ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ, 2020, том 121, № 8, с. 892-898

ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ

УДК 669.295'234'24:536.424.1

ВЛИЯНИЕ ОТЖИГА НА МЕХАНИЧЕСКИЕ И ТЕРМОМЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СПЛАВА Ті₅₀Pd₄₀Ni₁₀ С высокотемпературным Эффектом памяти формы, исследованные на заготовке в виде прутка

© 2020 г. Н. Н. Попов^{а,} *, Д. В. Пресняков^а, В. Ф. Ларькин^а, И. С. Рыжов^а, А. А. Костылева^а

^аФГУП "РФЯЦ-ВНИИЭФ", пр. Мира, 37, Саров, Нижегородская обл., 607188 Россия

*e-mail: NNPopov@vniief.ru Поступила в редакцию 19.09.2019 г. После доработки 21.01.2020 г. Принята к публикации 24.03.2020 г.

Проведены комплексные исследования свойств сплава $Ti_{50}Pd_{40}Ni_{10}$ (ат. %) с высокотемпературным эффектом памяти формы на образцах, изготовленных из прутка 5.86 мм, после различных режимов отжига и условий наведения деформации. Получены сведения о температурах фазовых превращений, механических и термомеханических характеристиках сплава. Диапазон фазовых превращений находится в интервале от $M_f = 360^{\circ}$ С до $A_f = 439^{\circ}$ С. Это приемлемые величины для создания требуемого устройства безопасности. Максимальные величины эффекта памяти формы и степени восстановления формы равны 2.4 и 43% соответственно. Этого недостаточно для создания работоспособного устройства безопасности. Таким образом, существенно увеличить термомеханические характеристики за счет выбора режимов отжига и условий наведения деформации не удалось. Более высокие значения термомеханических характеристик получены нами ранее на образцах, вырезанных из полосы толщиной 2.04 мм. Поэтому в дальнейшем изготовление рабочих элементов устройств безопасности, предназначенных для объектов атомной энергетики, будет производиться из полосы.

Ключевые слова: влияние отжига, условия наведения деформации, сплав Ti₅₀Pd₄₀Ni₁₀, высокотемпературный эффект памяти формы, пруток, дифференциальный термический анализ, механические характеристики, термомеханические характеристики

DOI: 10.31857/S0015323020080070

ВВЕДЕНИЕ

Ранее мы выбрали сплав $Ti_{50}Pd_{40}Ni_{10}$ (ат. %) с высокотемпературным эффектом памяти формы для изготовления термочувствительных элементов устройства безопасности, предназначенного для реакторных установок на быстрых нейтронах.

В работе [1] мы изучили свойства данного сплава в исходном состоянии, на образцах, изготовленных из полосы толщиной 2.04 мм, а в [2] — на образцах из прутка диаметром 5.86 мм. Однако для прутка было получено, что максимальные величины эффекта памяти формы и степени восстановления формы равны 1.5 и 21% соответственно. Этого недостаточно для создания работоспособного устройства безопасности. Увеличение этих характеристик было намечено провести за счет выбора оптимальных режимов термообработки и режимов наведения деформации исследуемым объектам. Результаты этих исследований приведены в данной работе.

МАТЕРИАЛЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

Исследования проводили на сплаве состава 33.1Ti-58.8Pd-8.1Ni, мас. доля по шихте, %, или Ti₅₀Pd₄₀Ni₁₀ (ат. %) поставленном в виде прутка, маркированного изготовителем обозначением *L*. Пруток после изготовления был отожжен в вакууме при температуре 850°C в течение 1 ч в вакуумной печи сопротивления СШВЭ-1.2,5/25И4.

Исследование элементного и локального фазового состава проводили на сканирующем автоэмиссионном электронном микроскопе MIRA LMU, укомплектованном аналитической приставкой INCA с детектором X-MAX, методом электронно-зондового микрорентгеноспектрального анализа (EPMA).

Для измерения температур мартенситных превращений (МП) и температуры плавления сплава использовали термоанализатор "SETARAM" (Франция) в режиме дифференциально-термического анализа (ДТА) на образцах в виде параллелепипеда с размерами 2 × 2 × 4 мм. Механические свойства сплава исследовали на образцах цилиндрической формы с резьбовыми головками М4, общей длиной 26 мм, длиной и диаметром рабочей части 13 и 2 мм соответственно, на универсальной испытательной машине UTS-100K (Германия). Наведение деформации для определения термомеханических характеристик осуществляли на этой же машине с помощью специально разработанного приспособления. Нагрев образцов производили с использованием вертикальной раздвижной трубчатой печи VST 12/200. Исследование термомеханических характеристик (ТМХ) при проявлении эффекта памяти формы (ЭПФ) проводили с помощью разработанного стенда. Более подробно методики исследований описаны в [1, 3].

Термическую обработку (ТО) образцов сплава Ti₅₀Pd₄₀Ni₁₀ выполняли по следующим режимам:

 – отжиг при 400°С в течение 1 ч, охлаждение с печью (ТО № 1);

 – отжиг при 600°С в течение 1 ч, охлаждение с печью (ТО № 2);

 – отжиг при 850°С в течение 1 ч, охлаждение с печью (ТО № 3);

– отжиг в вакууме при 850° С в течение 1 ч, охлаждение с печью (ТО № 4).

Отжиг образцов по режимам ТО №№ 1–3 проводили в лабораторной печи сопротивления А07-Р722.01.010, а отжиг по режиму ТО № 4 в шахтной вакуумной печи СШВ 1.2,5/25И1.

Статистическую обработку значений полученных характеристик проводили на персональном компьютере с помощью универсального программного статистического пакета STADIA и критериев, приведенных в [4–6].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

1. Исследование элементного и локального фазового состава. Результаты исследований концентрации элементов приведены в табл. 1. Установлено, что основная матрица сплава Ti₅₀Pd₄₀Ni₁₀ (ат. %) после различных видов и режимов термообработки имеет одинаковый состав и образована твердым раствором элементов Ti, Pd, Ni. В матрице сплава после отжига по режимам ТО № 1, ТО № 2 и ТО № 3 расположены включения микронного и субмикронного размера, представляющие собой нитрид титана TiN_{0.6} и соединения элементов Ti, Pd, Ni, O (вероятно, оксиды) с различным атомным соотношением элементов в них. После отжига по режиму ТО № 4 вблизи поверхности образца расположены включения в виде оксида TiO₂. В режиме вторичных электронов (топографический контраст) в структуре сплава обнаружены поры размером до нескольких микрон. Подобные явления в образцах, вырезанных из полосы и исследованных нами ранее, отсутствовали. Поэтому можно предположить, что характеристики пластичности, и как следствие, величина эффекта памяти формы у образцов, изготовленных из прутка, будет ниже, чем у образцов, изготовленных из полосы.

2. Определение температур фазовых превращений сплава $Ti_{50}Pd_{40}Ni_{10}$ методом дифференциального термического анализа. Исследуемый образец сплава сначала нагревался со скоростью 20°С/мин от температуры окружающей среды, равной 20– 25°С, до 800°С, а затем охлаждался со скоростью 10°С/мин от 800°С до температуры 75–85°С.

Полученные термограммы мартенситно-аустенитных фазовых превращений в сплаве $Ti_{50}Pd_{40}Ni_{10}$, ат. % подобны термограммам, полученным нами для полосы [1]. По термограммам определяли температуру начала A_s и окончания A_f МП, протекающего в сплаве при нагревании. Аналогичным образом находили температуры начала M_s и окончания M_f прямого МП, протекающего в сплаве при охлаждении [1].

Значения температур МП A_s , A_f , M_s , M_f , их интервалов $|A_s - A_f|$ и $|M_s - M_f|$, гистерезиса температур фазового превращения ($A_s - M_f$) в образцах сплава в исходном состоянии и после отжига по различным режимам, а также результаты их статистической обработки с учетом инструментальной погрешности (±0.5)°С представлены в табл. 2. Анализ табл. 2 показывает различие между собой соответствующих значений температур фазовых превращений $A_{\rm s}$, $A_{\rm f}$ (до 12.0°С) и $M_{\rm s}$, $M_{\rm f}$ (до 20.5°С), интервалов температур $|A_{\rm s} - A_{\rm f}|$ (до 7.5°С) и $|M_{\rm s}-M_{\rm f}|$ (до 16.5°С) и гистерезиса ($A_{\rm s}-M_{\rm f}$) (до 13.0°С) в сплаве Ti₅₀Pd₄₀Ni₁₀ (ат. %) в исходном состоянии (средние значения) и после различных режимов отжига, хотя это сравнение нельзя подтвердить статистическим анализом из-за единичных значений температур, определенных в сплаве после ТО. Можно также отметить, что для данного сплава в исходном состоянии и после различных режимов ТО обратное МП при нагревании и прямое МП при охлаждении осуществляются в достаточно узких интервалах температур $|A_s - A_f|$ (не более 36.0°С) и $|M_s - M_f|$ (не более 31.0°С), соответственно; гистерезис температур фазового превращения ($A_s - M_f$) небольшой (не более 45.5°C).

3. Исследование механических свойств. Испытания на растяжение проводили на машине UTS-100K с использованием приспособления Л351 в диапазоне температур от 23°C до 380°C со скоростью деформации $\dot{\epsilon} \approx 1.2 \times 10^{-3} \, c^{-1}$.

В результате механических испытаний получали диаграммы растяжения в координатах "напряжение σ -деформация ε ". По данным диаграммам определяли фазовый предел текучести σ_{ϕ} , предел

	Концентрации элементов							
Параметры статистической обработки		мас. %		ат. %				
oopuoonini	Ti	Pd	Ni	Ti	Pd	Ni		
	И	Ісходное сост	ояние			1		
Приведенное среднее значение	32.9	59.2	7.9	49.8	40.5	9.7		
СКО	0.12	0.13	0.10	0.13	0.12	0.12		
$K_{\mathrm{Bap}}, \%$	0.4	0.2	1	0.3	0.3	1		
n	25	25	25	25	25	25		
ТО	№ 1 (отжиг п	ри 400°С 1 ч,	охлаждение	с печью)		1		
Среднее значение	33.2	58.8	8.1	50.1	39.95	9.95		
Приведенное среднее значение	33.2	58.7	8.1	50.0	40.0	10.0		
СКО	0.15	0.14	0.08	0.15	0.14	0.10		
$K_{ m Bap}, \%$	0.5	0.2	1	0.3	0.4	1		
n	24	24	24	24	24	24		
ТО	№ 2 (отжиг п	ри 600°С 1 ч,	охлаждение	с печью)		1		
Среднее значение	33.2	58.9	7.9	50.1	40.1	9.8		
СКО	0.16	0.14	0.11	0.25	0.17	0.14		
<i>К</i> _{вар} , %	0.5	0.2	1	0.5	0.4	1		
n	24	24	24	24	24	24		
TO № 4 (отжиг в ваку	уме при 850° 0	С 1 ч, охлаждо	ение с печью)	1		
Среднее значение	33.9	58.1	8.0	50.9	39.3	9.8		
СКО	0.11	0.10	0.09	0.14	0.09	0.11		
<i>К</i> _{вар} , %	0.3	0.2	1	0.3	0.2	1		
n	23	23	23	23	23	23		

Таблица 1. Результаты статистической обработки значений концентраций элементов, полученных в различных участках поверхности образцов сплава $Ti_{50}Pd_{40}Ni_{10}$ (ат. %), в исходном состоянии и после различных режимов термообработки

Таблица 2. Значения определенных методом ДТА на термоанализаторе "SETARAM" температур фазовых превращений в образцах сплава Ti₅₀Pd₄₀Ni₁₀, ат. % в исходном состоянии и после различных режимов отжига

Термо-обработка	Масса образца,	Обратное МП (при нагревании сплава)			Прямое МП (при охлаждении сплава)			Гистерезис $A - M_{\rm c}$ °С
	МΓ	$A_{\rm s}$, °C	$A_{\rm f}$, °C	$ A_{\rm s}-A_{\rm f} , ^{\circ}{\rm C}$	$M_{\rm s}, {}^{\circ}{\rm C}$	$M_{\rm f}, ^{\circ}{ m C}$	$ M_{\rm s}-M_{\rm f} , ^{\circ}\mathrm{C}$	$m_{\rm s}$ $m_{\rm f}$, C
Исходное состояние (средние значения)	-	397.5	433.5	36.0	386.0	363.5	23.0	35.5
TO № 1	207.4	409.5	439.0	29.5	395.0	364.0	31.0	45.5
TO № 2	209.2	398.0	429.0	31.0	395.0	365.5	29.5	32.5
TO № 4	209.4	399.5	428.0	28.5	374.5	360.0	14.5	39.5

прочности о_в, максимальную деформацию образца

перед разрывом (под нагрузкой) ε_{o}^{max} , соответствующую напряжению предела прочности. Относительное остаточное удлинение δ_{oct} определяли при комнатной температуре. Предел текучести σ_{T} , обусловленный дислокационным пластическим течением, определить не удалось в связи с отсутствием на диаграммах второго участка упругого деформирования. Типичные диаграммы растяжения приведены на рис. 1.

Значения основных механических характеристик, округленные с учетом инструментальных погрешностей, представлены в табл. 3. Выявлено (см. табл. 3), что в исходном состоянии получены максимальные значения предела прочности $\sigma_{\rm B} = 1010$ МПа при температуре испытания $T_{\rm исп} = 23^{\circ}$ С и относительного удлинения $\delta_{\rm ост} = 6\%$ при $T_{\rm исп} = 170-175^{\circ}$ С. Варьирование температурами отжига и испытания образцов привело только к уменьшению (в ряде случаев – к резкому) $\sigma_{\rm B}$ и $\delta_{\rm ост}$. Исключение составили испытания образца после вакуумного отжига при 850°С и предварительно нагретого до температуры 450°С, а затем охлажденного до $T_{\rm исn} = 170-175^{\circ}$ С. При этих условиях получено значение $\delta_{\rm ост} = 6\%$.

Отметим, что по результатам дюраметрических исследований установлено, что наименьшую микротвердость сплав имеет после отжига по режиму ТО № 4 и, следовательно, можно было ожидать, что при этом режиме будет наибольшая δ_{oct} . Этот факт мы и зарегистрировали после испытаний на растяжение.

4. Исследование термомеханических свойств. На испытательной машине UTS-100K образцам сплава Ti₅₀Pd₄₀Ni₁₀, ат. % после различных режимов отжига наводили деформацию растяжением при различных температурах T_{Π} и при различных величинах общей наводимой деформации ε_o со скоростью деформации $\dot{\epsilon} \approx 1.2 \times 10^{-3} \text{ c}^{-1}$. Нагрев образцов проводили со скоростью 7°С/мин. По полученным диаграммам определяли величину наведенной растяжением деформации ε_{p} (остаточной деформации после разгрузки). После наведения деформации образцы сплава поочередно устанавливали в термокамеру стенда Р1288 для определения термомеханических характеристик. Затем проводили нагрев образцов от $T = 23^{\circ}$ С до $T \sim 500^{\circ}$ С (соответствующей ожиданию стабильного окончания проявления ЭПФ) со средним тем-

Рис. 1. Диаграммы растяжения в координатах (σ – ϵ) образцов сплава $Ti_{50}Pd_{40}Ni_{10}$, ат. % после ТО № 1 (*1*) и ТО № 3 (*2*), полученные по результатам испытаний при температуре 325°С со скоростью деформации $\dot{\epsilon} \approx 1.2 \times 10^{-3} c^{-1}$.

пом нагрева 10°С/мин. При нагреве образцы укорачивались — наблюдалось проявление ЭПФ. При охлаждении проявление эффекта обратимой памяти формы не обнаружено. По полученным диаграммам формовосстановления образцов определяли характеристические температуры $A_{s\,_{3}\Pi\Phi}^{H}$, $A_{f\,_{3}\Pi\Phi}^{K}$ соответственно, на начальной и конечной стадиях всего этапа формовосстановления при проявлении ЭПФ (характеризуют весь диапазон формовосстановления). Методом касательных определяли характеристические температуры $A_{s\,_{3}\Pi\Phi}$, $A_{f\,_{3}\Pi\Phi}$, (характеризуют основное формовосстановление внутри

Температура испытаний, °С	№ образца	Термообработка	σ _ф , МПа	σ _в , МПа	ϵ_{o}^{max} , %	δ _{οςτ} , %
23	1	Исходное состояние	380	1010	11.0	5
	2	TO № 1	470	830	8.0	3
	3	TO № 3	380	790	7.5	2
170-175	1	Исходное состояние	390	920	13.5	6
	2	TO № 1	500	830	10.5	4
	3	TO № 3	380	710	10.5	5
325	1	TO № 1	460	760	9.5	3
	2	TO № 3	380	710	8.0	4
375-380	1	TO № 4	290	610	8.0	5
Нагрев до 450 и охлаждение до 380-370	2		210	550	7.5	5
Нагрев до 450 и охлаждение до 170-175	3		310	800	8.5	6

Таблица 3. Основные механические характеристики, полученные при испытании на растяжение со скоростью деформации $\dot{\epsilon} \approx 1.2 \times 10^{-3} \, c^{-1}$ при различных температурах, образцов сплава $Ti_{50}Pd_{40}Ni_{10}$, ат. % в исходном состоянии и после различных режимов отжига

Рис. 2. Диаграммы формовосстановления образцов сплава Ti₅₀Pd₄₀Ni₁₀, ат. % в исходном состоянии и после различных режимов отжига, полученные при нагреве до *T* = 445–480°С (стабильного окончания проявления ЭПФ) после предварительно наведенной деформации растяжением при различных *T*_Д и ε_0 со скоростью $\dot{\epsilon} \approx 1.2 \times 10^{-3} \text{ c}^{-1}$: *I* – исходное состояние, *T*_Д = 23°С, $\varepsilon_0 = 9\%$; *2* – исходное состояние, *T*_Д = 170–175°С, $\varepsilon_0 = 11\%$; *3* – ТО № 1, *T*_Д = 23°С, $\varepsilon_0 = 8\%$; *4* – ТО № 1, *T*_Д = 170–175°С, $\varepsilon_0 = 9\%$; *5* – ТО № 3, *T*_Д = 170–175°С, $\varepsilon_0 = 9\%$; *6* – ТО № 4, *T*_Д = 380–370°С, $\varepsilon_0 = 7.5\%$.

диапазона температур $A_{s_{9\Pi\Phi}}^{H}$, $A_{f_{9\Pi\Phi}}^{K}$). Затем рассчитывали температурные интервалы $|A_{s_{9\Pi\Phi}}^{H} - A_{f_{9\Pi\Phi}}^{K}|$, $|A_{s_{9\Pi\Phi}} - A_{f_{9\Pi\Phi}}|$. По диаграммам также определяли величину термически обратимой деформации $\varepsilon_{9\Pi\Phi}$ при проявлении ЭПФ и степень восстановления формы $\eta_{9\Pi\Phi}$ [7]. Диаграммы формовосстановления в координатах "температура *T*-деформация ε " образцов сплава в исходном состоянии и после различных режимов отжига и условий наведения деформации, полученные по результатам исследований на стенде P1288, представлены на рис. 2.

Значения основных ТМХ, полученные при проявлении ЭПФ в исследуемых образцах и округленные с учетом инструментальных погрешностей для характеристических температур – $(\pm 1)^{\circ}$ С, для величин ε_{p} , $\varepsilon_{\exists\Pi\Phi} - (\pm 0.1)\%$, для степени $\eta_{\exists\Pi\Phi} - (\pm 1)\%$, приведены в табл. 4.

В результате проведенных экспериментов установлено (см. табл. 4), что при нагреве до $T = 480^{\circ}$ С (стабильного окончания проявлении ЭПФ) после предварительно наведенной деформации растяжением при различных температурах $T_{\rm II}$ и величинах общей наводимой деформации ε_0 со скоростью $\dot{\epsilon} \approx 1.2 \times 10^{-3} \text{ c}^{-1}$ для образцов сплава Ti₅₀Pd₄₀Ni₁₀ (ат. %) максимальные (но все равно не очень большие) значения характеристик памяти формы $\epsilon_{ЭП\Phi} = 2.4\%$, $\eta_{ЭП\Phi} = 43\%$ получены после ТО № 3 (что в 1.6-2.2 раза превышает эти характеристики в исходном состоянии и после ТО № 1 после предварительной деформации растяжением при $T_{\rm d} = 23^{\circ}{\rm C}$ и (170–175)°C); при этом температуры обратного МП, характеризующие основное формовосстановление, составляют $A_{s \ni \Pi \Phi} = 414^{\circ}C, A_{f \ni \Pi \Phi} =$ = 422°C, и это превращение происходит в узком интервале температур $|A_{s \ni \Pi \Phi} - A_{f \ni \Pi \Phi}| = 8^{\circ} C.$ Для образцов, подвергнутых вакуумному отжигу по режиму ТО № 4, после предварительно наведенной деформации растяжением при температуре T_{Π} = = 380-370°С (после нагрева до 450°С) со скоростью $\dot{\epsilon} \approx 1.2 \times 10^{-3} \text{ c}^{-1}$ при величине $\epsilon_{o} = 7.5\%$ получены также не очень большие значения $\epsilon_{\Pi \Phi} = 2.0\%, \eta_{\Pi \Phi} = 38\%;$ при этом температуры обратного МП составляют $A_{s \ \exists \Pi \Phi} = 408^{\circ}C, A_{f \ \exists \Pi \Phi} =$ = 423°C, и это превращение также происходит в узком интервале температур $|A_{s \ni \Pi \Phi} - A_{f \ni \Pi \Phi}| = 15^{\circ}$ C. Необходимо отметить, что по причине дороговизны и, следовательно, ограниченного количества материала для определения ТМХ при каждом режиме ТО и условии наведения деформации (T_{II} и ε_0) использовали только по одному образцу. Сравнивая значения температур начала и конца

обратного МП ($A_{s \ni \Pi \Phi}^{H}$, $A_{f \ni \Pi \Phi}^{K}$), полученные деформационным методом [7] (см. табл. 4), со значениями температур (A_s , A_f), полученными мето-

дом ДТА (см. табл. 2), отметим, что $A_{s \ni \Pi \Phi}^{H}$, $A_{f \ni \Pi \Phi}^{K}$ увеличены чуть более, чем на 5%. При сравнении четырех температур МП, полученных ранее в [8, 9] для сплава $Ti_{50}Pd_{40}Ni_{10}$ методом дифференциальной сканирующей калориметрии (ДСК), и результатов, полученных нами методом ДТА (см. табл. 2), отмечено, что отличие не превышает 7%. Это неожиданно, поскольку технологии получения заготовок, способы термообработки, методы определения температур отличались. При этом заготовка в нашем случае была в виде прутка, а в [8] — в виде листа толщиной 1 мм. Также хорошее совпадение наблюдается при сравнении температур превращения сплава $Ti_{50}Pd_{40}Ni_{10}$, полученных нами, с данными, приведенными в [10].

В заключение можно отметить, что за счет варьирования температур отжига и условий наведения деформации образцам, вырезанным из прутка сплава $Ti_{50}Pd_{40}Ni_{10}$, удалось увеличить в 1.6 раза $\epsilon_{\Im\Pi\Phi}$ и в 2 раза $\eta_{\Im\Pi\Phi}$ по сравнению с данными, полученными для прутка в исходном состоянии [2]. Вместе с тем отметим, что максимальные значения величин $\epsilon_{\Im\Pi\Phi} = 2.4\%$, $\eta_{\Im\Pi\Phi} = 43\%$, полученные на-

ВЛИЯНИЕ ОТЖИГА

Таблица 4. Термомеханические характеристики образцов сплава $Ti_{50}Pd_{40}Ni_{10}$, ат. % в исходном состоянии и после различных режимов отжига, полученные при нагреве до $T = 445 - 480^{\circ}C$ (стабильного окончания проявления ЭПФ) после предварительно наведенной деформации растяжением при различных $T_{Д}$ и ε_{0} со скоростью $\dot{\epsilon} \approx 1.2 \times 10^{-3} c^{-1}$

	Температура наведения деформации, °С							
Термомеханические характеристики	Исходное состояние		TO № 1		TO № 3	TO № 4		
	23	170-175	23	170-175	170-175	380—370 (после нагрева до 450°С)		
ε ₀ , %	9	11	8	9	9	7.5		
$\varepsilon_{\rm p},\%$	5.4	7.3	4.2	6.0	5.6	5.3		
$A_{\rm s \Im \Pi \Phi}^{\rm H}, ^{\circ} {\rm C}$	408	411	417	428	405	400		
A _{s ЭΠΦ} , °C	412	418	421	430	414	408		
$A_{f \ni \Pi \Phi}, ^{\circ}C$	436	432	436	451	422	423		
$A_{f \Im \Pi \Phi}^{\kappa}, {}^{\circ}C$	457	443	448	467	436	430		
Интервал	49	32	31	39	31	30		
$ A_{s \ni \Pi \Phi}^{H} - A_{f \ni \Pi \Phi}^{K} , ^{\circ}C$								
Интервал $ A_{s \ \Im \Pi \Phi} - A_{f \ \Im \Pi \Phi} $, °C	24	14	15	21	8	15		
$\epsilon_{\Im\Pi\Phi},\%$	1.1	1.5	1.3	1.4	2.4	2.0		
η _{ЭПΦ} , %	20	21	31	23	43	38		

ми в данной работе, недостаточны для создания работоспособного устройства безопасности.

Однако результаты, полученные на образцах, изготовленных из полосы в исходном состоянии [1], имеют приемлемые значения ($\varepsilon_{\Theta\Pi\Phi} = 3.9\%$, $\eta_{\Theta\Pi\Phi} = 49\%$) и будут использованы нами для создания устройств безопасности применительно к объектам атомной энергетики. Более низкие значения характеристик механических и термомеханических свойств, полученные для заготовки в виде прутка, связаны, видимо с несовершенной (по сравнению с полосой) технологией изготовления прутка.

выводы

1. Проведены комплексные исследования свойств сплава $Ti_{50}Pd_{40}Ni_{10}$ с высокотемпературным эффектом памяти формы на образцах, изготовленных из прутка диаметром 5.86 мм, после различных режимов отжига и условий наведения деформации. Получены сведения о температурах фазовых превращений, механических и термомеханических характеристиках сплава.

2. Диапазон фазовых превращений находится в интервале от $M_{\rm f}$ = 360°C до $A_{\rm f}$ = 439°C. Это приемлемые величины для создания требуемого устройства безопасности.

3. Максимальные величины $\epsilon_{\Theta\Pi\Phi}$ и $\eta_{\Theta\Pi\Phi}$ равны 2.4 и 43% соответственно. Этого недостаточно для создания работоспособного устройства безопасности. Таким образом, попытки существенно увеличить эти характеристики за счет выбора режимов отжига и условий наведения деформации не привели к желаемому результату.

4. Более высокие значения термомеханических характеристик получены нами ранее на образцах, вырезанных из полосы толщиной 2.04 мм. По-видимому, технология изготовления прутка менее совершенна, чем полосы.

Поэтому в дальнейшем изготовление рабочих элементов устройств безопасности, предназначенных для объектов атомной энергетики, будет производиться из полосы.

СПИСОК ЛИТЕРАТУРЫ

- Попов Н.Н., Ларькин В.Ф., Пресняков Д.В., Гришин Е.Н., Сысоева Т.И., Морозова Т.А., Потемкин Г.А., Костылева А.А. Исследование свойств сплава 50Ti-40Pd-10Ni с высокотемпературным эффектом памяти формы // ФММ. 2018. Т. 119. № 3. С. 303-316.
- Попов Н.Н., Пресняков Д.В., Ларькин В.Ф., Суворова Е.Б., Костылева А.А. Механические и термомеханические свойства сплава Ti₅₀Pd₄₀Ni₁₀, ат. % с высокотемпературным эффектом памяти формы,

исследованные на заготовке в виде прутка в отожженном состоянии // Φ MM. 2019. Т. 120. № 10. С. 1096–1100.

- 3. Попов Н.Н., Пресняков Д.В., Гришин Е.Н., Сысоева Т.И., Морозова Т.А., Костылева А.А. Исследование свойств высокотемпературного сплава с памятью формы 49Ni-36Ti-15Hf в литом состоянии // Металлы. 2019. № 2. С. 43-53.
- Кулаичев А.П. Универсальный программный статистический пакет STADIA (версия 7.0) для Windows. М.: НПО "Информатика и компьютеры", 2007.
- Кулаичев А.П. Методы и средства комплексного анализа данных. М.: Форум: Инфра-М, 2006. 512 с.
- 6. Степнов М.Н. Статистические методы обработки результатов механических испытаний. М: Машиностроение, 1985. 232 с.

- 7. Попов Н.Н. Способ определения термомеханических характеристик материалов с памятью формы. Патент РФ № 2478928, МПК G 01N 3/18. Опубл. 10.04.2013.
- Golberg D., Xu Y., Murakami Y., Otsuka K., Ueki T., Horikawa H. High-temperature shape memory effect in Ti₅₀Pd_{50 - x}Ni_x (x = 10, 15, 20) alloys // Mater. Letters. 1995. V. 22. P. 241–246.
- Kumar P., Lagoudas D.C. Experimental and microstructural characterization of simultaneous creep, plasticity and phase transformation in Ti₅₀Pd₄₀Ni₁₀ hightemperature shape memory alloy // Acta Mater. 2010. V. 58. P. 1618–1628.
- Сплавы никелида титана с памятью формы. Ч. І. Структура, фазовые превращения и свойства. Под науч. ред. В.Г. Пушина. Екатеринбург: УрО РАН, 2006. С. 96–112.