ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ

УДК 669.3'721:539.4

ВЛИЯНИЕ ИНТЕРФЕЙСОВ НА ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА Сu/Mg-композитов

© 2020 г. А. Ю. Волков^{а,} *, А. А. Калонов^а, В. А. Завалишин^а, А. В. Глухов^{а, b}, Д. А. Комкова^а, Б. Д. Антонов^с

^аИнститут физики металлов имени М.Н. Михеева УрО РАН, ул.С. Ковалевской, 18, Екатеринбург, 620108 Россия ^bУральский федеральный университет имени первого президента России Б.Н. Ельцина, ул. Мира, 19, Екатеринбург, 620219 Россия ^cИнститут высокотемпературной электрохимии УрО РАН, ул. Академическая, 20, Екатеринбург, 620137 Россия *e-mail: volkov@imp.uran.ru Поступила в редакцию 14.05.2019 г. После доработки 10.12.2019 г. Принята к публикации 29.01.2020 г.

Изучены структура, механические и электрические свойства композитов, в медной матрице которых находится 7 и 49 магниевых волокон. Обнаружено, что прочностные свойства деформированной композитной проволоки с наибольшей объемной долей Cu/Mg-интерфейсов превышают теоретическую оценку и превосходят прочность чистой меди. Показано, что в процессе изготовления на интерфейсах композитов происходит деформационно-индуцированное формирование высокопрочных твердых растворов магния в меди. Низкое электросопротивление композитов обеспечивается медной оболочкой.

Ключевые слова: металлические композиты, сплавы медь-магний, структурные методы исследования, резистометрия, микротвердость

DOI: 10.31857/S0015323020060170

введение

Разработка высокопрочных проводников электрического тока — важная научно-техническая задача. В настоящее время наиболее высокий комплекс свойств имеют проводники на основе системы Cu–Be [1]. Однако, бериллий является чрезвычайно токсичным и дорогим металлом. В свою очередь, магний — дешевый, нетоксичный и легкий металл. Причем, запасы магния практически не ограничены, поскольку его добывают, в том числе и из морской воды.

Добавка магния в медь приводит к существенному росту ее прочностных свойств. К примеру, в работе [2] показано, что по сравнению с чистой медью прочность сплава Cu-4.1 ат. % Мg выше почти в 5 раз. Это обусловлено твердорастворным упрочнением. При этом электропроводность сплавов Cu-Mg остается на достаточно высоком уровне, что позволяет использовать их в технике. К примеру, контактные провода из Cu-Mg-сплавов нашли применение в железнодорожном транспорте [3]. Недостатком таких проводов является невысокая коррозионная стойкость. композитов, в медной матрице которых находится разное количество магниевых волокон. Однако полученные композиты не продемонстрировали высоких прочностных свойств. Этого можно было ожидать, поскольку прочность магния приблизительно в 3 раза меньше прочности меди. Отжиги также не привели к упрочнению, поскольку на интерфейсах исследованных композитов формировались интерметаллидные фазы CuMg₂ и/или Cu₂Mg, соотношение которых зависело от температуры обработки. В то же время, очевидно, что медная оболочка Cu/Mg-композитов обеспечивает им более высокую коррозионную стойкость по сравнению со сплавами медь-магний. Как известно, сильное влияние на физико-меха-

Ранее, в работе [4] мы приступили к изучению

Как известно, сильное влияние на физико-механические свойства композитов оказывают процессы, происходящие на их интерфейсах: к примеру, формирование новых фаз [5] или образование пересыщенных твердых растворов [6]. В работах [6, 7] было показано, что объемная доля интерфейсов и реакции, протекающие на них в ходе термомеханических обработок, играют критически важную роль в формировании свойств композитов. Ранее в на-

Композит	Среднее содержание компонентов						
	объемная доля, %		массовые, %		атомные, %		
	Cu	Mg	Cu	Mg	Cu	Mg	
Cu/7Mg	91.4	8.6	98.2	1.8	95.3	4.7	
Cu/49Mg	98.4	1.6	99.7	0.3	99.2	0.8	

Таблица 1. Содержание компонентов в Си/Мд-композитах с 7 и 49 магниевыми волокнами

шей работе [4] были исследованы Cu/Mg-композиты с 1 и 7 магниевыми волокнами. Для выяснения влияния интерфейсов на физико-механические свойства Cu/Mg-композитов необходимо значительно увеличить в них количество Mg-волокон.

Целью данной работы является изучение структуры и свойств композита, в медной матрице которого находится 49 магниевых волокон.

2. МАТЕРИАЛ И МЕТОДИКА

Cu/Mg-композиты были получены методом гидроэкструзии. Количество магниевых волокон в медной матрице далее будет указываться в обозначении композита: к примеру, Cu/49Mg-композит. Содержание компонентов в этом композите приведено в табл. 1. Для сравнения в этой же таблице приводится содержание компонентов в композите с 7 Mg-волокнами.

Для получения композитов были взяты медные контейнеры диаметром 18 мм и высотой 50 мм, в которых просверливалось 7 отверстий Ø3 мм: 6 отверстий располагались на равных расстояниях друг от друга по окружности диаметром 10 мм и еще одно отверстие находилось в центре. Чтобы получить Cu/7Mg-композит, в каждое из этих отверстий вставлялся пруток из Cu/1Mg-композита. Для получения Cu/49Mg-композита в каждое из 7 отверстий Cu-контейнера вставлялся пруток из Cu/7Mg-композита. Более подробно технология формирования композитов и их микроструктуры описаны в работах [4, 8].

Медно-магниевые заготовки экструдировались при комнатной температуре через матрицу диаметром 10 мм. Затем процесс гидроэкструзии повторялся с использованием матриц диаметром 6 и 4 мм. Дальнейшая деформация прутков Ø4 мм проводилась методом волочения, в результате чего была получена проволока Ø1.5 мм (для механических испытаний) и тонкая проволока Ø0.25 мм (для резистометрии). Перед гидроэкструзией Сиконтейнер и прутки Cu/Mg-композитов отжигались при температуре 200°С в течение 3 ч. В ходе получения композитов промежуточные отжиги не использовались. В данной работе будут описаны структура и свойства композитов, находящихся в деформированном состоянии. Формула, использованная нами для расчета величины истинной деформации (*e*), приведена в работе [4].

Удельное электросопротивление образцов (р) измеряли стандартным четырехконтактным методом при постоянном токе 20 мА. Для повышения точности измерений при комнатной температуре использовали специальный кондуктор. В ходе исследования также строились зависимости электросопротивления от температуры при нагреве и охлаждении со скоростью 120 град/ч. Описание аппаратуры и другие методологические подробности приведены в [9].

Наноиндентирование проводилось на приборе Nanotest-600, оснащенном зондом Берковича (трехгранная пирамидка). Максимальная нагрузка составляла 2.05 мН, ее набор происходил за 20 с, продолжительность измерения: 10 с, время разгрузки также составляло 20 с. Проведено 10 сеансов измерений вдоль линий, пересекающих магниевые волокна; расстояние между уколами составляло 5 мкм.

Механические испытания на растяжение проводились на машине Instron 5982 при скорости растяжения 3 мм/мин; длина рабочей части проволочных образцов \emptyset 1.5 мм составляла 30 мм. Рентгеноструктурный анализ (РСА) выполнялся на дифрактометре DMAX 2200 фирмы Rigaku методом непрерывной съемки со скоростью 4°/мин. Си*К* α -излучение было монохроматизировано графитовым монокристаллом.

В работе также проводилась теоретическая оценка физико-механических свойств композитов с использованием известных моделей. Для вычисления предела текучести применялось "правило смесей" [10]. Этот метод оценки прочностных свойств основан на подсчете суммы вкладов каждого из компонентов композита пропорционально его объемной доле. Удельное электросопротивление композита рассчитывалось по формуле параллельно соединенных проводников из меди и магния, с учетом их объемных долей [11].

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

По результатам проведенных механических испытаний хорошо видно, что максимальные прочностные свойства имеет композит, содержащий 49 Мg-волокон (рис. 1). Для выполнения теорети-

Рис. 1. Диаграммы растяжения деформированных образцов различных Cu/Mg-композитов, а также меди и магния.

ческих расчетов прочностных свойств композита также были проведены испытания его компонентов: меди и магния. Надо отметить, что для обеспечения точности таких расчетов структурное состояние испытанных образцов должно быть таким же, как в композите [11]. Для удовлетворения этого условия медный пруток был подвергнут гидроэкструзии и волочению в полном соответствии с методикой получения образцов композитной проволоки для механических испытаний (см. выше). Магниевые образцы для механических ислытаний вынимались из разрезанного вдоль экструдированного прутка Cu/1Mg-композита диаметром 4 мм.

Предел текучести экструдированной меди составляет 350 МПа (см. рис. 1). В свою очередь, прочностные свойства деформированного магния значительно ниже: его предел текучести составляет 97 МПа. Используя эти данные, можно оценить теоретический предел текучести Cu/49Mg-композита как $\sigma_{0.2} = 346$ МПа, что немного ниже предела текучести чистой меди. Действительно, согласно "правилу смесей", теоретическая прочность композита не может превышать характеристики его наиболее прочного компонента. Однако экспериментальный предел текучести значительно

Рис. 2. Зависимость электросопротивления от деформации образца из магния марки МГ-90.

выше: $\sigma_{0.2} = 386$ МПа (табл. 2). В то же время, полученные расчетным путем прочностные свойства Cu/7Mg-композита практически совпадают с экспериментом.

Можно сделать вывод, что теоретическая оценка прочности достаточно хорошо подходит для Cu/7Mg-композита, но по какой-то причине перестает работать при ее использовании для Cu/49Mg-композита.

В табл. 2 также приведены значения электросопротивления деформированных образцов исследованных композитов и соответствующие теоретические оценки. Для выполнения этих расчетов необходимо знать электрические свойства деформированных меди и магния. Удельное электросопротивление меди в сильно деформированном состоянии было определено нами ранее [12]. Однако нам удалось найти единственную работу [13], в которой указано, что деформированный прокаткой магниевый лист имеет $\rho = 4.77 \times 10^{-8}$ Ом м. Никаких сведений о чистоте исследованного магния, степени его деформации и условий деформирования в работе [13] не приведено.

Ранее мы уже обращали внимание на то, что экструдированный в оболочке магний имеет повышенную пластичность [14]. Это позволило нам впервые построить зависимость электросопротивления магния от величины его деформации (рис. 2). Получено, что использованный нами технически

Таблица 2. Физико-механические свойства деформированных Cu/Mg-композитов и составляющих их металлов

	Удельное электросопрот	тивление ρ, 10 ⁻⁸ Ом м	Предел текучести $\sigma_{0.2}$, МПа		
	эксперимент	расчет	эксперимент	расчет	
Медь (Си)	1.83	_	350	_	
Магний (Mg)	4.83	—	97	_	
Cu/7Mg-композит	2.07	1.93	322	328	
Cu/49Mg-композит	1.88	1.85	386	346	

чистый магний марки МГ90 после деформации гидроэкструзией (e = 2.6) имеет $\rho = 4.83 \times 10^{-8}$ Ом м.

Таким образом, проведенные расчеты дают заниженные прочностные свойства Cu/49Mg-композита при хорошем соответстии электрических характеристик: расчетное значение удельного электросопротивления ($\rho = 1.85 \times 10^{-8}$ Ом м) практически совпадает с экспериментальным результатом ($\rho = 1.88 \times 10^{-8}$ Ом м).

Как известно, у каждого приближения есть свои ограничения. Согласно [10], расчет по "правилу смесей" может давать ошибку при наноразмерных толщинах слоев композита. Однако диаметр Mg-волокон в образцах для механических испытаний в обоих композитах значительно больше (табл. 3). Еще одной причиной отклонения расчетных оценок от экспериментальных значений может быть появление новой фазы на интерфейсах композита.

На рис. 3 представлены РСА-результаты, полученные с композитов, содержащих разное количество Мд-волокон. Интенсивность дифрактограммы 1 увеличена специально, чтобы на фоне сильных отражений от медной матрицы показать очень слабые пики от Mg-волокон в Cu/7Mgкомпозите.

На этой дифрактограмме также можно отметить отсутствие отражений (002) от базисных плоскостей магния. Это говорит о формировании острой радиальной текстуры в Mg-волокнах, что характерно для деформированных волочением ГПУ-металлов [15].

В свою очередь, содержание магния в прутке Cu/49Mg-композита настолько мало, что PCA-методом обнаруживаются отражения только от чистой меди (дифрактограмма 2 на рис. 3). При сравнении дифрактограмм, полученных с прутков Cu/7Mg- и Cu/49Mg-композитов, каких-либо особенностей не выявляется: на пиках нет заметных уширений, не зафиксировано их смещений по углам или возникновения "плечей".

Как было показано ранее, интенсивная пластическая деформация (ИПД) композитов может

Рис. 3. Дифрактограммы, полученные с поперечных сечений деформированных образцов: 1 – пруток Cu/7Mg-композита Ø6 мм (e = 2.2); 2 – пруток Cu/49Mg-композита Ø4 мм (e = 3.0); 3 – набор тонких проволок Ø0.5 мм Cu/7Mg-композита (e = 8.6).

привести к формированию на их интерфейсах неравновесных твердых растворов [6] или слоев из интерметаллидов [5]. Возникает интерес изучить влияние ИПД на структуру интерфейсов Cu/Mgкомпозитов. Для этого было решено деформировать композитные прутки до получения тонкой проволоки. Однако проведение РСА-исследования тонких проволок весьма затруднительно. Поэтому несколько сотен проволок Ø0.5 мм были объединены в пучок и зажаты в медной обойме. Поскольку содержание магния в Cu/49Mg-композите очень мало, тонкие проволоки для этого эксперимента изготавливались из Cu/7Mg-композита.

В отличие от дифрактограммы *1*, на дифрактограмме *3*, полученной с набора тонких проволок, отсутствуют отражения от магния, но наблюдается сдвиг пиков меди в сторону больших углов (рис. 3). Такой результат может свидетельствовать о том, что в процессе ИПД в медно-магниевом композите образуется твердый раствор на основе меди. Аналогичный результат был получен ранее в Cu/Nb-композитах: при получении тон-

Таблица 3. Диаметры магниевых волокон и объемные доли Cu/Mg-интерфейсов в различных образцах исследованных композитов

Композит	Пруток Ø4 мм		Проволока механически	Ø1.5 мм (для іх испытаний)	Проволока Ø0.25 мм (для резистометрии)	
	диаметр Мg-волокна, мм	объемная доля Cu/Mg- интерфейсов, мм ⁻¹	диаметр Мg-волокна, мм	объемная доля Cu/Mg- интерфейсов, мм ⁻¹	диаметр Мд-волокна, мм	объемная доля Cu/Mg- интерфейсов, мм ⁻¹
Cu/7Mg	0.44	0.77	0.17	2.12	0.028	12.53
Cu/49Mg	0.073	0.89	0.028	2.44	0.005	15.67

Рис. 4. Участок шлифа Cu/49Mg-композита со следами уколов от наноиндентора (а) и изменение микротвердости при пересечении границы раздела компонентов (б).

ких проволок происходит растворение ниобия в меди [6]. Однако в литературе нет свидетельств о том, что на интерфейсах Cu/Mg-композитов в ходе ИПД происходит образование твердых растворов.

Если предположить, что в процессе деформации через Cu/Mg-интерфейсы происходит активная диффузия меди в магний (и наоборот, магния в медь), то микротвердость компонентов композита должна возрастать вблизи границы раздела. Для проверки этого предположения было проведено наноиндентирование шлифа Cu/49Mg-композита (рис. 4а).

На рис. 4б показано, что микротвердость на границе раздела приблизительно в два раза превышает микротвердость медной матрицы. Этот эксперимент подтвердил формирование высокопрочного слоя на Cu/Mg-интерфейсах. Очевидно, что увеличение площади интерфейсов приведет к повышению прочностных свойств композита.

Рис. 5. Температурная зависимость удельного электросопротивления Cu/49Mg-композита при нагреве и охлаждении со скоростью 120 град/ч.

Выше неоднократно указывалось, что содержание магния в Cu/49Mg-композите очень мало. Однако, сведения об общем содержании компонентов в массовых или атомных процентах не имеют особого смысла при изучении композитов. В отличие от сплавов, основную роль в формировании свойств композита играют площади интерфейсов и реакции, происходящие на них [5-7]. Поэтому при рассмотрении композитов обычно используется "объемная доля интерфейсов" (т.е. отношение площади всех поверхностей раздела к объему образца) [6]. Для упрощения мы вычисляли объемную долю интерфейсов как отношение суммы периметров Мд-волокон к площади поперечного сечения образца. Результаты расчетов для композитных образцов трех различных диаметров приведены в табл. 3. Можно сделать вывод, что, несмотря на значительно меньшее содержание магния в Cu/49Mg-композите, объемная доля интерфейсов в нем больше по сравнению с образцом Cu/7Мg-композита такого же диаметра.

На рис. 5 приведена температурная зависимость электросопротивления деформированного образца Cu/49Mg-композита Ø0.25 мм при нагреве и охлаждении. Полученная зависимость имеет практически линейный вид, наблюдается лишь небольшое ускорение роста электросопротивления при нагреве в температурном интервале 600–730°С. Очевидно, что это вызвано реакциями, проходящими в композитной проволоке на Cu/Mgинтерфейсах.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В ходе исследования было обнаружено, что Cu/49Mg-композит с минимальной объемной долей магния имеет прочностные свойства, которые существенно превышают как результаты теоретических оценок, так и прочность чистой меди. Понимание природы упрочнения Cu/Mg-композитов представляет как научный, так и практический интерес.

Для объяснения полученных результатов нами было сделано предположение о деформационноиндуцированном образовании твердых Cu–Mgрастворов на интерфейсах композитов. О возможности протекания таких процессов в ходе ИПД медно-магниевой пары ранее не сообщалось. Однако проведенные нами эксперименты говорят в пользу выдвинутой гипотезы.

Действительно, смещение рентгеновских пиков меди в сторону больших углов свидетельствует об уменьшении параметра решетки (см. рис. 3). Поскольку через Cu/Mg-интерфейсы происходит одновременное движение атомов в двух направлениях, представляет интерес также проанализировать изменение параметра решетки магния в ходе ИПД композитов. Однако, сделать это затруднительно вследствие чрезвычайно малого содержания магния в наших образцах (см. дифрактограммы 2 и 3 на рис. 3).

Фактически, возможность протекания диффузии меди и магния через интерфейс в ходе ИПД мы проверили путем измерения микротвердости (см. рис. 4). Эти эксперименты подтвердили нашу гипотезу: микротвердость образца на границе раздела существенно превышает микротвердость компонентов композита. Как известно, твердые растворы магния в меди имеют повышенные прочностные свойства [2, 3].

Электросопротивление композитного образца зависит от вкладов его компонентов, новых фаз, возникших на интерфейсах в ходе изготовления композита, и взаимной толщины слоев [12]. Поэтому изменение электрических свойств Cu/49Mgкомпозита при нагреве и охлаждении представляет особый интерес для анализа.

Наблюдаемая на рис. 5 линейная зависимость электросопротивления при нагреве до 600°С характерна как для чистых металлов, так и для однофазных твердых растворов [16]. Прирост электросопротивления при дальнейшем нагреве могут обеспечить превращения в пересыщенных твердых растворах. Анализ температурной зависимости электросопротивления на рис. 5 упрощается тем, что в области температур 600–730°С на фазовой диаграмме системы Cu–Mg (см. рис. 1 в [4]) отмечены превращения только в сплавах с высоким содержанием меди.

Наибольший прирост электросопротивления на рис. 5 наблюдается при температуре ~730°С, т.е. вблизи эвтектической линии на фазовой диаграмме. Такое поведение характерно для пересыщенных твердых растворов Cu—Mg с содержанием магния выше 7 ат. %. Поскольку мы не наблюдали появления расплава в образцах при нагреве до 750°С, можно сделать вывод, что в исследованной Cu/49Mg-композитной проволоке содержание магния в сформировавшемся твердом растворе не превышает 20 ат. %.

С этой точки зрения также можно объяснить линейный вид зависимости электросопротивления при охлаждении Cu/49Mg-композита от 750°С: повышенная скорость диффузии в области высоких температур способствует дальнейшему растворению магния в Cu-матрице. В результате этих процессов в композитном образце формируется однофазный твердый раствор с малым содержанием магния, который не распадается при охлаждении.

Таким образом, все полученные в работе результаты хорошо объясняются формированием на интерфейсах исследованных композитов диффузионного Си-Мд-слоя. Образование неравновесных твердых растворов в ходе ИПД известно и обычно происходит при сильных деформационных воздействиях [17]. Как правило, такие процессы реализуются в экспериментах по деформации кручением под высоким давлением (КВД) [18] или при помоле порошков в шаровой мельнице [19]. Кроме того, установлено, что частицы железа растворяются в меди в ходе гидроэкструзии [20]. Показано [6], что в результате ИПД на интерфейсах тонких композитных проволок Си-Nb формируется пересыщенный твердый раствор ниобия в меди.

Уровень деформационных воздействий при формировании Cu/Mg-композитов в нашей работе сопоставим с деформацией методом КВД. К примеру, в проволоке Cu/49Mg-композита Ø0.25 мм, которая использовалась для резистометрии, диаметр Mg-волокон составляет 5 мкм. Поскольку исходная магниевая заготовка имела диаметр 12 мм, накопленная деформация в данном случае составляет: $e \approx 15.6$. Кроме того, вне зависимости от способа деформации (гидроэкструзия или волочение) в хвостовых частях наших композитных образцов всегда образовывался пустой медный рукав (который отрезался). Следовательно, при изготовлении медно-магниевых композитов происходят сильные сдвиги вдоль поверхностей раздела. Такое поведение материала обусловлено различием деформационных механизмов в меди с ГЦК-решеткой и в магнии с ГПУ-решеткой.

Зоны растворимости на равновесных фазовых диаграммах перечисленных выше систем Cu–Fe и Cu–Nb малы или практически отсутствуют. В свою очередь, в системе Cu–Mg имеются достаточно широкие области взаимной растворимости. Это повышает склонность системы к механическому сплавлению.

5. ЗАКЛЮЧЕНИЕ

Исследование показало, что при изготовлении Си/Мg-композитов на интерфейсах происходит деформационно-индуцированное перемешивание компонентов с формированием высокопрочных твердых растворов. Медная оболочка композита обеспечивает его низкое электросопротивление. Полученные в этой работе результаты могут быть использованы в дальнейшем при разработке высокопрочных проводников электрического тока с низкой стоимостью и повышенной коррозионной стойкостью.

Работа выполнена в рамках государственного задания по теме "Давление" № АААА-А18-118020190104-3 при частичной финансовой поддержке УрО РАН (проект № 18-10-2-24). Исследование механических свойств образцов проводилось с использованием приборного парка ОМИ ЦКП ИФМ УрО РАН. Рентгеноструктурный анализ выполнен на оборудовании ЦКП "Состав вещества" ИВТЭ УрО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Чжиган Ч., Цзюньвэй Л., Шицянь Л., Янни С., Юань М. Механизмы высокотемпературной деформации сплава Си–Ве в высокоупругом отожженном состоянии // ФММ. 2018. Т. 119. № 1. С. 73–80.
- Gorsse S., Ouvrard B., Goune M., Poulon-Quintin A. Microstructural design of new high conductivity – high strength Cu-based alloy // J. Alloys and Compounds. 2015. V. 633. P. 42–47.
- Maki K., Ito Y., Matsunaga H., Mori H. Solid-solution copper alloys with high strength and high electrical conductivity // Scripta Materialia. 2013. V. 68. P. 777–780.
- Волков А.Ю., Калонов А.А., Комкова Д.А., Глухов А.В. Структура и свойства Си/Мg-композитов, полученных методом гидроэкструзии // ФММ. 2018. Т. 119. № 10. С. 1002–1011.
- Koji Tanaka, Daiji Nishino, Kousei Hayashi, Shuki Ikeuchi, Ryota Kondo, Hiroyuki T. Takeshita. Formation of Mg₂Cu at low temperature in Mg/Cu super-laminate composites during initial hydrogenation // J. Hydrogen Energy. 2017. V. 42. P. 22502–22510.
- Liping Deng, Zhifeng Liu, Bingshu Wang, Ke Han, Hongliang Xiang. Effects of interface area density and solid solution on the microhardness of Cu–Nb microcomposite wires // Materials Characterization. 2019. V. 150. P. 62–66.
- Дерягина И.Л., Попова Е.Н., Валова-Захаревская Е.Г., Патраков Е.И. Структура и термическая стабильность высокопрочного нанокомпозита Cu–18Nb в

зависимости от степени деформации // ФММ. 2018. Т. 119. № 1. С. 99–108.

- 8. Волков А.Ю., Калонов А.А. Сравнение экспериментальных данных и расчетных оценок прочностных и электрических свойств Си/Мg-композитов с разным содержанием компонентов // Вектор науки ТГУ. 2018. Т. 44. № 2. С. 14–20.
- Volkov A. Yu., Novikova O.S., Antonov B.D. The kinetics of ordering in an equiatomic CuPd alloy: A resistometric study // J. Alloys Compounds. 2013. V. 581. P. 625–631.
- Feng B., Xin Y., Sun Z., Yu H., Wang J., Liu Q. On the rule of mixtures for bimetal composites // Materials Science and Engineering A. 2017. V. 704. P. 173–180.
- Wang P.P., Wang X.J., Du J.L., Ren F., Zhang Y., Zhan X., Fu E.G. The temperature and size effect on the electrical resistivity of Cu/V multilayer films // Acta Materialia. 2017. V. 126. P. 294–301.
- Волков А.Ю., Новикова О.С., Костина А.Е., Антонов Б.Д. Изменение электрических и механических свойств меди при легировании палладием // ФММ. 2016. Т. 117. № 9. С. 977–986.
- 13. Эйдензон М.А. Магний. М.: Металлургия, 1969. 352 с.
- 14. *Volkov A.Yu., Kliukin I.V.* Improving the mechanical properties of pure magnesium through cold hydrostatic extrusion and low-temperature annealing // Materials Science and Engineering A. 2015.V. 627. P. 56–60.
- Логинов Ю.Н., Котов В.В. Проявления анизотропии в процессе деформации альфа-сплавов титана / Учебное пособие под ред. Шимова В.В., Екатеринбург, УГТУ-УПИ, 2009. 188 с.
- Freudenberger J., Kauffmann A., Klaub H., Marr T., Nevkov K., Subramanya Sarma V., Schultz L. Studies on recrystallization of single-phase copper alloys by resistance measurements // Acta Materialia. 2010. V. 58. P. 2324–2329.
- Suryanarayana C. Mechanical alloying and milling // Progress in Mater.Sci. 200. V. 46. P. 1–184.
- Tolmachev T., Pilyugin V., Ancharov A., Patselov A., Chernshev E., Zolotarev K. On the structural features of mechanical alloyed Cu–Ag and Au–Co severe cold and cryogenic plastic deformation // Physics Procedia. 2016. V. 84. P. 349–354.
- Волкова Е.Г., Волков А.Ю., Антонов Б.Д. Структура интерметаллида Al₂Au, полученного методом механосинтеза // ФММ. 2018. Т. 119. № 7. С. 650–659.
- Wang F, Wakoh K., Li Y, Ito S., Yamanaka K., Koizumi Y., Chiba A. Study of microstructure evolution and properties of Cu–Fe microcomposites produced by a pre-alloyed powder method // Materials and Design. 2017. V. 126. P. 64–72.