ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА

УЛК 539.216.2:537.624

ОСОБЕННОСТИ ПЕРЕМАГНИЧИВАНИЯ МАГНИТООДНООСНЫХ ПЛЕНОК С КОЛУМНАРНЫМИ ДЕФЕКТАМИ

© 2020 г. Р. М. Вахитов^{а, *}, Р. В. Солонецкий^а, А. А. Ахметова^а

^a Башкирский государственный университет, ул. 3. Валиди, 32, Уфа, 450076 Россия
*e-mail: VakhitovRM@Yahoo.com
Поступила в редакцию 09.07.2019 г.
После доработки 18.11.2019 г.
Принята к публикации 26.11.2019 г.

Изучено поведение магнитных скирмионов, образующихся на колумнарных дефектах типа "потенциальная яма" в одноосных ферромагнитных пленках в магнитном поле. Показано, что их структура, которая характеризуется тремя участками вращения магнитных моментов, в магнитном поле претерпевает ряд трансформаций. Найдены критические поля перестройки их структуры, существенно зависящие от параметров дефекта. Выявлено, что при определенных параметрах материала, когда в отсутствие поля вихреподобные неоднородности являются неустойчивыми, они могут стать устойчивыми образованиями в ненулевом поле. Рассмотрены возможные типы магнитных материалов, в которых они могут реализоваться.

Ключевые слова: магнитоодноосная пленка, колумнарный дефект, магнитные скирмионы, процессы перемагничивания

DOI: 10.31857/S0015323020050137

ВВЕДЕНИЕ

Среди различного рода дефектов, имеющих место в магнитных материалах, встречаются такие, которые по характеру взаимодействия с магнитной системой представляют собой "потенциальную яму" [1-5]. На них, как известно, могут образоваться магнитные неоднородности со структурой, повторяющей профиль дефекта [5-7] и соответствующей 0-градусной доменной границе $(0^{\circ} \, \Pi\Gamma)$ [3, 6]. Они играют важную роль во многих явлениях, происходящих в магнетиках, в том числе в процессах зародышеобразования при спин-переориентационных фазовых переходах [7, 8], намагничивания и перемагничивания [2, 9, 10] и т.д. Однако в последнее время исследования структуры и свойств магнитных образований на таких дефектах неожиданно приобрели особую актуальность, связанную с тем, что в ряде работ [4, 6, 11, 12] была показана возможность зарождения в магнитоодноосных пленках на колумнарных дефектах [13] магнитных скирмионов (МС) — вихреподобных магнитных неоднородностей, несущих топологический заряд. К этим солитоноподобным структурам исследователи проявляют возрастающий интерес, что связано с их уникальными спин-электронными свойствами [14-19], которые могут быть использованы при создании устройств многоуровневой логики и магнитной памяти нового поколения. Необыч-

ность ситуации заключается в том, что в данном случае МС могут быть устойчивыми образованиями в отсутствие в исследуемых магнетиках взаимодействия Дзялошинского-Мория [19, 20]. Их существование в материалах с пространственно модулированными параметрами было продемонстрировано в работах [5, 21], в которых было установлено, что подобные неоднородности могут быть обнаружены в специально препарируемых многослойных пленках Со/Рt [5, 14]. Кроме того, есть определенные свидетельства их наблюдения на дефектах пленок ферритов-гранатов [6], а также в пленках аналогичного класса при локальном воздействии на них импульсного лазерного облучения [22] или неоднородного электрического поля [23]. В последнем случае в области взаимодействия поля с поверхностью пленки были обнаружены заряженные цилиндрические магнитные домены, которые, как известно [21], топологически идентичны МС. Приведенные экспериментальные результаты указывают на существование альтернативных способов стабилизации скирмионных состояний вектора намагниченности М в некоторых материалах. К ним, в частности, относятся неоднородные магнитные пленки, которые имеют возможно большие перспективы быть использованными в устройствах магнитной памяти нового поколения [24], чем киральные магнетики [25, 26]. В то же время существует необходимость дальнейших исследований структуры и свойств MC в таких материалах, в силу их практической неизученности. Здесь в первую очередь становится актуальным анализ их поведения во внешнем магнитном поле, который позволит определить практическое значение этих структур.

ОСНОВНЫЕ МИКРОМАГНИТНЫЕ УРАВНЕНИЯ

Исследуем влияние внешнего магнитного поля Н на структуру и свойства магнитных неоднородностей, образующихся на колумнарных дефектах одноосной ферромагнитной пленки (толщиной D). В соответствии с симметрией задачи возьмем цилиндрическую систему координат (r, α, z) с центром O, отстоящим на расстоянии D/2 от верхней и нижней поверхностей пленки (рис. 1), и с осью Ол, направленной вдоль оси симметрии дефекта, совпадающей с легкой осью анизотропии. Будем считать, что $\mathbf{m} = \mathbf{M}/M_s$ (единичный вектор намагниченности) и материальные параметры P = $= (A, K_{\rm u}, M_{\rm s})$ зависят только от радиальной переменной r. Здесь A — обменный параметр, $K_{\rm u}$ константа одноосной анизотропии, M_s — намагниченность насыщения; будем полагать, что они изменяются по закону:

$$P = \begin{cases} P_1, r > R_0 \\ P_2, r < R_0 \end{cases}$$
 (1)

где $P_i = (A_i, K_{ui}, M_{si})$ — значения материальных параметров вне (i=1) и внутри (i=2) дефекта, R_0 радиус колумнарного дефекта. Как правило, ориентация вектора **m** определяется двумя углами θ и ф (рис. 1), однако в данном случае зависимость вектора ${\bf m}$ от r будет определяться зависимостью $\theta = \theta(r)$, т.к. $\phi = \pi/2$. Отсюда следует, что магнитные неоднородности, возможные в данном магнетике, будут иметь блоховскую структуру [27]. Очевидно, сказанное является справедливым для толщин пленки D, удовлетворяющих условию $D \ge \Delta_{\rm l}$, где $\Delta_{\rm l} = \sqrt{A_{\rm l}/K_{\rm ul}}$ — характерный размер магнитных неоднородностей в одноосном ферромагнетике [28]. Тогда выражение для полной энергии такого магнетика с учетом зеемановского взаимодействия и за вычетом плотности энергии ε₀ однородного состояния примет вид [10]:

$$E = 2\pi D \int_{0}^{\infty} \left\{ A \left[\left(\frac{d\theta}{dr} \right)^{2} + \frac{\sin^{2}\theta}{r^{2}} \right] + K_{u} \sin^{2}\theta + \right.$$

$$\left. + \frac{2M_{s} \cos\theta}{D} \int_{0}^{\infty} M_{s}' \cos\theta' \left[k_{0} K(k_{0}) - kK(k) \right] \times \right.$$

$$\left. \times \sqrt{\frac{r'}{r}} dr' - (\mathbf{MH}) - \varepsilon_{0} \right\} r dr.$$
(2)

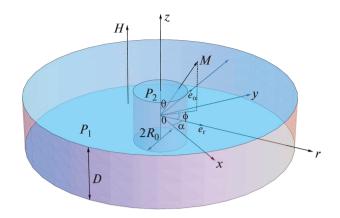


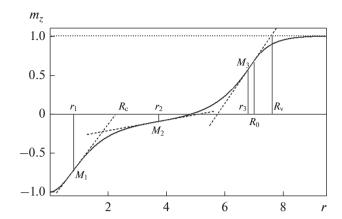
Рис. 1. Геометрия задачи.

Здесь
$$k_0=\frac{2\sqrt{rr'}}{r+r'},\; k=\frac{2\sqrt{rr'}}{\sqrt{\left(r+r'\right)^2+D^2}},\; K(s)=$$

$$=\int_0^{\pi/2}\frac{d\phi}{\sqrt{1-s^2\sin^2\phi}}-\text{полный эллиптический инте-}$$

грал І-го рода, s — его модуль, $M_s' = M_s(r')$, $\theta' = \theta(r')$.

Рассмотрим случай **H** || Oz (см. рис. 1). Тогда предпоследнее слагаемое в подынтегральном выражении, соответствующее плотности зеемановской энергии, запишется как


$$\varepsilon_{\rm H} = -M_{\rm s}H\cos\theta.$$
 (3)

В этом случае уравнение Эйлера—Лагранжа, описывающее микромагнитные структуры различной топологии и отвечающее энергии (2), представится следующим образом

$$\frac{1}{r}\frac{d}{dr}\left(Ar\frac{d\theta}{dr}\right) - \sin\theta\cos\theta\left(K_{u} + \frac{A}{r^{2}}\right) - \\
-M_{s}\sin\theta\left\{\frac{1}{2}H - \frac{2}{D}\int_{0}^{\infty}M_{s}'\cos\theta'\times\right.$$

$$\times \left[k_{0}K\left(k_{0}\right) - kK\left(k\right)\right]\sqrt{\frac{r'}{r}}dr'\right\} = 0.$$
(4)

Полученное уравнение является нелинейным интегро-дифференциальным уравнением второго порядка с непостоянными коэффициентами, имеющим особенность при r=0, а подынтегральное выражение — на линии r'=r. При его численном интегрировании был использован метод множественной стрельбы с применением итерационной процедуры по Ньютону, апробированный в [6, 12]. При этом все параметры, имеющие размерность длины, были приведены к ширине Δ_1 , а величина магнитного поля H- к по-

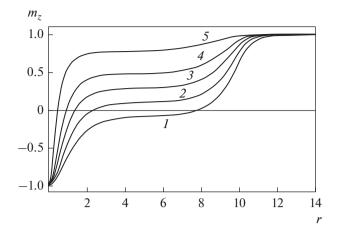


Рис. 2. Распределение намагниченности в МС при следующих значениях параметров материала: $K_{\rm u2}=-K_{\rm u1}$, $R_0=7,\,A_2=A_1,\,Q=5,\,M_{\rm s2}=M_{\rm s1},\,D=10.$ Здесь пунктирными линиями обозначены касательные к соответствующим точкам перегиба.

лю одноосной анизотропии $H_{\rm u}=2K_{\rm ul}/M_{\rm sl}$, т.е. $h=H/H_{\rm u}$.

СТРУКТУРА МАГНИТНОГО СКИРМИОНА ПРИ h = 0

Из численного анализа уравнения (4) следует, что его решениями в нулевом поле являются $\theta = 0, \pi$ (однородное намагниченное состояние пленки) и $\theta = \theta(r)$, которое описывает магнитную неоднородность, образующуюся на колумнарном дефекте. По структуре она представляет собой вихреподобное образование с тремя участками вращения магнитных моментов (рис. 2): центральным ядром (кор), промежуточным (пологим) участком и граничной областью [12]. Если на первом и третьем участках происходит быстрое вращение моментов, то на промежуточном участке имеет место задержка их вращения вблизи плоскости Оху ($m_z = 0$) из-за наличия в области дефекта легкоплоскостной анизотропии ($K_{\rm u2} < 0$). Соответственно, доминирующее влияние на структуру МС в области кора оказывают одноосная анизотропия обменного происхождения (ей соответствует второе слагаемое в выражении для плотности обменной энергии в соотношении (1)), а на граничном участке вблизи $r = R_0$ — перпендикулярная (легкоосная) анизотропия. Такое распределение намагниченности в области колумнарного дефекта означает наличие трех точек перегиба в зависимости $m_z = m_z(r)$. Подобная топологическая особенность структуры ДГ возникает также при спин-переориентационном фазовом переходе и называется перетяжкой ("стеночный" механизм зародышеобразования [8]).

Рис. 3. Графики зависимости m_z от радиальной координаты г при следующих значениях материальных параметров: $R_0=10$, $K_{\rm u2}=-K_{\rm u1}$, $A_2=A_1$, $M_{\rm s2}=M_{\rm s1}$, Q=5, D=10. Линия I соответствует h=0, линия 2-h=0.2, линия 3-h=0.4, линия 4-h=0.6, линия 5-h=0.9.

По точкам перегиба можно определить размеры кора (R_c) и МС (R_v). Согласно [29] имеем:

$$R_{\rm c} = r_{\rm i} - \frac{m_{\rm z}(r_{\rm 2}) - m_{\rm z}(r_{\rm i})}{m_{\rm z}'(r_{\rm i})}, \ R_{\rm v} = r_{\rm 3} - \frac{1 - m_{\rm z}(r_{\rm 3})}{m_{\rm z}'(r_{\rm 3})}, \quad (5)$$

где r_i — координаты точек перегиба по мере их возрастания (i=1,2,3), $r_1 < r_2 < r_3$, $m_z^{'}(r_i)$ — значение производной функции $m_z = m_z(r)$ в точке перегиба M_i с координатой r_i .

Отметим также, что на магнитные моменты промежуточного участка помимо легкоплоскостной анизотропии дефекта оказывают влияние анизотропия типа "легкая ось" обменного происхождения [12] и размагничивающие поля пленки. Их действие, убывающее с увеличением расстояния r, приводит к тому, что компоненты магнитных моментов m_z , принимающие отрицательные значения вблизи r=0, возрастают по мере удаления от центра дефекта (см. рис. 2).

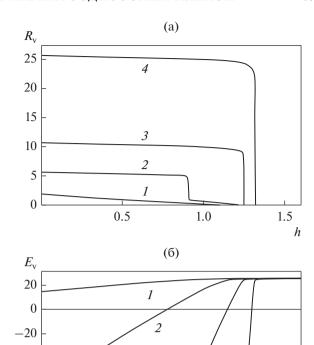
ТРАНСФОРМАЦИЯ СТРУКТУРЫ МС В НЕНУЛЕВОМ МАГНИТНОМ ПОЛЕ

При включении поля происходит трансформация МС (рис. 3). Прежде всего, уменьшается размер кора, так как магнитные моменты, расположенные в области кора, становятся невыгодно ориентированными. На промежуточном участке магнитные моменты с возрастанием h стремятся повернуться в направлении поля, что приводит к сдвигу кривой зависимости на этом участке вверх.

Соответственно растет размер участка (в основном за счет уменьшения кора), а область, раз-

-40

-60

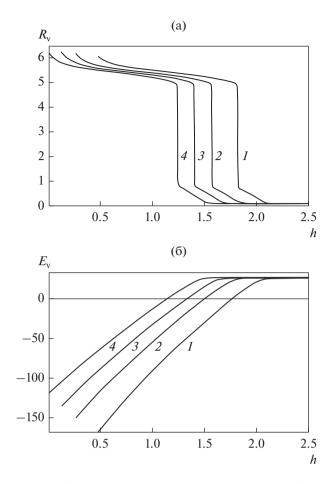

-80

-100

деляющая его с граничным участком, размывается. При некотором критическом значении поля $h = h_{\rm c1}$ количество точек перегиба резко сокращается (с трех до одного) и промежуточная область исчезает. Такая ситуация наглядно просматривается на графике зависимости размера МС R_{v} от поля (рис. 4a). С возрастанием поля h величина $R_{\rm v}$ уменьшается, но очень незначительно, а при $h = h_{c1}$ уменьшение $R_{\rm v}$ происходит практически скачком. При этом энергия неоднородности (ее обозначим через E_{v}) также увеличивается (рис. 46), причем в поле $h > h_{\rm c2}$ становится положительной, где $h_{\rm c2}$ — некоторое критическое поле, при котором энергия неоднородности $E_{\rm v}=0$. Это поле представляет собой поле потери устойчивости MC, т.к. при $h > h_{c2}$ оно становится энергетически менее выгодным образованием по сравнению с однородно намагниченным состоянием пленки. В ланном случае произвольная флуктуация намагниченности неелевского типа (которая всегда будет иметь место) приведет к коллапсу МС [30]. В результате пленка становится однородно намагниченной. Из сказанного вытекает, что процесс перемагничивания такой пленки будет происходить с гистерезисом, при этом поле h_{c2} можно вполне ассоциировать с коэрцитивной силой образца.

Следует отметить, что наличие двух решений уравнения (4), приведенное ранее ($\theta = 0, \pi - \text{одно-}$ родно намагниченное состояние, $\theta = \theta(r) - MC$), говорит о том, что дефект типа "потенциальная яма" можно считать бистабильной системой [31]. Такая ситуация имеет место в киральных магнетиках, в которых также были обнаружены два решения типа МС, отличающиеся размерами и, соответственно, статусами состояний (одно из них является стабильным, а другое — метастабильным). Отличие данной пленки от киральных магнетиков состоит в том, что в ней два типа состояний (МС и однородно намагниченное) не могут существовать одновременно, так как они – два взаимоисключающие состояния. В киральных магнетиках такое возможно.

Анализ полученных результатов показывает, что не при всех размерах колумнарного дефекта возможно образование на нем МС. В частности, в нулевом поле при $R_0=2$ его энергия (при данных значениях параметров материала) положительна (рис. 46) и, следовательно, МС не может быть устойчивым образованием. Однако при $R_0>2.865$ его энергия уже будет отрицательной, и он уже может стать устойчивой неоднородностью. Необходимо отметить, что поле потери устойчивости $h_{\rm c2}$ всегда меньше поля $h_{\rm c1}$, при котором происходит скачкообразная трансформация структуры с исчезновением промежуточного участка (коллапс "перетяжки"). Поля $h_{\rm c1}$ и $h_{\rm c2}$ существенно зависят


Рис. 4. Графики зависимостей размера $R_{\rm v}$ (a) и энергии $E_{\rm v}$ (б) вихреподобного образования от внешнего магнитного поля h при следующих значениях материальных параметров: $K_{\rm u2}=-K_{\rm u1},\ A_2=A_1,\ Q=3,\ M_{\rm s2}=M_{\rm s1},\ D=10.$ Линия Iсоответствует $R_0=2$, линия $2-R_0=5$, линия $3-R_0=10$, линия $4-R_0=25$.

1.0

1.5

0.5

от параметров дефекта $K_{\rm u2}$ и $R_{\rm 0}$ и в меньшей степени от материальных параметров. В частности, из расчетов следует (рис. 4а, 4б), что с увеличением размера дефекта R_0 , величины $h_{\rm c1}$ и $h_{\rm c2}$ возрастают. Это объясняется тем, что с увеличением R_0 возрастает и энергия дефекта [10] и, следовательно, необходимо приложить тем большее по величине зеемановское взаимодействие (пропорциональное H), чтобы неоднородность, закрепленная на дефекте, перемагнитилась, т.е. исчезла. Аналогично будут вести и зависимости критических полей $h_{\rm c1}$ и $h_{\rm c2}$ от параметра $K_{\rm u2}$, который (как и радиус $R_{\rm 0}$) определяет энергию дефекта. Как видно из рис. 5а, размагничивающие поля пленки слабо влияют на размер МС; с уменьшением фактора качества образца $Q=K_{\rm u\,l}/2\pi M_{\rm s\,l}^2$ радиус $R_{\rm v}$ увеличивается, но незначительно. Более сильно проявляется зависимость критических полей $h_{\rm c1}$ и $h_{\rm c2}$ от Q: с уменьшением параметра Q их значения возрастают, причем в большей степени (рис. 5б). Это связано с тем об-

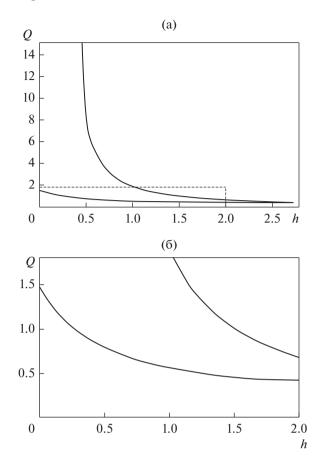


Рис. 5. Зависимости радиуса $R_{\rm v}$ (а) и энергии $E_{\rm v}$ (б) вихреподобного образования от поля при следующих значениях материальных параметров R_0 = 5, $K_{\rm u2}$ = $-K_{\rm u1}$, A_2 = A_1 , $M_{\rm s2}$ = $M_{\rm s1}$. Линия I соответствует Q = 0.8, 2 – Q = 1, 3 – Q = 1.2, 4 – Q = 1.5.

стоятельством, что энергия дефекта пропорциональна R_0^2 , а энергия размагничивающих полей пропорциональна Q^{-1} (рис. 6а, 6б). Поэтому изменение энергии дефекта, вызванное изменением параметра Q, приводит к небольшим изменениям размера MC.

УСТОЙЧИВОСТЬ МС В МАГНИТНОМ ПОЛЕ В ОБЛАСТИ $Q \approx 1$

Рассмотрим отдельно поведение МС в магнитном поле в области значений $Q \approx 1$ (см. рис. 6а, 6б). Известно, что при $Q \le 1$ под действием размагничивающих полей происходит переориентация магнитных моментов и они ложатся в плоскость пленки [32]. В этом случае МС в нулевом поле на колумнарных дефектах не образуется. Он возникает на дефекте как устойчивая структура (при h = 0) лишь при Q > 1.45 (при данных значениях материальных параметров, см. рис. 6б). Однако

Рис. 6. Диаграмма области существования вихреподобного образования в обычном масштабе (а) и в увеличенном масштабе (б) при следующих значениях материальных параметров: $R_0 = 5$, $K_{\rm u2} = -K_{\rm u1}$, $A_2 = A_1$, $M_{\rm s2} = M_{\rm s1}$.

при Q < 1.45 MC может стать устойчивым в ненулевых полях, в частности, для Q=1 при $h\geq h_{c0}=0.27,$ а для Q=0.8 при $h\geq 0.48$ и т.д., см. рис. 6б). Здесь $h_{\!\!\scriptscriptstyle{
m c0}}$ — критическое значение поля, при котором возникают устойчивые состояния МС. Такая ситуация объясняется тем, что состояние неустойчивости магнитных моментов основного объема образца (вне области дефекта), вызванное доминированием размагничивающих полей при $Q \le 1$, может измениться на противоположное состояние, если "включить" магнитное поле требуемой величины и направленное вдоль Oz. Это приводит к тому, что МС при Q < 1.45 в магнитном поле с $h > h_{\rm c0}$ становится устойчивым образованием в диапазоне полей $h_{\rm c0} < h < h_{\rm c2}$. Такая ситуация характерна и для цилиндрических магнитных доменов, которые также могут быть устойчивыми в полях h, удовлетворяющих неравенству: $h_2 < h < h_0$, где h_0 и h_2 — поля коллапса и эллиптической неустойчивости, соответственно [31]. В данном случае поля h_0 и h_2 не являются полными аналогами критических полей существования вихреподобных образований h_{c0} и h_{c2} . Это обусловлено несколько разной природой возникновения неустойчивостей в рассматриваемых объектах. В случае цилиндрических магнитных доменов доминирующую роль играют размагничивающие поля пленок, в случае МС – наряду с размагничивающими полями и дефекты типа "потенциальная яма". Поэтому поля h_{c0} и h_{c2} будут прежде всего определяться параметрами дефектов: их радиусом R_0 и глубиной потенциальной ямы K_{11} . Согласно расчетам, с увеличением R_0 и $|K_{\rm u2}|$ поле зарождения неоднородности уменьшается, а поле потери устойчивости h_{c2} , напротив, увеличивается. В этом случае правая граница области его устойчивости сдвигается вправо (см. рис. 6а) соответственно, диапазон полей существования МС расширяется. Следует отметить, что аналогичная ситуация имела место и при изучении магнитных образований на одномерных дефектах типа "потенциальная яма". В частности, в работе [10] было выявлено, что в некоторых случаях, когда неоднородности типа $0^{\circ} \, \text{Д} \Gamma$ на дефектах не образуются, их можно индуцировать в магнитном поле, приложенном нормально к пленке. Они также являются устойчивыми в определенном диапазоне значений h магнитных полей.

Найденная закономерность зарождения МС на дефектах определенного вида является их характерной чертой и может быть использована в устройствах магнитной памяти (по аналогии с цилиндрическими магнитными доменами [31, 32]) как физическая реализация ее элементов.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Таким образом, приведенные исследования показывают, что МС может образоваться в одноосных ферромагнитных пленках на колумнарных дефектах типа "потенциальная яма". Он может существовать как устойчивое образование в достаточно в широком интервале значений материальных параметров. Более того, он остается устойчивым и в ненулевом магнитном поле, направленным нормально к пленке, что находится в согласии с [3]. При этом верхним значением критического поля его существования можно регулировать вариацией параметров образца, и, в особенности, глубиной потенциальной ямы $|K_{\rm u2}|$. Кроме того, при значениях фактора качества $Q \approx 1$ МС не образуется на такого рода дефектах в нулевом поле в силу переориентации намагниченности т вне области дефекта [31]. Однако он может быть индуцирован внешним магнитным полем и существовать как устойчивая структура в определенном их диапазоне.

Очевидно, наличие в магнитных материалах перпендикулярной анизотропии, а также существование в них колумнарных дефектов типа "по-

тенциальная яма" имеет место в эпитаксиальных пленках ферритов-гранатов, в гексоферритах, во многих интерметаллических соединениях [33], в сплавах типа CdFeCo [34] и т.д. При этом требуемые типы дефектов, необходимые для стабилизации МС, можно создавать искусственно. В [5] они были получены при облучении определенных участков поверхности пленки сфокусированным пучком ионов He⁺, который, согласно [35], приводит к уменьшению анизотропии $K_{\rm u}$ в этих местах. Другой способ был применен в [21], в которой МС наблюдали на прямоугольной решетке цилиндрических выступов, сформированных в многослойной пленке Co/Pt методами электронной литографии. Кроме того, можно создать подобные дефекты с помощью сфокусированного лазерного облучения [36, 37], локализованного действия электрического [23, 38] или магнитного поля [39] и т.д.

Необходимо отметить, что единственным размерным параметром, определяющим и толщину пленок, и размеры дефектов, а также размеры МС является ширина ДГ Δ_1 . Для пленок ферритовгранатов $\Delta_1 \sim 30-100$ нм, для гексаферритов $\Delta_1 \sim 2$ мкм, для многослойных пленок Co/Pt $\Delta_1 \sim$ ~ 30 нм и т.д. Однако на приведенные расчеты накладываются определенные ограничения по толщине: $D \ge \Delta_1$. В противном случае при $D \ll \Delta_1$ влияние размагничивающих полей существенно возрастает и МС по структуре становится неблоховским [28]. В этом случае рассматриваемая модель МС блоховского типа перестает описывать реальные структуры. В то же время, если усовершенствовать модель и учесть неелевский вклад в структуру МС, то можно рассматривать поведение этих неоднородностей и для ультратонких пленок. Однако такая задача требует отдельного исследования.

СПИСОК ЛИТЕРАТУРЫ

- Мицек А.И., Семянников С.С. Влияние антифазных границ на магнитные свойства ферромагнетиков // ФТТ. 1969. Т. 11. № 5. С. 1103—1113.
- 2. *Кандаурова Г.С.* Природа магнитного гистерезиса // Сорос. образоват. журн. 1997. № 1. С. 100—106.
- 3. *Магадеев Е.Б., Вахитов Р.М.* Зарождение магнитных неоднородностей на уединенных дефектах ферромагнетика // ТМФ. 2015. Т. 184. № 1. С. 134—144.
- Sapozhnikov M.V. Skyrmion lattice in a magnetic film with spatially modulated material parameters // J. Magn. Magn. Mater. 2015. V. 396. P. 338–344.
- 5. Sapozhnikov M.V., Vdovichev S.N., Ermolaeva O.L., Gusev N.S., Fraerman A.A., Gusev S.A., Petrov Yu. V. Artificial dense lattice of magnetic bubbles // Appl. Phys. Lett. 2016. V. 109. P. 042406(1–5).
- 6. Вахитов Р.М., Шапаева Т.Б., Солонецкий Р.В., Юмагузин А.Р. Особенности структуры микромагнитных образований на дефектах пленок ферритов-гранатов // ФММ. 2017. № 6. С. 571–575.
- 7. Власко-Власов В.К., Дедух Л.М., Инденбом М.В., Никитенко В.И. Магнитный ориентационный фа-

- зовый переход в реальном кристалле // ЖЭТФ. 1983. № 84. № 1. С. 277—288.
- Вахитов Р.М., Юмагузин А.Р. Об одном механизме зародышеобразования в кристаллах с комбинированной анизотропией // ФТТ. 2001. Т. 43. № 1. С. 65—71.
- Gall D. Micromagnitism-Microstructure Relations and the Hysteresis Loop. In: Kronmuller H., Parkin S. (Eds). Handbook of Magnetism and Advanced Magnetic Materials. John Wiley & Sons. Ltd. New-York. 2007. P. 1–36.
- 10. Вахитов Р.М., Солонецкий Р.В., Ларионов И.Б. Особенности поведения зародышей перемагничивания в магнитном поле в одноосных пленках // ФТТ. 2017. Т. 59. № 6. С. 1089—1096.
- 11. Sapozhnikov M.V., Ermolaeva O.L. Two-dimensional skyrmion lattice in nanopatterned magnetic film // Phys. Rev. 2015. V. 91. P. 024418(1–6).
- 12. *Вахитов Р.М., Ахметова А.А., Солонецкий Р.В.* Вихреподобные образования на дефектах магнитоодноосных пленок // ФТТ. 2019. Т. 61. № 3. С. 453—459.
- 13. Ryan S.D., Mityushev V., Vinokur V.M. L. Berlyand. Rayleigh approximation to ground state of the Bose and Coulomb glasses // Scientific Reports. 2015. V. 5. P. 7821.
- 14. Onose Y., Takeshita N., Terakura C., Takagi H., Tokura Y. Doping dependence of transport properties in Fe_{1-x}Co_xSi // Phys. Rev. B. 2005. V. 72. P. 224431.
- Neubauer A., Pfleiderer C., Binz B., Rosch A., Ritz R., Niklowitz P.G., Boni P. Topological hall effect in the phase of MnSi // Phys. Rev. Lett. 2009. V. 102. P. 186602.
- Schulz T., Ritz R., Bauer A., Halder M., Wagner M., Franz C., Pfleiderer C., Everschor K., Garst M., Rosch A. Emergent electrodynamics of skyrmions in a chiral magnet // Nature Phys. 2012. V. 8. P. 301.
- 17. Yu X.Z., Kanazawa N., Zhang W.Z., Nagai T., Hara T., Kimoto K., Matsui Y., Onose Y., Tokura Y. Skyrmion flow near room temperature in an ultralow current density // Nature Commun. 2012. V. 3. P. 988.
- 18. Zang J., Mostovoy M., Han J.H., Nagaosa N. Dynamics of skyrmion crystals in metallic thin films // Phys. Rev. Lett. 2011. V. 107. P. 136804.
- 19. *Bogdanov A., Hubert A.* Thermodynamically stable magnetic vortex states in magnetic crystals // J. Magn. Magn. Mater. 1994. V. 138. P. 255–269.
- Bogdanov A., Hubert A. Stability of vortex-like structures in uniaxial ferromagnets // J. Magn. Magn. Mater. 1999. V. 195. P. 182.
- 21. Сапожников М.В., Ермолаева О.В., Скороходов, Гусев Н.С., Дроздов М.Н. Магнитные скирмионы в пленках с модулированной толщиной // Письма в ЖЭТФ. 2018. Т. 107. № 6. С. 378—382.
- 22. Davies C.S., Prabhakara K.H., Davydova M.D., Zvezdin K.A., Shapaeva T.B., Wang S., Zvezdin A.K., Kirily-uk A., Rasing Th., Kimel A.V. Anomalously damped heat-assisted Route of precessional magnetization reversal in an iron garnet // Phys. Rev. Lett. 2019. V. 122. P. 027202(1–7).
- 23. Куликова Д.П., Пятаков А.П., Николаева Е.П., Сергеев А.С., Косых Т.Б., Пятакова З.А., Николаев А.В., Звездин А.К. Зарождение цилиндрических магнитных доменов в пленках ферритов-гранатов с помощью электрического поля // Письма в ЖЭТФ. 2016. Т. 104. № 3. С. 196—200.

- 24. Guslienko K.V. Magnetic vortex state stability, reversal and dynamics in restricted geometries // J. Nanoscience and Nanotechnol. 2008. V. 8. P. 2745.
- 25. Muhlbauer S., Jonietz F., Pfleiderer C., Rosch A. Neubauer A., Georgii R., Boni P. Skyrmion lattice in a chiral magnet // Science. 2009. V. 323. P. 915.
- Seki S., Yu X.Z., Ishiwata S., Tokura Y. Observation of skyrmions in a multiferroic material // Science. 2012. V. 336. P. 198–201.
- 27. *Магадеев Е.Б., Вахитов Р.М.* Топология и свойства нуль-градусной доменной границы в поперечном магнитном поле // ФТТ. 2011. Т. 53. № 5. С. 944—950.
- 28. *Магадеев Е.Б., Вахитов Р.М.* Топология уединенных магнитных неоднородностей в тонкой ферромагнитной пленке // ТМФ. 2012. Т. 171. № 3. С. 511–518.
- 29. *Hubert A. Schafer R.* Magnetic domains // Berlin: Springer-Verlag. 2007. 696 p.
- 30. *Khodenkov H.E., Kudelkin N.N., Randoshkin V.V.* The breakdown of the 360° Bloch domain wall in bubble magnetic films // Phys. Status Solidi (a). 1984. V. 84. P. K135–K139.
- 31. Büttner F., Lemesh I., Beach Geoffrey S.D. Theory of isolated magnetic skyrmions: From fundamentals to room temperature applications // Sci. Rep. 2018. V. 8. P. 4464.
- 32. *Malozemoff A.P., Slonczewski J.C.* Magnetic domain walls in bubble materials. Academic Press, New York, London, Toronto, Sydney, San Francisko. 1979.
- 33. Eschenfelder A.H. Magnetic bubble technology. Springer-Verlag Berlin-Heidelberg-New York. 1981.
- 34. *Oderno V., Dufour C., Dumesnil K., Bauer Ph., Mangin Ph., Marchal G.* Magnetic anisotropy in (110) epitaxial DyFe₂ Laves phase // Phys. Rev. B. 1996. V. 54. № 24. P. R17375—R17378.
- 35. He W., Liu H.-L., Wu H.-Y., Cai J.-W., Cheng Z.-H. Probing temperature-driven spin reorientation transition of GdFeCo film by Kerr loops and ferromagnetic resonance // Appl. Phys. Lett. 2015. № 106. P. 042401(4).
- Devolder T., Ferre J., Chappert C., Bernas H., Jamet J.-P., Mathet V. Magnetic properties of He⁺-irradiated Pt/Co/Pt ultrathin films // Phys. Rev. B. 2001. V. 64. P. 064415
- 37. Логгинов А.С., Николаев А.В., Николаева Е.П., Онишук В.Н. Модификация структуры доменных границ и зарождение субмикронных магнитных образований методами локального оптического воздействия // ЖЭТФ. 2000. Т. 117. № 3. С. 571—581.
- 38. Логгинов А.С., Мешков Г.А., Николаев А.В., Пятаков А.П. Магнитоэлектрическое управление доменными границами в пленке феррита-граната // Письма в ЖЭТФ. 2007. Т. 86. № 2. С. 124—127.
- 39. Арзамасцева Г.В., Балбашов А.М., Лисовский Ф.В., Мансветова Е.Г., Темирязев А.Г., Темирязева М.П. Свойства обладающих магнитоэлектрическим эффектом эпитаксиальных пленок ферритов-гранатов с (210) ориентацией // ЖЭТФ. 2015. Т. 147. № 4. С. 793–810.
- 40. Иванов Л.П., Логгинов А.С., Непокойчицкий Г.А., Никитин И.И. Экспериментальное исследование неоднородного вращения векторов намагниченности в монокристаллических пленках ферритовгранатов // ЖЭТФ. 1985. Т. 88. № 1. С. 260—271.