ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ

УДК 669.15-194:539.4.016

ИЗМЕНЕНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ ТРУБНОЙ ВЫСОКОХРОМИСТОЙ ЭКОНОМНО ЛЕГИРОВАННОЙ СТАЛИ В ЗАВИСИМОСТИ ОТ РЕЖИМОВ ОТПУСКА ПОСЛЕ МЕЖКРИТИЧЕСКОЙ ЗАКАЛКИ

© 2020 г. А. Н. Маковецкий^{*a*}, Д. А. Мирзаев^{*b*}, Л. И. Юсупова^{*a*}, А. О. Красноталов^{*a*}, А. А. Мирзоев^{*b*}, С. А. Созыкин^{*b*}, *

^аПАО "Челябинский трубопрокатный завод" (ЧТПЗ), ул. Машиностроителей, 21, Челябинск, 454129 Россия ^bЮжно-Уральский государственный университет (ЮУрГУ), пр. Ленина, 76, Челябинск, 454080 Россия

*e-mail sozykinsa@susu.ru Поступила в редакцию 25.09.2019 г. После доработки 01.10.2019 г. Принята к публикации 11.10.2019 г.

Исследовано влияние однократного и двукратного отпуска при различных температурах на механические свойства новой трубной коррозионностойкой высокохромистой (13% Cr) экономно легированной стали, закаленной из межкритического интервала температур. Показано существование совпадающих по температуре максимума ударной вязкости и минимума предела текучести на зависимостях этих величин от температуры отпуска. Температура экстремумов предположительно определяется положением "носа" *C*-образной температурной диаграммы выделения частиц карбида (Cr, Fe)₂₃C₆ из мартенсита при отпуска. Показано, что положение экстремумов не зависит от продолжительности первого общего отпуска.

Ключевые слова: трубная сталь, межкритическая закалка, отпуск мартенсита, выделение специальных карбидов, ударная вязкость

DOI: 10.31857/S0015323020040087

введение

Высокохромистые стали представляют перспективный материал для изготовления обсадных труб, нефтепроводов, шиберных заслонок, вентилей и т.п. [1-4]. При содержании хрома более 12% такие стали устойчивы по отношению к сероводородной коррозии и растрескиванию, а наличие мартенситной структуры обеспечивает высокую прочность и износостойкость. Однако при пуске или остановке потока топлива в трубах наблюдается резкий рост или падение внутреннего давления в трубе, что приводит к появлению окружных напряжений в стенке, которые при низких температурах могут вызвать продольное хрупкое разрушение труб. Поэтому главную проблему при выборе состава стали и режима термообработки представляет необходимость достижения согласно техническим условиям (ТУ) ЧТПЗ для труб высокого давления комплекса свойств прочности $(\sigma_{\rm T} = 552-655, \sigma_{\rm B} \ge 655 \text{ MPa})$ и ударной вязкости (*КСV*⁻⁶⁰ ≥ 50 Дж/см²). Весьма перспективной в этом отношении является экономно легированная сталь 15Х13Н2. Исследование механических свойств этой стали было проведено Лаевым,

Пышминцевым и Смирновым с сотр. [5-7]. Авторы изучили возможности использования полной закалки, закалки из межкритического интервала (МКИ) температур с последующим высоким отпуском ниже Ac_1 и термомеханической обработки. Надежное достижение требуемого комплекса свойств давала термомеханическая обработка. Закалка из МКИ обеспечивала требуемый уровень свойств на пределе допуска. Закалка с высоким отпуском не позволяла его достигнуть. Последний вывод подтвердили также исследования, проведенные нами в ЮУрГУ и на ЧТПЗ. Основная проблема заключается не в получении требуемой прочности, а в достижении необходимой ударной вязкости при заданной прочности.

Однако далеко не все прокатные станы для труб позволяют реализовать термомеханическую обработку. Поэтому у авторов статьи возникли идеи воздействия на аустенит с целью его стабилизации при температурах мартенситного превращения (МП), а также усиления эффекта межкритической закалки (МКЗ) за счет выбора оптимальных температур и длительностей последующих однократного или двукратного отпуска(ов), а также

Таблица 1. Химический состав опытной стали 15Х13Н2 в мас. %

С	Mn	Si	Р	S	Cr	Ni	Cu	Mo
0.14	0.52	0.28	0.012	0.002	12.45	2.26	0.15	0.1

условий окончательного охлаждения после отпуска. Эффектам стабилизации посвящена статья [8]. Вопросы межкритической закалки будут рассмотрены в данной работе.

МАТЕРИАЛ И МЕТОДИКА ИССЛЕДОВАНИЯ

Исследовали низкоуглеродистую нержавеющую сталь мартенситного класса 15Х13Н2. Химический состав стали представлен в табл. 1.

Критические точки стали были измерены по соответствующим перегибам на дилатограмме нагрева и охлаждения образца, записанной на дилатометре "Linseis" L 76/1600. Температура критической точки Ac_1 была уточнена по положению температуры минимума твердости для серии образцов, исходно закаленных, а затем отпущенных с температурным шагом 10°C и вновь закаленных в воде. В итоге было установлено: $Ac_1 = 690$ °C; $Ac_3 = 855$ °C; $M_s = 328$ °C.

Схема экспериментов с применением МКЗ была следующей. Из трубы опытного производства вырезали темплеты. Их последовательно нагревали до 950°С, выдерживали 1 ч. и охлаждали (закаливали) на воздухе. Далее проводили МКЗ и однократный или двукратный отпуск. Окончательное охлаждение проводили в воде или на воздухе. Затем темплет разрезали на заготовки образцов для механических испытаний, размеры которых отличались от требуемых по толщине или диаметру на 2 мм. После термических обработок

Рис. 1. Взаимосвязь ударной вязкости и предела текучести всех испытанных в исследовании образцов стали 15X13H2.

при окончательной механообработке удаляли окисленную и обезуглероженную поверхность и доводили размеры образцов до требуемых величин. Тогда же нарезали *V*-образные канавки у образцов для измерения ударной вязкости. Испытания на статическое растяжение проводили на машине Instron 3382 при скорости удлинения 1 мм/мин. Для каждого измерения использовали 3 образца с диаметром рабочей части 6 мм и расчетной длиной 30 мм по ГОСТ 1497 с последующим усреднением результатов. Погрешности измерения $\sigma_{0,2}$ и σ_{B} не превышали 5 МПа, а относительного удлинения – 0.1%. Ударную вязкость определяли с помощью маятникового копра МК-30 на образцах сечением 10 × 10 мм с V-образным надрезом согласно ГОСТ 9454. Перед измерениями образцы охлаждали в смеси спирта и жидкого азота до температуры -60°С. После каждого режима обработки определяли ударную вязкость КСУ-60 стали как среднее значение по результатам испытания трех образцов. В большинстве опытов температура МКЗ составляла 730°С, выдержка – 1 ч, охлаждение, как правило, проводили на воздухе. С целью поиска оптимального режима отпуска использовали как однократный, так и двукратный отпуск. Особое внимание было уделено влиянию на ударную вязкость скорости охлаждения от температуры последнего отпуска, для чего многие режимы отпуска дублировали в вариантах охлаждения на воздухе и в воде (иногда струями воды).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Сводные данные о механических свойствах стали 15Х13Н2 после различных режимов МКЗ и одно-или двукратного отпуска представлены в табл. 2. Обращает на себя внимание, что низким значениям предела текучести соответствует высокая ударная вязкость. У образца № 9 ударная вязкость имеет максимальное значение (237 Дж/см²) по отношению к другим обработкам, а предел текучести $\sigma_{0.2}$ – минимальное из всех значение 510 МПа. Напротив, наивысшие значения предела текучести 785 и 690 МПа при минимальной ударной вязкости 4.6 и 9 Дж/см² наблюдались у двух образцов, которые после закалки от 950°С были отпущены несколько минут при 760°С. Общий график зависимости *КСV*⁻⁶⁰ от предела текучести (рис. 1) отражает существование корреляции при изменении этих величин. Подобная статистическая зависимость между $\sigma_{\rm B}$ и *KCV*⁻⁶⁰ проявляется весьма слабо.

При нагреве стали выше 690°С "фигуративная" точка состава стали оказывается в межкритическом интервале температур диаграммы фазового равновесия: $\alpha = \gamma$. В стали появляется новая фаза-аустенит. Ее количество в условиях изотер-

ИЗМЕНЕНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ

		σ _{0.2}	$\sigma_{_B}$	δ_5	<i>КСV</i> ⁻⁶⁰ , продольные, ср.			
Nº	Температура аустенизации (°C) и среда охлаждения		Температура отпуска (°С) и среда охлаждения		Н/мм ²	ΜПа	%	Дж/см ²
		Технические	552-655	≥655	≥20	≥50		
1	950°С, 1 ч,	730°С, 1 ч,	650°С, 1 ч,		615	790	22.5	64
	воздух	воздух	вода					
2	950°С, 1 ч,	730°С, 1 ч,	650°С, 40 мин,	650°С, 40 мин,	555	750	23.5	106
	воздух	воздух	вода	вода				
3	950°С, 1ч,	730°С, 1 ч,	650°С, 40 мин,	630°С, 40 мин,	555	740	28.0	155
	воздух	воздух	вода	вода				
4	950°С, 1 ч,	730°С, 1 ч,	650°С, 40 мин,	610°С, 40 мин,	580	750	24.5	72
	воздух	воздух	вода	вода				
5	950°С, 1 ч	730 °С, 1 ч,	630°С, 40 мин,	630°C,	640	750	26.0	110
	воздух	воздух	вода	40 мин, вода				
6-1	950°С, 1ч,	730°С, 1 ч,	650°С, 2ч,		585	770	23.6	164
	воздух	масло	вода					
6-2	950°С, 1 ч,	730°С, 1 ч,	650°С, 2ч,		585	770	23.5	150
	воздух	масло	вода					
6-3	950°С, 1 ч,	730°С, 1 ч,	650°С, 2ч,		530	730	23.5	194
	воздух	воздух	вода					
7	950°С, 1 ч,	730°С, 1 ч,	650°С, 3ч,	650°С, 40 мин,	555	730	23.5	146
	воздух	воздух	воздух	вода				
8	950°С, 1 ч,	730°С, 1 ч,	650°С, 3ч,		610	750	25.0	72
	воздух	воздух	воздух					
9	950°С, 1 ч,	730°С, 1 ч,	650°С, 3ч,	630°С, 40 мин,	510	750	22.5	237
	воздух	воздух	воздух	вода				
10	950°С, 1 ч,	730°С, 1 ч,	650°С, 3ч,	610°С, 40 мин,	570	740	23.0	116
	воздух	воздух	воздух	вода				
11	930°С, 2ч,	740°С, 2ч,	620°С, 3.5 ч,		550	735	25.3	146
	масло	масло	вода					
12	930°С, 2ч,	740°С, 2ч,	590°С, 3.5 ч,		585	745	26.0	113
	масло	масло	вода					
13	950°С, 1 ч,	700°С, 1.5 ч,	630°С, 1 ч,		595	775	23.3	72
	воздух	воздух	вода					
14	950°С, 2.5ч,	740°С, 2ч,	650°С, 2ч,		555	740	24.5	73
	воздух	масло	вода					
15	950°С, 1,5 ч,	730°С, 1.5 ч,	610°С, 1.5 ч,		620	775	23.1	75
	воздух	воздух	вода			_		
16	930°С, 2ч,	740°С, 2ч,	590°С, 3.5ч,		585	745	27.3	113
	масло	масло	вода					

Таблица 2. Механические свойства образцов трубной стали 15Х13Н2, подвергнутых МКЗ, одно- или двукратному отпуску с заключительным охлаждением в воде или на воздухе

мической выдержки возрастает во времени до термодинамического предела. Повышение температуры выдержки также активирует образование аустенита. В отношении сплавов Fe–Cr известно [9, 10], что начальная концентрация хрома в образовавшемся аустените в ряде случаев оказывается значительно ниже, чем при α–γ-равновесии. Ориентировочно, основываясь на положении мартенситной точки при межкритической закалке, ее можно оценить как (7–8)% Сг, что соответствует положению низа петли на диаграмме равновесия. Не превратившаяся в аустенит большая часть исходного мартенсита, содержащая 12.4% Сг, в ходе нагрева и выдержки в МКИ подвергается очень высокому отпуску. Происходит выделение частиц карбида хрома (Cr,Fe)₂₃C₆, пере-

Рис. 2 Зависимость ударной вязкости *КСV*⁻⁶⁰ (\bullet , \bigcirc) и предела текучести $\sigma_{0,2}$ (\blacksquare , \Box) образцов стали15Х13Н2 от суммарной длительности отпуска(ов) при 650°С с заключительным охлаждением в воде (\bigcirc , \blacksquare) или на воздухе (\bigcirc , \Box).

распределение и аннигиляция дислокаций, а также перестройка субзеренной структуры [11, 12].

Отметим, когда в условиях охлаждения аустенит высокохромистой стали испытывает превращение по нормальной кинетике, то образование феррита сопровождается выделением карбидов [11]. Фактически происходит формирование зернистого перлита. Напротив, в участках образовавшейся γ -фазы при нагреве и выдержке в МКИ идет обратный процесс постепенного растворения карбидов по реакции $\alpha + \kappa \rightarrow \gamma$, где к обозначает карбид. Разумеется, концентрация углерода в γ -фазе при этом возрастает.

Поскольку в большинстве экспериментов после полной от 950°С и межкритической (700-760)°С закалок проводили отпуск при 650°С, то рассмотрение результатов разумно начать с этой температуры. После часового отпуска и охлаждения водой ударная вязкость образцов № 1 (т.е. обработанных по режиму № 1 (табл. 2)), оказалась равной 64 Дж/см². Данные для остальных режимов обработки также соответствовали требованиям ТУ. Еще более высокие результаты испытаний показали образцы от темплета № 2, отпущенные дважды по 40 мин при 650°С и охлажденные в воде. Причем режим двух первых технологических операций (табл. 2) оставался неизменным для многих обработок. Для следующих вариантов термообработки была снижена температура второго отпуска с 650 до 630°С (обр. № 3) и до 610°С (обр. № 4). После первого понижения температуры величина КСУ-60 заметно возросла, но при втором уменьшилась. Так что при 630°С наблюдается максимум для зависимости ударной вязкости от температуры отпуска. При этой же температуре проявился слабо выраженный минимум $\sigma_{0.2}$, который отчетливо заметен и для других обработок. Вариант № 5 последовательного проведения двух одинаковых отпусков при 630°С по 40 мин хотя и не дает максимальной вязкости стали, но позволяет достичь требуемого сочетания предела текучести и ударной вязкости при минимальной длительности обработки.

Повышение длительности отпуска до 2-х часов значительно увеличило КСУ-60. Свойства стали после такой обработки были исследованы для трех темплетов (№ 6-1,2,3), т.е. на 9 ударных и разрывных образцах. Средние значения КСУ-60 для них оказались следующими: 164, 150 и 194 Дж/см²; среднее для стали значение 169.3 Дж/см² дано на графике рис. 2. Это значение в три раза выше, чем требуется по ТУ. На этом же рисунке показано изменение предела текучести стали об 2 в зависимости от длительности отпуска и характера заключительного охлаждения. График изменения $\sigma_{0,2}$ для случая охлаждения водой является как бы зеркальным отражением графика КСV, однако первый для выдержки 120 мин проведен через нижнюю точку 530 МПа, поддержанную данными трех образцов (6-3). Но выше при 585 МПа расположены две слившиеся в одну точки для значений $\sigma_{0,2}$ по данным шести образцов (6-1 и 6-2). Эту ситуацию можно рассматривать как проявление неустойчивости процессов, определяющих предел текучести при отпуске. К таким процессам, на наш взгляд, можно отнести: 1) карбидные превращения [2, 13-15] при отпуске высокохромистых сталей и 2) достижение острого максимума - "носа", кинетической кривой выделения карбидных частиц при отпуске мартенсита [16]. Еще Гуляев и Химушин утверждали [2, 15], что в ходе изотермического отпуска вследствие насыщения карбидов хромом и углеродом может проходить превращение карбидных фаз по схеме: $(Fe, Cr)_3 C \rightarrow (Cr, Fe)_7 C_3 \rightarrow (Cr, Fe)_{23} C_6$. Однако после аустенитизации при 730°С в МКИ и закалки на воздухе последующий отпуск был проведен при более низкой температуре (650°С), чем нагрев под МКЗ, что могло стимулировать образование карбида (Cr, Fe) $_7$ C $_3$ из возникшего раньше в свежем, но обедненном хромом мартенсите, кубического карбида (Cr,Fe)₂₃C₆. Поскольку кристаллическая решетка первого карбида содержит 3/7 = 0.43 атома C на один металлический атом, а второго только 6/23 = 0.26, то превращение карбидов "in situ" должно сопровождаться "уходом" из α-фазы большого количества углерода. Этот процесс мог бы явиться причиной снижения $\sigma_{0.2}$ до 530 МПа и повышения ударной вязкости до 194 Дж/см², но по данным рентгеновского фазового анализа количество карбида (Cr, Fe)₇C₃ в образцах № 6 оказалось очень низким, ниже чувствительности метода. Поэтому превращение карбидов при отпуске стали в данном случае нельзя рассматривать как главную причину появления максимума KCV^{-60} .

Следующая точка на кривой рис. 2 относится к технологическому варианту № 7, согласно которому образцы, отпущенные 3 ч при 650°С, были охлаждены на воздухе, повторно выдержаны 40 мин при 650°С и закалены в воде. Измерения механических свойств дали результаты: $\sigma_{0.2} = 555 \text{ МПа}, KCV^{-60} =$ = 146 Дж/см². Ударная вязкость оказалась ниже, чем в предыдущем случае. Следовательно, кривая изменения КСУ в зависимости от длительности отпусков (рис. 2) имеет максимум при выдержке, приблизительно, 2,5 ч. Интересно отметить, что у образцов № 7 три подряд технологические операции, кроме последней, оказались такими же, как для образцов № 8 (см. табл. 2). Следовательно, заключительный отпуск: 40 мин при 650°С и охлаждение в воде, позволил снизить $\sigma_{0.2}$ с 610 (для № 8) до 555 МПа (для № 7). Ударная вязкость этих образцов различается в два раза: 72 и 146 Дж/см². Для образцов № 8 этот уровень довольно высок, несмотря на то, что в условиях замедленного охлаждения на воздухе сталь подвергается отпускному охрупчиванию. Можно видеть, что эффект повышения ударной вязкости, связанный с выделением или превращением карбидов, проявляется и для режима обработки № 7. Этот факт становится очевидным, если температуру заключительного отпуска снизить всего на 20°С до 630°С (образцы № 9). Тогда после 40-минутной выдержки и охлаждения в воде достигается уже упомянутое рекордное значение $KCV^{-60} = 237 \, \text{Дж/см}^2$, а $\sigma_{0.2} = 510$ МПа оказывается ниже, чем у образцов № 6-3. Дальнейшее снижение температуры отпуска до 610°С (образцы № 10) вновь приводит к понижению KCV^{-60} и увеличению $\sigma_{0,2}$. И в этом случае экстремумы температурных зависимостей рассматриваемых свойств соответствовали 630°С. Уже отмечено, что сходную последовательность изменения свойств создают образцы № 2-4, для которых первый отпуск после МКЗ был проведен в течение 40 мин при 650°C, а следующие такой же продолжительности при 650, 630 и 610°C. Экстремумы на зависимостях KCV^{-60} и $\sigma_{0.2}$ и в этом случае оказались расположенными при 630°С.

Таким образом, доказана независимость температурного положения этих экстремумов от длительности предшествующего отпуска.

Считая, что экстремумы свойств обусловлены достижением минимальной концентрации углерода в α -фазе, а значит и наибольшей скорости образования и коагуляции частиц (Cr,Fe)₂₃C₆, можно заключить, что температура экстремумов приблизительно совпадает с положением "носа"

С-образной диаграммы выделения карбидов при отпуске мартенсита стали [16].

В действительности, согласно требованиям ТУ (см. табл. 2), нужно добиться такого структурного состояния стали, чтобы *КСV* имела величину, меньшую максимальной, а $\sigma_{0.2}$ – большую минимальной, но в пределах допуска (см. табл. 2).

Например, режим двух отпусков при 650 + + 630°С (№ 3) обеспечивает более высокую ударную вязкость, чем вариант 650 + 650°С (№ 2), но его на практике использовать нельзя из-за недопустимо низких значений $\sigma_{0.2}$. Режим 630 + 630°С (№ 5) последовательного проведения двух одинаковых отпусков при 630°С, 40 мин не дает максимальной вязкости стали вследствие уменьшения скорости диффузии углерода и, соответственно, диаметра выделяющихся карбидных частиц и расстояния между ними. Однако он позволяет достичь требуемого сочетания предела текучести и ударной вязкости при минимальной длительности обработки.

Как показывают данные для образцов № 11–16, воздействие даже значительного снижения температуры последнего отпуска можно скомпенсировать увеличением продолжительности отпуска, и получить требуемое сочетание прочности и ударной вязкости. Следует обратить внимание на то, что достигаемые механические свойства существенно зависят также от температуры и длительности выдержки при МКЗ, что будет рассмотрено в последующих работах.

выводы

1. Установлены режимы термической обработки стали 15Х13Н2, которые обеспечивают необходимый уровень механических свойств труб по группе прочности L80 13Cr. Они включают полную и межкритическую закалки, а также однократный или двойной отпуск с окончательным охлаждением в воде или на воздухе.

2. Существует отчетливо выраженная корреляционная зависимость между пределом текучести $\sigma_{0.2}$ и ударной вязкостью *КСV*⁻⁶⁰ для большой группы опытных труб, прошедших термическую обработку по различным режимам.

3. При случайном переборе температур и длительностей однократного или двойного отпуска после МКЗ наблюдались случаи достижения очень высокой ударной вязкости, что раньше нас наблюдали Сагарадзе с сотр. [17] для высокохромистой реакторной стали MANET-2.

4. Характер изменения KCV^{-60} и $\sigma_{0.2}$ при смене температур второго отпуска в последовательности 650°, 630, 610°С не зависит от продолжительности первого общего отпуска при 650°С: максимум KCV^{-60} и минимум $\sigma_{0.2}$ наблюдались при одной температуре 630°С. Следовательно, причиной появления экстремумов рассматриваемых свойств является существование острого максимума скорости выделения карбидных частиц, который обеспечивает низкое содержание углерода и, как следствие, высокую ударную вязкость, но пониженный предел текучести в отпущенном мартенсите. Отпуск при температуре на 20–40°С ниже температурного максимума скорости выделения карбидных частиц часто обеспечивает требуемые свойства.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Пикеринг* Ф.Б. Физическое металловедение и разработка сталей. М.: Металлургия, 1982. 184 с.
- 2. *Химушин* Ф.Ф. Нержавеющие стали. М.: Металлургиздат, 1969. 800 с.
- 3. Мирзаев Д.А., Безик А.С., Созыкин С.А., Маковецкий А.Н. Влияние межкритической закалки на механические свойства стали 13Х11Н2В2МФ // Вестник МГТУ им. Г.И.Носова. 2018. № 4. С. 45–49.
- 4. Беляков Л.Н., Козловская В.И. Остаточный аустенит в мартенситных нержавеющих сталях // Металловедение и термическая обработка металлов. 1965. № 2. С. 52–54.
- Лаев К.А. Влияние легирования и термической обработки на структуру и свойства коррозионностойких высокохромистых сталей мартенситного и супер мартенситного классов для изготовления труб нефтегазового сортамента. Автореф. канд. дис. Челябинск, ЮУРГУ, 2016. 21 с.
- 6. Пышминцев И.Ю., Битюков С.М, Лаев К.А., Борякова А.Н., Мананников Д.А. Исследование сталей класса "супер-хром", предназначенных для изготовления коррозионностойких высокопрочных труб нефтяного сортамента // Черная металлургия. 2010. № 2(1322). С. 51–56.

- Смирнов М.А., Пышминцев И.Ю., Лаев К.А., Ахмедьянов А.М. Влияние высокотемпературной термомеханической обработки на свойства высокохромистой стали // Вестник ЮУрГУ. Сер. "Металлургия". 2012. № 39. С. 85–88.
- Мирзаев Д.А., Созыкин С.А., Маковецкий А.Н., Красноталов А.О., Юсупова Л.И. Дилатометрическое исследование образования мартенсита и эффектов стабилизации аустенита в высокохромистой стали 15X13H2 // ФММ. 2019. В печати.
- 9. *Нисидзава Т., Тиба А.* Phenomenological consideration on interphase equilibrium in diffusion couple. // "Нихон киндзоку гаккайси, J. Jap. Inst. Metals". 1970. V. 34. № 6. Р. 629–637.
- Дубинин Г.Н. О механизме формирования диффузионного слоя // Защитные покрытия на металлах. 1976. Вып. 10. С. 12–17.
- Попова Л.Е., Попов А.А. Диаграммы превращения аустенита в сталях и бета-раствора в сплавах титана; Справочник термиста. 3-е изд., перераб. и доп. М.: Металлургия, 1991. 503 с.
- 12. Ланская К.А. Высокохромистые жаропрочные стали. М.: Металлургия, 1976. 215 с.
- 13. Бернитейн М.Л., Капуткина Л.М., Прокошкин С.Д. Отпуск стали. М.: МИСИС, 1997. 335 с.
- Beech J., Warrington D.H. M₇C₃ to M₂₃C₆ transvormation chromium containing alloys // J. Iron and Steel Inst. 1966. V. 204. № 5. P. 460–468.
- Gulyaev A.P. Carbide transformations in alloy steels // Metal. Sci. Heat Treatment. 1959.V. 1. № 11. C. 53–60.
- Мартин Дж., Доэрти Р. Стабильность микроструктуры металлических систем. Пер. с англ. М.: Атомиздат, 1978. 280 с.
- Косицина И.И., Сагарадзе В.В., Зуев Ю.Н., Перуха А. Снижение порога хладноломкости реакторной высокохромистой стали MANET-II // ФММ. 1998. Т. 86. Вып. 2. С. 132–138.