## ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА

УДК 539.213.26:537.622.4

# ВЛИЯНИЕ ХИМИЧЕСКИ АКТИВНОЙ СРЕДЫ НА МАГНИТНЫЕ ХАРАКТЕРИСТИКИ АМОРФНОГО МАГНИТОМЯГКОГО СПЛАВА НА ОСНОВЕ КОБАЛЬТА

© 2020 г. Н. А. Скулкина<sup>а, \*, \*\*</sup>, Н. Д. Денисов<sup>а</sup>, А. С. Боярченков<sup>а</sup>, Е. С. Некрасов<sup>а</sup>

<sup>а</sup>Уральский федеральный университет, Екатеринбург, ул. Мира, 19, Екатеринбург, Россия

\*e-mail: nadezhda-skulkina@yandex.ru \*\*e-mail: nadezhda.skulkina@urfu.ru Поступила в редакцию 25.11.2019 г. После доработки 14.01.2020 г. Принята к публикации 21.01.2020 г.

На примере образцов аморфного магнитомягкого сплава на основе кобальта АМАГ-172 (Co–Ni–Fe–Cr–Mn–Si–B) исследовано взаимодействие поверхности ленты с ацетоном и его влияние на магнитные характеристики ленты. Исследования показали, что влияние обработки ленты ацетоном на распределение намагниченности и магнитную проницаемость материала различно для состояний с разными знаками магнитострикции насыщения. Такая обработка способствует повышению объема доменов с ортогональной намагниченностью и повышению остроты магнитной текстуры в плоскости ленты в состоянии с  $\lambda_s > 0$ ; уменьшению объема доменов с ортогональной намагниченностью, снижению остроты магнитной текстуры и увеличению максимальной магнитной проницаемости в состоянии с  $\lambda_s < 0$ . Это может быть следствием преимущественно плоских анизотропных сжимающих напряжений, индуцируемых в ленте в результате каталитического окисления и гидрирования ацетона.

*Ключевые слова:* аморфные магнитомягкие сплавы, термообработка, магнитная проницаемость, распределение намагниченности, магнитострикция насыщения, ацетон, вода **DOI:** 10.31857/S0015323020060157

#### **ВВЕДЕНИЕ**

Используемые в промышленности аморфные магнитомягкие сплавы достаточно часто взаимодействуют с химически активными средами, которые оказывают влияние на их магнитные свойства. К таковым относится, например, вода. В результате химических реакций с элементами поверхности ленты происходит ее оксидирование и гидрирование. Внедренные в поверхность ленты атомы водорода и кислорода индуцируют преимущественно плоские растягивающие напряжения, которые в зависимости от знака магнитострикции насыщения по-разному влияют на распределение намагниченности. В состоянии ленты с положительной магнитострикцией насыщения они способствуют переориентации намагниченности в плоскость ленты, уменьшая стабилизацию границ доменов с планарной намагниченностью доменами с ортогональной намагниченностью и улучшая магнитные характеристики [1]. При отрицательной магнитострикции насыщения такие напряжения увеличивают объем доменов с ортогональной намагниченностью ( $V_{opt}$ ), что приводит к затруднению процессов намагничивания и ухудшению

магнитных свойств ленты [2, 3]. Напряжения, индуцируемые внедренными в поверхность ленты атомами, являются анизотропными. В соответствии с теорией направленного упорядочения оси пар немагнитных атомов ориентируются перпендикулярно результирующей намагниченности, так как в этом состоянии энергия взаимодействия оси пары с намагниченностью минимальна [4]. В соответствии с минимумом энергии анизотропии формы результирующая намагниченность в плоскости ленты направлена вдоль ее оси, поэтому поперек оси ленты образуется повышенная концентрация внедренных в поверхность ленты атомов, индуцируя в этом направлении псевдоодносное растяжение. В состоянии с положительной магнитострикцией насыщения такие напряжения способствуют уменьшению остроты магнитной текстуры η в плоскости ленты, характеризуемой отношением объемов доменов с планарной намагниченностью  $(V_{III})$ , ориентированной вдоль  $(V_{180})$  и поперек (V<sub>90</sub>) оси ленты. При отрицательной магнитострикции насыщения под действием индуцированных напряжений острота магнитной текстуры увеличивается [2, 3]. Следовательно, анализ пере-

| при 380°С с длительностью из | отермической вы, | держки 40 мин, о     | формирующей с | состояние с $\lambda_s > 0$ | )    |
|------------------------------|------------------|----------------------|---------------|-----------------------------|------|
| Состояние ленты              | μ <sub>max</sub> | V <sub>орт</sub> , % | $V_{180}, \%$ | V <sub>90</sub> , %         | η    |
|                              |                  | Серия 1              |               |                             |      |
| Закаленное                   | 26000            | 20.5                 | 52.5          | 27.0                        | 1.95 |
| ТО                           | 450000           | 8.7                  | 54.3          | 37                          | 1.47 |
| Обработка водой              | 560000           | 7.4                  | 51.8          | 40.8                        | 1.28 |
| Обработка ацетоном           | 510000           | 8.5                  | 65            | 26.5                        | 2.45 |
|                              | I                | Серия 2              | 1             |                             |      |
| Закаленное                   | 24700            | 22.4                 | 45.9          | 31.7                        | 1.43 |
| ТО                           | 430000           | 7.0                  | 56.6          | 36.4                        | 1.54 |
| Обработка ацетоном           | 420,000          | 7.8                  | 67.8          | 24.4                        | 2.77 |

**Таблица 1.** Влияние обработки поверхности ленты водой и ацетоном на распределение намагниченности и максимальную магнитную проницаемость образцов сплава Co–Ni–Fe–Cr–Si–B после термообработки на воздухе при 380°C с длительностью изотермической выдержки 40 мин. формирующей состояние с  $\lambda_c > 0$ 

распределения намагниченности в ленте после обработки ее поверхности водой можно использовать для определения знака магнитострикции насыщения. Взаимодействие поверхности ленты с атмосферным паром при термообработке на воздухе аналогичным образом влияет на распределение намагниченности в ленте [3, 5–8].

В настоящей работе представлены результаты исследования влияния обработки поверхности AMAΓ-172 (Co-Fe-Ni-Cr-Mn-Si-B) ленты ацетоном на распределение намагниченности и магнитную проницаемость. Ацетон широко используется для очистки и обезжиривания поверхности различных материалов, входит в состав клеев, лаков, красок. Априори считается, что он не оказывает влияния на магнитные характеристики лент аморфных магнитомягких сплавов. Тем не менее известно, что в присутствии катализатора может иметь место реакция окисления ацетона. Например, катализаторами являются оксиды переходных металлов: хрома, железа, кобальта, марганца, никеля (Cr<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, Co<sub>3</sub>O<sub>4</sub>, MnO<sub>2</sub>, NiO), которые присутствуют на поверхности лент исследуемых сплавов и обладают сравнительно низкой энергией связи атомов кислорода на поверхности оксидов. Продуктами реакций каталитического окисления являются, например, уксусная кислота, углекислый газ, вода [9]. Известно также каталитическое гидрирование ацетона. Катализатором этой реакции, например, может выступать никель, а продуктом является изопропиловый спирт или пропан [10].

#### МЕТОДИКА ЭКСПЕРИМЕНТА

Исследования проводили на образцах сплава Co–Fe–Ni–Cr–Mn–Si–B в форме полос размерами 100 × 10 × 0.020 мм. В закаленном состоянии лента исследуемого сплава обладает низкими (10<sup>-7</sup>) отрицательными значениями магнитострикции насыщения. Важным моментом в выборе матери-

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 121 № 6 2020

ала является тот факт, что подбором параметров термообработки можно формировать состояния ленты с разными знаками магнитострикции насыщения без вариации элементного состава. Исслелования проволили на образнах в закаленном состоянии и после термообработок (ТО) на воздухе при 370 и 380°С с длительностью изотермической выдержки 10 и 40 мин, формирующих состояния с разными знаками магнитострикции насыщения. Кривые намагничивания измеряли индукционно-импульсным методом с погрешностью измерения магнитной индукции и поля не превышающей 2%, максимальной магнитной проницаемости – 3%. Распределение намагниченности в ленте определяли при помощи авторской методики по корреляционной зависимости между максимальными значениями остаточной индукции (В<sub>гс</sub>) и объемом доменов с ортогональной намагниченностью, полученной с помощью мессбауэровских исследований, и измерения остаточной инлукции частных петель гистерезиса [3, 11]. Относительная погрешность определения распределения намагниченности не превышала 5%. Знак магнитострикции насыщения определяли при помощи обработки поверхности ленты водой комнатной температуры в течение 15 мин без видимого окисления поверхности [1, 2, 5, 11]. При обработке поверхности ленты ацетоном образцы погружали в ацетон на 20 ч.

#### РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В табл. 1 представлены результаты исследования влияния обработки поверхности ленты ацетоном и водой на магнитные характеристики образцов исследуемого сплава, предварительно прошедших термообработку при 380°С с длительностью изотермической выдержки 40 мин скоростью охлаждения 40 К/мин. Использовали две серии образцов: образцы 2 серии обрабатывали ацетоном непосредственно после термообработки,



Рис. 1. Полевая зависимость магнитной проницаемости образцов сплава Co–Fe–Ni–Cr–Mn–Si–В после термообработки на воздухе при 380°С с длительностью изотермической выдержки 40 мин и обработки ленты ацетоном непосредственно после отжига.

образцы 1 серии – после промежуточной обработки поверхности ленты водой. Для исследования были выбраны образцы с близким уровнем магнитных характеристик в исходном (закаленном) состоянии. Видно, что при обработке поверхности ленты водой наблюдается переориентации намагниченности в ее плоскость, уменьшая объем доменов с ортогональной намагниченностью. Этому способствуют преимущественно плоские растягивающие напряжения, индуцируемые внедренными в поверхность ленты атомами водорода и кислорода. Наблюдаемое уменьшение остроты магнитной текстуры  $\eta = V_{180}/V_{90}$  в ее плоскости обусловлено псевдоодноосными растягивающими напряжениями, ориентированными поперек оси ленты. Такое перераспределение намагниченности под действием напряжений, индуцированных взаимодействием поверхности ленты с водой, соответствует состоянию с положительной магнитострикцией насыщения и подтверждает результаты, представленные в работах [2, 3, 12].

Анализ результатов влияния обработки поверхности ленты ацетоном, проведенной непосредственно после термической обработки, на распределение намагниченности показал, что такая обработка способствует увеличению объема доменов с ортогональной намагниченностью при одновременном повышении остроты магнитной текстуры в плоскости ленты (табл. 1).

Наблюдаемый эффект противоположен результатам взаимодействия поверхности ленты с водой для этого состояния. Увеличение объема доменов с ортогональной намагниченностью может быть вызвано индуцированием преимущественно плоских сжимающих напряжений вследствие уменьшения концентрации кислорода и водорода в результате каталитического окисления и гидрирования ацетона. Согласно законам диффузии, более высокая концентрация способствует и большей скорости диффузии. Поэтому более сильное уменьшение концентрации атомов кислорода и водорода в плоскости ленты поперек ее оси индуцирует в этом направлении анизотропное сжатие, способствуя переориентации намагниченности вдоль оси ленты. Эти факторы оказывают противоположное действие на процессы намагничивания и максимальную магнитную проницаемость. Отсутствие изменения максимальной магнитной проницаемости в этом случае (рис. 1, табл. 1) может быть обусловлено компенсацией усиления стабилизации границ доменов с планарной намагниченностью доменами с ортогональной намагниченностью вследствие увеличения их объема и повышением остроты магнитной текстуры в плоскости ленты.

Промежуточная обработка поверхности ленты водой кроме определения знака магнитострикции насыщения имела и другую цель: повышение концентрации кислорода и водорода в поверхностном слое ленты перед обработкой ацетоном для проверки выдвинутых предположений по объяснению влияния воздействия ацетона на распределение намагниченности и процессы намагничивания. Видно (рис. 2, табл. 1), что обработка поверхности ленты водой способствует существенному повышению максимальной магнитной проницаемости. Преимущественно плоские растягивающие напряжения приводят к уменьшению объема доменов с ортогональной намагниченностью и содействуют ослаблению стабилизации границ доменов с планарной намагниченностью. Переориентация намагниченности в плоскость ленты энергетически выгодна еще и потому, что соответствует меньшей энергии анизотропии формы. Анизотропные напряжения, обусловленные повышенной концентрацией внедренных в поверхность ленты атомов водорода и кислорода поперек ее оси, уменьшают остроту магнитной текстуры в плоскости ленты и затрудняют процессы намагничивания. Увеличение максимальной магнитной проницаемости в этом случае происходит вследствие преобладающего влияния первого фактора.

Последующая обработка поверхности ацетоном способствует перераспределению намагниченности в ленте. В этом случае также наблюдается повышение объема доменов с ортогональной намагниченностью и остроты магнитной текстуры в ее плоскости. В результате взаимодействия с ацетоном деоксидирование и дегидрирование поверхности ленты снижает уровень преимущественно плоских растягивающих напряжений, а снижение концентрации внедренных в поверхность ленты атомов водорода и кислорода поперек ее оси уменьшает псевдоодноосное растяжение и способствует переориентации намагниченности вдоль оси ленты. После обработки поверхности ленты ацетоном значения максимальной магнитной проницаемости несколько выше, чем после термообработки вследствие повышения остроты магнитной текстуры в ее плоскости.

В табл. 2 и на рис. 3 и 4 представлены результаты влияния обработки поверхности ленты водой и ацетоном на распределение намагниченности и магнитную проницаемость образцов исследуемого сплава после термообработки на воздухе при 370°С с длительностью изотермической выдержки 10 мин. Анализ результатов исследования показывает, что в этом случае после обработки поверхности ленты водой не происходит изменения объема доменов с ортогональной намагниченностью. То есть преимущественно плоские растягивающие напряжения не приводят к переориенташии намагниченности в направление растягивающих напряжений. Тем не менее, псевдоодноосные растягивающие напряжения, индуцируемые повышенной концентрацией внедренных в поверхность ленты атомов водорода и кислорода поперек ее оси, способствуют переориентации намагниченности вдоль оси ленты. повышая остроту магнитной текстуры в ее плоскости. Следовательно,



Рис. 2. Полевая зависимость магнитной проницаемости образцов сплава Co–Fe–Ni–Cr–Mn–Si–В после термообработки на воздухе при 380°С с длительностью изотермической выдержки 40 мин и обработки ленты ацетоном с промежуточной обработкой водой.

в результате такой термообработки формируется состояние с отрицательной магнитострикцией насыщения. Полученные результаты также согласуются с результатами предыдущих исследований [3, 13].

| Состояние ленты    | $\mu_{max}$ | V <sub>орт</sub> , % | $V_{180}, \%$ | V <sub>90</sub> , % | η    |
|--------------------|-------------|----------------------|---------------|---------------------|------|
|                    |             | Серия 1              |               |                     |      |
| Закаленное         | 34300       | 15.7                 | 47            | 37.1                | 1.27 |
| ТО                 | 500000      | 13.9                 | 51            | 35.5                | 1.43 |
| Обработка водой    | 500000      | 13.6                 | 59            | 27.5                | 2.14 |
| Обработка ацетоном | 550000      | 10.5                 | 49            | 41                  | 1.18 |
|                    | ı           | Серия 2              | ı             | ı                   |      |
| Закаленное         | 36000       | 15.8                 | 48            | 36.1                | 1.33 |
| ТО                 | 540000      | 13.4                 | 63            | 23.4                | 2.71 |
| Обработка ацетоном | 640000      | 11.7                 | 55            | 33.6                | 1.63 |

**Таблица 2.** Влияние обработки поверхности ленты водой и ацетоном на распределение намагниченности и максимальную магнитную проницаемость образцов сплава Co–Ni–Fe–Cr–Si–B после термообработки на воздухе при 370°C с длительностью изотермической выдержки 10 мин, формирующей состояние с  $\lambda_s < 0$ 



Рис. 3. Полевая зависимость магнитной проницаемости образцов сплава Co–Fe–Ni–Cr–Mn–Si–В после термообработки на воздухе при 370°С с длительностью изотермической выдержки 10 мин и обработки ленты ацетоном непосредственно после отжига.

Представленные в табл. 2 результаты показывают, что обработка поверхности ленты ацетоном непосредственно после отжига вызывает уменьшение и объема доменов с ортогональной намагниченностью, и остроты магнитной текстуры в плоскости ленты. Снижение концентрации кислорода и водорода в поверхностном слое ленты в результате деоксидирования и дегидрирования ее поверхности индуцирует преимущественно плоские сжимающие напряжения, способствующие переориентации намагниченности в плоскость ленты. Ослабление стабилизации границ доменов с планарной намагниченностью доменами с ортогональной намагниченностью является причиной повышения максимальной магнитной проницаемости, несмотря на то, что анизотропные сжимающие напряжения, индуцируемые в этом случае поперек оси ленты, снижают остроту магнитной текстуры в ее плоскости.

Качественно аналогичная картина наблюдается при обработке поверхности ленты ацетоном после промежуточной обработки ее поверхности водой. Одновременное уменьшение значений  $V_{\text{орт}}$  и  $\eta = V_{180}/V_{90}$  может быть связано с индуцированием преимущественно плоских анизотропных сжимающих напряжений поверхностным слоем ленты вследствие уменьшения концентрации



Рис. 4. Полевая зависимость магнитной проницаемости образцов сплава Co–Fe–Ni–Cr–Mn–Si–В после термообработки на воздухе при 370°С с длительностью изотермической выдержки 10 мин и обработки ленты ацетоном с промежуточной обработкой ее поверхности водой.

кислорода и водорода в результате каталитического окисления и гидрирования ацетона. Сравнительно меньшее повышение максимальной магнитной проницаемости после обработки поверхности ленты ацетоном может быть связано с остаточными растягивающими напряжениями, индуцированными внедренными в поверхность ленты атомами водорода и кислорода при взаимодействии ее поверхности с водой.

Результаты, представленные в табл. 3, демонстрируют влияние взаимодействия поверхности ленты исследуемого сплава в закаленном состоянии с водой и ацетоном. По данным производителя [14] эта лента в закаленном состоянии обладает низкими отрицательными значениями магнитострикции насыщения. Обработка поверхности ленты водой в этом случае в пределах погрешности измерений не приводит к изменению максимальной магнитной проницаемости и не влияет на значения объема доменов с ортогональной намагниченностью. Тем не менее, имеет место перераспределение намагниченности в плоскости ленты. Преимущественно плоские растягивающие напряжения, ориентированные поперек оси ленты, которые индуцируются повышенной концентрацией внедренных в этом направлении атомов водорода и кислорода, способствуют переориентации намагниченности вдоль ее оси, по-

| Состояние ленты    | $\mu_{max}$ | V <sub>орт</sub> , % | $V_{180}, \%$ | V <sub>90</sub> , % | η    |  |  |  |
|--------------------|-------------|----------------------|---------------|---------------------|------|--|--|--|
| Серия 1            |             |                      |               |                     |      |  |  |  |
| Закаленное         | 49 000      | 13.4                 | 48.1          | 38.5                | 1.25 |  |  |  |
| Обработка водой    | 50000       | 13.4                 | 57.7          | 28.9                | 2.00 |  |  |  |
| Обработка ацетоном | 48000       | 13.4                 | 44.7          | 41.1                | 1.07 |  |  |  |
| Серия 2            |             |                      |               |                     |      |  |  |  |
| Закаленное         | 46000       | 13.3                 | 62.3          | 24.4                | 2.55 |  |  |  |
| Обработка ацетоном | 46000       | 13.1                 | 56.7          | 30.2                | 1.88 |  |  |  |

**Таблица 3.** Влияние обработки поверхности ленты водой и ацетоном на распределение намагниченности и максимальную магнитную проницаемость образцов сплава Co–Ni–Fe–Cr–Si–B в закаленном состоянии ( $\lambda_s < 0$ )

вышая остроту магнитной текстуры в этом направлении. Это соответствует заявляемому производителем состоянию ленты с отрицательной магнитострикцией насыщения. Переориентация намагниченности перпендикулярно плоскости ленты под действием преимущественно плоских растягивающих напряжений не происходит по двум причинам: высокого уровня обусловленных закалкой внутренних напряжений и существенным повышением энергии анизотропии формы.

Обработка поверхности ленты ацетоном непосредственно в закаленном состоянии и с промежуточной обработкой водой в пределах погрешности измерений не приводит к изменению максимальной магнитной проницаемости и объема доменов с ортогональной намагниченностью. Тем не менее в плоскости ленты наблюдается уменьшение остроты магнитной текстуры  $\eta = V_{180}/V_{90}$ , аналогично тому, как это имело место после термообработки, формирующей состояние с отрицательной магнитострикцией насыщения (табл. 2). Наиболее ярко это проявляется после промежуточной обработки поверхности ленты водой и также может быть связано с индуцированием преимущественно плоских анизотропных сжимающих напряжений поверхностным слоем ленты вследствие уменьшения концентрации кислорода и водорода в результате каталитического окисления и гидрирования ацетона.

#### ЗАКЛЮЧЕНИЕ

Исследования взаимодействия поверхности ленты аморфного магнитомягкого сплава Со– Ni–Fe–Cr–Mn–Si–B с ацетоном показали, что влияние обработки ленты ацетоном на распределение намагниченности и магнитную проницаемость материала различно для состояний с разными знаками магнитострикции насыщения. Обработка поверхности ленты ацетоном оказывает эффект, противоположный воздействию воды. Она способствует повышению объема доменов с ортогональной намагниченностью и повышению остроты магнитной текстуры в плоскости ленты в состоянии с  $\lambda_s > 0$ ; уменьшению объема доменов с ортогональной намагниченностью, снижению остроты магнитной текстуры и существенному увеличению максимальной магнитной проницаемости в состоянии с  $\lambda_s < 0$ . Это может быть следствием преимущественно плоских анизотропных сжимающих напряжений, индуцируемых в ленте в результате каталитического окисления и гидрирования ацетона.

Работа выполнена при частичной финансовой поддержке Министерства образования и науки РФ, проект FEUZ-2020-0051.

### СПИСОК ЛИТЕРАТУРЫ

- Скулкина Н.А., Иванов О.А., Павлова И.О. Взаимодействие с водой лент аморфных магнитомягких сплавов на основе железа и их магнитные свойства // ФММ. 2011. Т. 112. № 12. С. 483–490.
- Скулкина Н.А., Иванов О. А., Степанова Е.А., Блинова О.В., Кузнецов П.А., Мазеева А.К. Влияние термообработки на воздухе и химически активной среды на магнитные свойства аморфных магнитомягких сплавов на основе кобальта // ФММ. 2016. Т. 117. С. 1015–1022.

https://doi.org/10.7868/ S0015323016100120

- 3. Скулкина Н.А., Иванов О.А., Мазеева А.К., Кузнецов П.А., Степанова Е.А., Блинова О.В., Михалицына Е.А., Денисов Н.Д., Чекис В.И. Влияние полимерного покрытия и прессующего давления на магнитные свойства аморфных сплавов на основе кобальта // ФММ. 2017. Т. 118. № 12. С. 1248–1256. https://doi.org/10.7868/S0015323017120026
- 4. Кекало И.Б., Самарин Б.А. Физическое металловедение прецизионных сплавов. Сплавы с особыми магнитными свойствами. М.: Металлургия, 1989. 496 с.
- 5. Скулкина Н.А., Иванов О.А., Павлова И.О., Минина О.А. Взаимодействие с паром поверхности лент аморфных магнитомягких сплавов на основе же-

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 121 № 6 2020

леза // ФММ. 2014. Т. 115. № 6. С. 563–572. https://doi.org/0.7868/S0015323014060138

- Скулкина Н.А., Иванов О.А., Павлова И.О., Минина О.А. Взаимодействие поверхности лент аморфных магнитомягких сплавов с паром во время изотермической выдержки при термообработке // ФММ. 2015. Т. 116. № 11. С. 1143–1152. https://doi.org/10.7868/S0015323015120116
- Скулкина Н.А., Иванов О.А., Павлова И.О., Минина О.А. Взаимодействие поверхности лент аморфных магнитомягких сплавов с паром на разных стадиях термической обработки // ФММ. 2015. Т. 116. № 10. С. 1031–1039. https://doi.org/10.7868/S0015323015100137
- Skulkina N.A., Ivanov O.A., Stepanova E.A., Shubina L.N., Kuznetsov P.A., Mazeeva A.K. Mechanisms of the magnetic properties improvement of amorphous soft magnetic Fe- and Co-based alloys as a result of heat treatment on air// Physics Procedia (2016), V. 82C. P. 69–77. https://doi.org/10.1016/j.phpro.2016.05.013 https://doi.org/10.7868/S0015323017120026
- Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. М.: КомКнига, 2006. 592 с.

- Шуткина О.В. Гидроалкилирование бензола ацетоном на бифункциональных катализаторах. Дис. ... к. х. н. Московский государственный университет им. М.В. Ломоносова. Москва, 2014.
- Скулкина Н.А. Распределение намагниченности и магнитные свойства кристаллических, аморфных и нанокристаллических магнитомягких материалов. Дис. ... д. ф.-м. н. Уральский государственный университет им. А.М. Горького. Екатеринбург, 2007.
- Скулкина Н.А., Иванов О.А., Мазеева А.К., Кузнецов П.А., Чекис В.И., Денисов Н.Д. Условия формирования полимерного покрытия и магнитные свойства аморфных сплавов на основе кобальта // ФММ. 2018. Т. 119. № 12. С. 1216–1223. https://doi.org/10.1134/ S0015323018120197
- Скулкина Н.А., Иванов О.А., Мазеева А.К., Кузнецов П.А., Чекис В.И., Денисов Н.Д. Температура формирования полимерного покрытия и магнитные свойства аморфных сплавов на основе кобальта // ФММ. 2019. Т.120. №.6. С. 615–621. https://doi.org/10.1134/ S0015323019060123
- 14. https://amet.ru.