mathbf{H}^{(ex)}(z)$  по координате z,  $\mathbf{H}^{(\text{ex})'}(z) \equiv (d/dz)\mathbf{H}^{(\text{ex})}(z)$ , и единичный вектор  $\mathbf{h}'(z) = \mathbf{H}^{(ex)'}(z) / |\mathbf{H}^{(ex)'}(z)|$ , задающий направление вектора  $\mathbf{H}^{(ex)'}(z)$ . Полагая, что компоненты вектора  $\mathbf{h}(z)$  изменяются по гармоническому закону,  $h_x(z) \sim \cos qz$ ,  $h_y(z) \sim \sin qz$ , где **q** – волновой вектор магнитной спирали, получаем, что единичные вектора  $\mathbf{h}(z)$  и  $\mathbf{h}'(z)$  взаимно ортогональны в каждой точке z. Направление "закручивания" спирали однозначно определяется вектором  $\mathbf{k} = [\mathbf{h} \times \mathbf{h}']$ , который мы будем называть век-

тором киральности магнитной спирали.

Для наглядности изложения при записи системы уравнений (41)—(44) применительно к гелимагнетикам мы будем полагать, что внешнее магнитное поле отсутствует, полагая  $\Omega_{\rm C} = 0$ , и будем рассматривать стационарный перенос заряда и спина в условиях электрической нейтральности системы, полагая  $\delta N = 0$ . Кроме того, пренебрежем эффектами "косого" спин-орбитального рассеяния, опуская все члены, содержащие  $1/\tau_{\rm SO}$ .

Решение уравнения (43) для потока I в этом случае можно записать в явном виде

$$\mathbf{I} = \frac{N_0 e \tau_0}{m} \mathbf{E} - \frac{\mu \tau_0}{m} \left( \frac{\partial}{\partial z} \mathbf{H}^{(\text{ex})} \cdot \delta \mathbf{S} \right) \mathbf{e}_z.$$
(48)

Из выражения (48) следует, что неоднородное магнитное поле изменяет поток электронов, причем изменение определяется скалярным произведением вектора  $\frac{\partial}{\partial z} \mathbf{H}^{(ex)}$  и вектора неравновесной спиновой плотности  $\delta \mathbf{S}$ . Представим  $\delta \mathbf{S}$  в виде суммы продольной  $\delta \mathbf{S}_1$  и поперечной  $\delta \mathbf{S}_t$  (по отношению к оси спирали) компонент:  $\delta \mathbf{S} = \delta \mathbf{S}_1 + \delta \mathbf{S}_t$ . С учетом того, что вектор  $\frac{\partial}{\partial z} \mathbf{H}^{(ex)}$  перпендикулярен вектору оси  $\mathbf{e}_z$ , получаем, что изменение потока электронов в (48) определяется только поперечной компонентой неравновесной спиновой плотности  $\delta \mathbf{S}_t$ .

Из уравнений (42)—(44) получаем следующую связь продольной  $\delta S_1$  и поперечной  $\delta S_1$  компонент:

$$\delta \mathbf{S}_{1} = -\Omega_{\mathrm{L}} \tau_{\mathrm{S}} [\delta \mathbf{S}_{\mathrm{t}} \times \mathbf{h}]. \tag{49}$$

Среди введенных ранее векторов поляризации спинового тока  $\mathbf{P}_i$  в рассматриваемом случае оказывается отличным от нуля только вектор  $\mathbf{P}_z$ , удовлетворяющий уравнению

$$\mathbf{P}_{z} + \tau_{\mathrm{O}} \left[ \mathbf{P}_{z} \times \mathbf{\Omega}_{\mathrm{L}} \right] = -D \frac{\partial}{\partial z} \delta \mathbf{S}_{\mathrm{t}} + \frac{e \tau_{\mathrm{O}}}{m} \mathbf{S} E_{z}.$$
(50)

В линейном по электрическому полю приближении в формуле (50) можно пренебречь отличием спиновой плотности **S** от ее локально-равновесного значения **S**<sub>L</sub>. Тогда получаем, что **P**<sub>z</sub>  $\perp$  **e**<sub>z</sub>, **P**<sub>z</sub>  $\| \Omega_L$ . Учет нелинейных членов в (50) приводит к появлению у вектора поляризации **P**<sub>z</sub> компоненты, направленной вдоль оси геликоиды.

С использованием соотношений (49), (50), из уравнения (42) получаем следующее уравнение для поперечной компоненты спиновой плотности:

$$-\tau_{\rm S} \left[ \left[ \delta \mathbf{S}_{\rm t} \times \mathbf{\Omega}_{\rm L} \right] \times \mathbf{\Omega}_{\rm L} \right] - D \frac{\partial^2}{\partial z^2} \delta \mathbf{S}_{\rm t} + + \frac{1}{\tau_{\rm S}} \delta \mathbf{S}_{\rm t} = -\frac{e\tau_{\rm O}}{m} E_z \frac{\partial}{\partial z} \mathbf{S}_{\rm L}.$$
(51)

Уравнение движения (51) для геликоиды, характеризуемой волновым вектором **q**, с учетом того обстоятельства, что вектора  $\delta S_t$  и  $\Omega_L$  взаимно перпендикулярны, может быть записано в виде

$$\frac{1}{\tau_{\rm G}} \delta \mathbf{S}_{\rm t} = -\frac{e\tau_{\rm O}}{m} E_z \frac{\partial}{\partial z} \mathbf{S}_{\rm L},\tag{52}$$

где введено эффективное время спиновой релаксации в гелимагнетике  $\tau_G$ , определяемое соотношением

$$\frac{1}{\tau_{\rm G}} = \frac{1}{\tau_{\rm S}} + \frac{1}{\tau_{\rm L}} + \frac{1}{\tau_{\rm D}}.$$
 (53)

Эффективная скорость спиновой релаксации в гелимагнетике  $\tau_G^{-1}$  есть сумма трех составляющих:  $\tau_S^{-1}$ ,  $\tau_L^{-1}$  и  $\tau_D^{-1}$ .

Вклад  $\tau_{S}^{-1}$  — это скорость спин-решеточной релаксации, обусловленной диссипацией неравновесного спина электронов проводимости на дефектах решетки, которая может быть рассчитана по формуле (45).

Составляющая эффективной скорости релаксации  $\tau_{L}^{-1}$  определяется как

$$\frac{1}{\tau_{\rm L}} = \Omega_{\rm L}^2 \tau_{\rm S}.$$
 (54)

Физической причиной появления такого вклада является ларморовская прецессия спина электрона в условиях, когда ось прецессионного движения меняет свое направление при движении электрона по орбите вдоль оси геликоиды. Этот механизм спиновой релаксации электронов проводимости в гелимагнетиках естественно называть прецессионным.

Вклад  $\tau_D^{-1}$ , определяемый как

$$\frac{1}{\tau_{\rm D}} = Dq^2, \tag{55}$$

описывает скорость изменения спиновой плотности в данной точке пространства из-за диффузионного "ухода" спинов электронов из данной точки в процессе протекания спинового тока. Следует заметить, что спиновая диффузия в проводящем гелимагнетике - это не процесс "перетекания" спина из области пространства, где концентрация электронов с заданной проекцией спина велика, в область, где таких электронов меньше. В гелимагнетике значения вектора неравновесной спиновой плотности в соседних точках оси геликоиды отличаются только по направлению и поэтому диффузия в данном случае обеспечивает релаксацию спина электронов исключительно "по направлению". С учетом того, что коэффициент диффузии прямо пропорционален времени релаксации импульса  $\tau_0$ ,  $D = v_E^2 \tau_0$ , частота "диффузионной" составляющей скорости спиновой релаксации также пропорциональна  $\tau_{\rm O}$ :  $\tau_{\rm D}^{-1} = \Omega_a^2 \tau_{\rm O}$ , где  $\Omega_q^2 = q^2 \overline{v_E^2}$ . Представление диффузионного

вклада в эффективную частоту спиновой релаксации в виде соотношения  $\tau_D^{-1} = \Omega_D^2 \tau_O$  по форме зависимости от времени релаксации импульса  $\tau_O$  совпадает с известным выражением для скорости спиновой релаксации электронов в полупроводниках, предложенным Дьяконовым и Перелем.

Соотношение между величинами  $\tau_{\rm D}^{-1}$  и  $\tau_{\rm S}^{-1}$  определяется отношением характерного линейного размера неоднородности поля  $q^{-1}$  и спин-диффузионной длины  $L_{\rm S} = \sqrt{D\tau_{\rm S}}$ . Для длиннопериодных неоднородностей  $qL_{\rm S} \ll 1$  и диффузионным механизмом спиновой релаксации можно пренебречь. Для короткопериодных неоднородностей  $qL_{\rm S} \gg 1$  и скорость релаксации спиновой плотности определяется в основном диффузионным механизмом.

Легко видеть, что приведенные выше рассуждения о дополнительных механизмах спиновой релаксации – "прецессионном" и "диффузионном" – применимы не только к периодическим магнитно-неоднородным системам типа геликоидальных магнетиков. Для непериодических магнитоупорядоченных систем частота  $\Omega_L$  будет определяться среднеквадратичной величиной флуктуаций обменного поля в магнетике, а волновое число *q* будет иметь смысл характерного обратного линейного размера этих флуктуаций.

Решение уравнения (51) с учетом определения (53) дает результат:

$$\delta \mathbf{S}_{t} = \chi \tau_{0} \tau_{G} \frac{e}{m\mu} q H^{(\text{ex})} E_{z} \mathbf{h}'; \qquad (56)$$

$$\delta \mathbf{S}_{1} = \chi \tau_{\mathrm{O}} \tau_{\mathrm{S}} \tau_{\mathrm{G}} \frac{2e}{\hbar m} q \left[ H^{(\mathrm{ex})} \right]^{2} E_{z} \mathbf{k}, \qquad (57)$$

где  $\chi$  – восприимчивость Паули электронного газа.

Из выражений (56), (57) немедленно следует, что отношение абсолютных значений  $\delta S_1$  и  $\delta S_1$  зависит только от значения параметра  $\Omega_L \tau_s$ :

$$\frac{\delta S_{\rm I}}{\delta S_{\rm t}} = \Omega_{\rm L} \tau_{\rm S}. \tag{58}$$

Если обменное поле  $H^{(ex)}$  невелико и  $\Omega_L \tau_S \ll 1$ , то параллельная оси геликоиды неравновесная компонента спиновой плотности мала. В противном случае сильных обменных полей, когда  $\Omega_L \tau_S \gg 1$ , неравновесная спиновая плотность практически параллельна оси геликоиды.

Отдельного обсуждения заслуживает вопрос о направлении вектора продольной поляризации  $\delta S_1$ . Из выражения (57) следует, что вектор  $\delta S_1$ коллинеарен вектору киральности **k**. Записывая вектор киральности в виде **k** = K**e**<sub>7</sub>, получаем, что для правозакрученной магнитной спирали с киральностью K = 1 коллинеарные векторы спиновой плотности  $\delta S_1$  и плотности потока электронов I являются сонаправленными,  $\delta S_1 \uparrow \uparrow I$ . Этот вывод справедлив и для пары векторов неравновесной плотности намагниченности электронов  $\delta m_1$  и плотности электрического тока **j**. Соответственно, для левозакрученной магнитной спирали с киральностью K = -1 коллинеарные векторы спиновой плотности  $\delta S_1$  и плотности потока электронов I являются противоположно направленными,  $\delta S_1 \uparrow \downarrow I$ , как и векторы  $\delta m_1$  и **j**.

Из уравнения (48) следует, что плотность электрического тока  $\mathbf{j} = e\mathbf{I}$ , индуцируемого в гелимагнетике вдоль его оси электрическим полем  $\mathbf{E}$ , записывается как

$$\mathbf{j} = (\boldsymbol{\sigma}_0 - \boldsymbol{\delta}\boldsymbol{\sigma}) \mathbf{E},\tag{59}$$

где  $\sigma_0 = N_0 e^2 \tau_0 / m$  — проводимость Друде электронного газа, а добавка ( $-\delta\sigma$ ) к проводимости, обусловленная спиральной структурой обменных полей в гелимагнетике, определяется выражением

$$\frac{\delta\sigma}{\sigma_0} = \frac{9}{4} \left( \frac{\mu H^{(\text{ex})}}{\varepsilon_{\text{F}}} \right)^2 \frac{\tau_{\text{G}}}{\tau_{\text{D}}}.$$
(60)

Таким образом, согласно (60), величина эффектов неоднородности магнитного состояния гелимагнетиков определяется двумя факторами. Во-первых, это величина отношения обменной энергии  $\mu H^{(ex)}$  к энергии Ферми  $\varepsilon_{\rm F}$ . Именно этот фактор, зависящий только от электронной и магнитной структуры гелимагнетика, ограничивает относительную величину изменения электропроводности сверху. Во-вторых, на величину изменения электропроводности будут влиять транспортные свойства материала. Этот фактор в формуле (60) записан как отношение  $\tau_G/\tau_D$ . Это отношение при любом соотношении вкладов различных механизмов спиновой релаксации всегда меньше единицы и достигает максимального единичного значения в условиях, когда диффузионный механизм релаксации является определяющим. Оставаясь в пределах применимости базовых уравнений (41)-(44), мы должны считать параметр  $\mu H^{(ex)} / \epsilon_{F}$  малым по сравнению с единицей и, следовательно, численное значение величины  $\delta\sigma/\sigma_0$ , определяемой формулой (60), может быть оценено сверху именно значением этого малого параметра. В случае сильных обменных полей, когда  $\mu H^{(ex)}/\epsilon_{\rm F} \le 1$ , формула (60) может дать оценку лишь по порядку величины.

#### ЗАКЛЮЧЕНИЕ

Полученная система уравнений (41)-(44) описывает весь круг гальваномагнитных явлений в металлах и полупроводниках, обусловленных наличием электрического заряда и спинового момента v электронов проводимости, включая как известные эффекты – магнитосопротивление, эффект Холла и спиновый эффект Холла, так и не описанные ранее эффекты, обусловленные неоднородностями внешнего магнитного поля и внутренних полей обменного происхождения. Неоднородности действующего на электрон в металле эффективного магнитного поля приводят как к изменению величины электрического тока, индуцированного электрическим полем, так и к существенному изменению картины протекания спиновых токов в рассматриваемой геометрии эксперимента.

Полученные уравнения движения применены для описания электронного спинового транспорта в киральных гелимагнетиках. Показано, что направление индуцируемой электрическим полем неравновесной спиновой плотности определяется киральностью гелимагнетика. Предсказано существование в киральных магнетиках двух дополнительных механизмов спиновой релаксации: диффузионного и прецессионного. Рассчитано уменьшение электропроводности гелимагнетика, обусловленное действием геликоидальных обменных полей.

Работа выполнена в рамках государственного задания по теме "Спин" АААА-А18-118020290104-2, проект № 32-1.1.3.5, при поддержке РФФИ, проект № 19-02-00057.

#### СПИСОК ЛИТЕРАТУРЫ

- Kaganov M.I., Peschansky V.G. Galvano-magnetic phenomena today and forty years ago // Physics Reports. 2002. V. 372. P. 445–487.
- Hall E.H. On a new action of the magnet on electric currents // American J. Mathematics. 1879. V. 2. P. 287–292.
- Дьяконов М.И., Перель М.И. О возможности ориентации электроных спинов током // Письма в ЖЭТФ. 1971. Т. 13. С. 657–660.
- Dyakonov M.I., Perel V.I. Current-induced spin orientation of electrons in semiconductors // Phys. Letters A. 1971. V. 35. № 6. P. 459–460.
- 5. *Кравченко В.Я., Цой В.С.* Спиновый эффект Холла в немагнитных проводниках в условиях классического эффекта Холла // Письма в ЖЭТФ. 2007. Т. 86. № 8. С. 621–624.
- 6. *Dyakonov M.I.* Magnetoresistance due to Edge Spin Accumulation. Phys. Rev. Lett. 2007. V. 99. P. 126601(1–4).
- Gerlach W., Stern O. Der experementelle Nachweis der Richtungsquantelung // Zeitschrift fur Physic. 1922. V. 9. P. 349–352.

2020

- 8. *Maekawa S., Valenzuela S.O., Saitoh E., Kimura T.* (ed.) Spin Current. Oxford University Press. 2017. 464 p.
- 9. *Dyakonov M.I.* (ed.) Spin Physics in Semiconductors. Springer Series in Solid-State Sciences. 2017. V. 157. 532 p.
- 10. *Силин В.П.* Кинетика парамагнитных явлений // ЖЭТФ. 1956. Т. 30. № 2. С. 421–422.
- 11. Азбель М.Я., Герасименко В.И., Лифшиц И.М. Парамагнитный резонанс и поляризация ядер в металлах // ЖЭТФ. 1957. Т. 32. № 5. Р. 1212–1225.
- Окулов В.В., Устинов В.В. Поверхностная релаксация магнитного момента и граничное условие для спиновой функции распределения электронов проводимости в металле // ФММ. 1977. Т. 44. № 1. С. 43–55.
- 13. Устинов В.В. Граничные условия к кинетическим уравнениям и уравнениям движения намагничен-

ности электронов проводимости металла с поверхностными парамагнитными примесями // Теоретическая и математическая физика. 1980. Т. 44. № 3. С. 587–399.

- Антропов Н.О., Кравцов Е.А., Проглядо В.В., Рябухина М.В., Устинов В.В. Кристаллическая структура и магнитные свойства сверхрешеток Dy/Gd // ФММ. 2017. Т. 118. С. 1283–1290.
- Миляев М.А., Наумова Л.И., Устинов В.В. Обменно-связанные сверхрешетки с рекордным магнитосопротивлением // Физика металлов и металловедение. 2018. Т. 119. С. 1224–1228.
- Антропов Н.О., Кравцов Е.А., Хайдуков Ю.Н., Рябухина М.В., Проглядо В.В., Вешке О., Устинов В.В. Когерентная веерная магнитная структура в сверхрешетках Dy/Gd // Письма в ЖЭТФ. 2018. Т. 108. С. 361–366.