ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ, 2021, том 122, № 1, с. 31–37

СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ

УДК 539.219.3

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ МЕЖФАЗНОЙ ГРАНИЦЫ В ГЕТЕРОГЕННЫХ БИНАРНЫХ СПЛАВАХ НА ОСНОВЕ ГИПОТЕЗЫ СЛАБОЙ НЕЛОКАЛЬНОСТИ

© 2021 г. В. Л. Гапонцев^{*a*}, *, А. В. Гапонцев^{*b*}, В. В. Гапонцев^{*c*}, В. В. Кондратьев^{*c*}

^аУральский федеральный университет им. Б.Н. Ельцина, ул. Мира, 19, Екатеринбург, 620002 Россия ^bAO "СКБ ПН", ООО "3Д-Технологии.Ру", Большой Сампсониевский пр., 60 лит. Щ, Санкт-Петербург, 194044 Россия ^cИнститут физики металлов УрО РАН, ул. С. Ковалевской, 18, Екатеринбург, 620108 Россия *e-mail: vlgap@mail.ru Поступила в редакцию 20.07.2020 г. После доработки 18.08.2020 г. Принята к публикации 03.09.2020 г.

На основе предложенной нами ранее гипотезы слабой нелокальности разработана методика расчета температурных зависимостей ширины и удельной энергии межфазной границы для бинарных сплавов замещения, использующая концентрационную зависимость внутренней энергии или равновесную фазовую диаграмму сплава. Приведены результаты численных расчетов температурных зависимостей пределов растворимости, удельной энергии и толщины межфазной границы для трех термодинамических моделей: модели регулярного раствора (сплав Nb–Cu), модели квазирегулярного раствора, и общего случая (сплав Fe–Cu и сплав A–B, отличающийся от Fe–Cu знаком избыточной энтропии).

Ключевые слова: термодинамика неоднородных систем, сплавы замещения, гипотеза слабой нелокальности, фазовое равновесие, удельная энергия и толщина межфазной границы **DOI:** 10.31857/S0015323021010046

ВВЕДЕНИЕ

Расчеты равновесных характеристик межфазных границ в сплавах проводятся на основе строгих статистических подходов [1-4] и методов атомного моделирования [5–7], а также в рамках термодинамического описания [8–13]. Две первые группы подходов, в принципе, могут дать детальное описание сплавов, однако они достаточно трудоемки и имеют особенности, затрудняющие их применение в конкретных случаях. Хорошей альтернативой им может служить термодинамический метод, достоинством которого является относительная простота и универсальность, что позволяет получить искомые параметры для широкого круга сплавов. В этом случае оказался весьма продуктивным подход, основанный на применении градиентных разложений свободной энергии [9, 11–13], или внутренней энергии [8]. Однако, как отмечалось в [10], при этом остается неизвестной зависимость коэффициентов градиентного разложения от состава сплава и температуры [9, 13].

Недавно нами был предложен новый способ разложений, подобных градиентным, который был применен для нахождения бинодали при различных вариантах термодинамической модели твердого раствора [14]. В его основе лежит гипотеза слабой нелокальности [15], обобщающая гипотезу локального равновесия на неоднородные многофазные системы. В рамках гипотезы слабой нелокальности была также проведена интерпретация экспериментальных данных [16—18] по распаду межфазной границы при механосплавлении смесей порошков чистых металлов.

Применение гипотезы слабой нелокальности позволило получить уравнение для равновесного распределения компонента *А* вблизи плоской межфазной границы [14], которое имеет вид

$$\Lambda^2 \frac{d\mu_{XS}(C_A)}{dC_A} \frac{d^2 C_A}{dx^2} + \frac{dF}{dC_A} = \mu_e, \qquad (1)$$

где $dF/dC_A|_{T,p} = \mu_{id}(C_A) + \mu_{XS}(C_A) = \mu(C_A)$. Вели-

чины μ_{id} , μ_{XS} и μ определены как разности химических потенциалов компонентов бинарного сплава замещения, для идеального раствора, избыточной части химического потенциала и полного химического потенциала компонентов, соответственно. Величина Λ — это единственный структурный параметр теории, значение которого мы примем равным трем межатомным рассто-

яниям, т.е. $\Lambda \sim 1$ нм. В этой работе мы будем использовать величину $F(C_A)$ – энергию одного моля сплава, а не объемную плотность свободной энергии $f(C_A)$, как в [14]. Их связывает соотношение $f(C_A) = n_0 F(C_A)$, где $n_0 = N_0/N_A$, N_0 – число узлов решетки в единице объема и N_A – число Авогадро. Для бинарных сплавов параметры концентрационной зависимости $F(C_A)$ приведены в [19]. Они подобраны на базе реконструкции равновесной фазовой диаграммы сплава. Характерный вид этой зависимости по данным [19]

$$F = F_{id} + F_{XS} = RT \left(C_A \ln C_A + C_B \ln C_B \right) + C_A C_B \left[\left(b_A^f C_A + b_B^f C_B \right) - T \left(b_A^s C_A + b_B^s C_B \right) \right].$$
(2)

Если $d\mu_{XS}/dC_A$ не обращается в нуль, то уравнение (1) можно поделить на эту величину и проинтегрировать. Для определения равновесного распределения состава в области интерфейса получим уравнение

$$\frac{1}{2}\Lambda^2 \left(\frac{dC_A}{dx}\right)^2 + U(C_A) = E,$$
(3)

где потенциальная функция определена выражением, приведенным в [14],

$$U(C_A) = \int \frac{\mu(C_A) - \mu_e}{(d\mu_{XS}/dC_A)} dC_A,$$
(4)

С_{А.В.} – числовые концентрации компонентов сплава, в пренебрежении концентрацией вакансий для них справедливо условие $C_A + C_B = 1$. Наиболее существенное отличие уравнения (3) от уравнений, полученных на основе градиентного разложения в [8-10], заключается в том, что в нем коэффициент при старшей производной не зависит от состава, а является характеристикой структуры сплава. Вся зависимость от состава обусловлена потенциальной функцией (4) и с ней же связано влияние на распределение состава параметров термодинамической модели и конкретного вида $F(C_A)$. Указанное отличие позволяет трактовать уравнение (3) как аналог уравнения нелинейных колебаний материальной точки в заданном потенциале, что не имеет смысла для подобных уравнений в [8-10].

Знание вида $U(C_A)$ при известной концентрационной зависимости $F(C_A)$ позволяет сформулировать условия сосуществования α - и β -равновесных гомогенных фаз сплава, определить равновесные пределы растворимости $C_{A\alpha}$ и $C_{A\beta}$ и постоянные E и μ_e , задающие условия равновесия [14]. Их значения зависят не только от вида концентрационной зависимости $F(C_A)$, но также от выбора одного из двух вариантов описания равновесного распределения состава. Один из них эквивалентен подходу, использованному Гиббсом для определения значений равновесных пределов растворимости. В нашем описании ему соответствует модель квазирегулярного раствора, в которой производная $d\mu_{XS}/dC_A$ в выражениях (1) и (4) заменяется на ее среднее значение $\langle d\mu_{XS}/dC_A \rangle$. Второй вариант не использует этого ограничения, а опирается непосредственно на анализ решений уравнения (3). Было обнаружено [14], что для некоторых термодинамических моделей сплава равновесная концентрация одного из компонентов, полученная в рамках общего подхода, превышает ее значение, получаемое в рамках модели квазирегулярного раствора, на 36–158%.

Возможность построения распределения $C_A(x)$ на основе решения уравнения (3) позволяет рассчитать температурные зависимости удельной межфазной энергии σ_S , а также толщину межфазной границы δ , что и является целью данной работы.

ВЫРАЖЕНИЯ ДЛЯ УДЕЛЬНОЙ МЕЖФАЗНОЙ ЭНЕРГИИ

Определим энергию межфазной границы G_S как разность энергий сплава с непрерывным распределением состава $C_A(x)$ и сплава, состоящего из двух

гомогенных фаз, с концентрациями C_{Ae}^- и C_{Ae}^+ , где верхний индекс относится к фазе, а нижний индекс *е* указывает на равновесное состояние двухфазного сплава. Будем считать, что каждая из гомогенных фаз занимает все пространство от середины межфазной границы до торцов образца, а торцы расположены вдали от нее. Тогда

$$G_{S} = G_{V} - (G_{V_{1}} + G_{V_{2}}) = S\sigma_{S},$$
(5)

где *S* – площадь межфазной границы, σ_s – ее удельная энергия и G_s – термодинамический потенциал, $G_{V_{1,2}}$ – термодинамические потенциалы гомогенных фаз, расположенных в объемах V_1 и V_2 , G_V – термодинамический потенциал сплава с непрерывным распределением состава. Объемные плотности термодинамических потенциалов гомогенных фаз равны $g(C_{Ae}^+) = n_0 \left(F(C_{Ae}^+) - \mu_e C_{Ae}^+\right)$ и $g(C_{Ae}^-) = n_0 \left(F(C_{Ae}^-) - \mu_e C_{Ae}^-\right)$ и $g(C_{Ae}^-) = n_0 \left(F(C_{Ae}^-) - \mu_e C_{Ae}^-\right)$ для первой и второй фазы соответственно.

Тогда
$$G_{V_1} = n_0 \left(F \left(C_{Ae}^- \right) - \mu_e C_{Ae}^- \right) V_1$$
 и $G_{V_2} =$

 $= n_0(F(C_{Ae}^+) - \mu_e C_{Ae}^+)V_2$. Вычислим G_V как интеграл по объему от плотности термодинамического по-тенциала сплава:

$$G_{V} = n_{0} \iiint_{V} \left(F\left(C_{A}\right) - \mu_{e}C_{A} \right) dV$$

Для образца в форме цилиндра с межфазной границей, расположенной на расстоянии L от торцов, и осью цилиндра x, направленной по нормали к границе, можно записать

$$\sigma_{S} = n_{0} (J_{+} - J_{-}),$$

$$J_{\pm} = \int_{0}^{\pm L} [F(C_{A}(x)) - F(C_{Ae}^{\pm}) - (6) - \mu_{e}(C_{A}(x) - C_{Ae}^{\pm})]dx.$$

Распределение состава $C_A(x)$ имеет хорошо известный вид сглаженной ступеньки, с полушириной Д. Существенное отличие от нуля значений подынтегральных функций выражения (6) возникает только в области межфазной границы шириной $\delta = 2\Delta$, поэтому в качестве значений пределов интегралов вместо L можно взять полуширину межфазной границы Δ. Полагая, что на ней концентрация достигает значений, соответствующих гомогенным фазам $C_A(\pm \Delta) = C_{Ae}^{\pm}$ и пе-

реходя от интегрирования по координате к интегрированию по концентрации, получим

$$\sigma_{S} = n_{0} \left(J_{+} - J_{-} \right), \quad J_{\pm} = \int_{C_{Ae}(0)}^{C_{Ae}(\pm \Delta)} \left(\frac{dC_{A}}{dx} \right)^{-1} \times \left(F \left(C_{A} \left(x \right) \right) - F \left(C_{Ae}^{\pm} \right) - \mu_{e} \left(C_{A} \left(x \right) - C_{Ae}^{\pm} \right) \right) dC_{A}.$$

Начало координат можно поместить в точку перегиба профиля концентрации, но это приводит к дополнительным сложностям технического характера при расчетах. Более простой вариант обеспечивается помещением начала координат в точку, где значение концентрации определено условием $C_{Ae}(0) = 0.5(C_{Ae}^{+} + C_{Ae}^{-})$. Численные расчеты показали, что различие получаемых значений σ_s в этих двух вариантах отмечается только в девятой значащей цифре. Для вычисления производной (dC_A/dx) используем выражения (17)–(19) из [14] с заменой объемной плотности свободной энергии f на удельную свободную энергию на один моль вещества *F*. Тогда

$$\sigma_{S} = \frac{\Lambda n_{0}}{\sqrt{2}} (I_{+} - I_{-}),$$

$$I_{\pm} = \int_{0.5(C_{Ae}^{\pm} + C_{Ae}^{-})}^{C_{Ae}^{\pm}} \frac{F(C_{A}(x)) - F(C_{Ae}^{\pm}) - \mu_{e}(C_{A}(x) - C_{Ae}^{\pm})}{\sqrt{\left(E - \int_{C_{A}}^{\frac{\mu_{e}}{2} - \left(dF(C_{A}^{'})/dC_{A}^{'}\right)}{d\mu_{XS}/dC_{A}^{'}}\right)}} dC_{A}.$$

Подкоренное выражение в в общем случае является суммой постоянной интегрирования Е и потенциальной функции $U(C_{A})$ (4), выраженной неопределенным интегралом (18) в [14]. В той же работе показано, что в условиях сосуществования двух равновесных фаз $U(C_A)$ должно иметь два минимума, которым соответствуют равновесные пределы растворимости C_{Ae}^{\pm} , причем в точках минимумов выполняется равенство $U(C_{Ae}^{+}) = U(C_{Ae}^{-})$. Выбирая значения потенциальной функции в точках минимумов в качестве начала отсчета по оси энергий, мы тем самым выбираем конкретное значение постоянной Е, при котором получаем:

$$\sigma_{S} = \frac{\Lambda n_{0}}{\sqrt{2}} (I_{+} - I_{-}),$$

$$I_{\pm} = \int_{0.5(C_{Ae}^{\pm} + C_{Ae}^{-})}^{C_{Ae}^{\pm}} \frac{F(C_{A}(x)) - F(C_{Ae}^{\pm}) - \mu_{e}(C_{A}(x) - C_{Ae}^{\pm})}{\sqrt{\int_{C_{Ae}^{\pm}}^{C_{A}} \frac{\mu_{e} - \left(dF(C_{A}^{\prime}) / dC_{A}^{\prime}\right)}{d\mu_{XS} / dC_{A}^{\prime}}} dC_{A}.$$
(7)

2021

В модели квазирегулярного твердого раствора [14] выражение для определения σ_S принимает вид:

$$\sigma_{S} = \frac{\Lambda n_{0}}{\sqrt{2}} (I_{+} - I_{-}), \quad I_{\pm} = \sqrt{|\mu_{XS}/dC_{A}|},$$

$$\int_{0.5(C_{Ae}^{\pm} + C_{Ae}^{-})}^{C_{Ae}^{\pm}} \sqrt{F(C_{A}) - F(C_{Ae}^{\pm}) - \mu_{e}(C_{A} - C_{Ae}^{\pm})} dC_{A}.$$
(8)

И, наконец, если сплав описывается моделью регулярного раствора, то $|\mu_{XS}/dC_A| = 2b_{reg}$ и не зависит от состава, а $\mu_e = 0$. В этом случае $F(C_{Ae}^+) = F(C_{Ae}^-)$, и выражение для σ_S принимает наиболее простой вид

$$\sigma_{S} = \frac{n_{0}\Lambda}{\sqrt{2}} \sqrt{2b_{reg}} \int_{C_{Ae}^{-}}^{C_{Ae}^{+}} \sqrt{F(C_{A}(x)) - F(C_{Ae}^{\pm})} dC_{A}, \quad (9)$$

где *b_{reg}* — коэффициент концентрационной зависимости энтальпии одного моля регулярного раствора.

Выражения (8), (9) по форме совпадают с соотношением (8.11) в [13], только у нас роль параметра *К* выполняет функция от величин Λ , n_0 , $|\mu_{XS}/dC_A|$, которые, как и величина μ_e , выражаются через конкретные характеристики сплава и температуру.

ВЫРАЖЕНИЕ ДЛЯ ТОЛЩИНЫ МЕЖФАЗНОЙ ГРАНИЦЫ

При выборе в качестве начала отсчета значений потенциальной функции в точках ее минимумов, для градиента концентрации имеем [14]

$$\frac{dC_A}{dx} = \frac{\sqrt{2}}{\Lambda} \sqrt{\int_{C_{Ae}}^{C_A} \frac{\mu_e - \left(dF\left(C_A'\right) \middle/ dC_A'\right)}{d\mu_{XS} \middle/ dC_A'}} dC_A'$$

Максимальное значение градиента достигается в месте перегиба профиля концентрации и, как упоминалось выше, концентрация при этом с высокой степенью точности оценивается как $0.5(C_{Ae}^+ + C_{Ae}^-)$. С учетом этого получаем

$$\left(\frac{dC_A}{dx}\right)_{\max} \approx \frac{\sqrt{2}}{\Lambda} \sqrt{\int_{C_{Ae}^{\pm}}^{0.5\left(C_{Ae}^{+}+C_{Ae}^{-}\right)} \frac{\mu_e - \left(dF\left(C_A^{\prime}\right) / dC_A^{\prime}\right)}{d\mu_{XS} / dC_A^{\prime}}} dC_A^{\prime}.$$

Взяв разность координат точек пересечения касательной к профилю, имеющей максимальный наклон, с прямыми, заданными условиями

 $C_A = C_{Ae}^{\pm}$, приходим к выражению для толщины границы

$$\delta = \frac{\Lambda}{\sqrt{2}} \frac{C_{Ae}^{+} - C_{Ae}^{-}}{\sqrt{\int_{C_{Ae}^{+}}^{0.5(C_{Ae}^{+} + C_{Ae}^{-})} \frac{\mu_{e} - \left(dF\left(C_{A}^{'}\right) / dC_{A}^{'} \right)}{d\mu_{XS} / dC_{A}^{'}}}.$$
 (10)

РАСЧЕТ УДЕЛЬНОЙ МЕЖФАЗНОЙ ЭНЕРГИИ

Вид $F(C_A)$ определен выражениями (2)—(5). Связь $F(C_A)$ с химическим потенциалом $dF/dC_A|_{T,p} = = \mu_{id}(C_A) + \mu_{XS}(C_A)$, позволяет вычислить

$$\frac{d\mu_{XS}}{dC_A} = -2\left[\left(2b_B^f - b_A^f + T\left(2b_B^s - b_A^s\right)\right) - 3\left(b_B^f - b_A^f + T\left(b_B^s - b_A^s\right)\right)C_A\right].$$

В результате правая часть выражения (4) определяется через конкретные функции концентрации и температуры. Рассматривая неопределенный интеграл в правой части (4) как определенный интеграл с переменным верхним пределом, представим $U(C_A)$ в виде

$$U(C_{A}) = \int_{0}^{C_{A}} \frac{\mu - \left(dF(C_{A}) / dC_{A}' \right)}{d\mu_{XS} / dC_{A}'} dC_{A}'.$$
 (11)

Используя данное соотношение, мы добиваемся выполнения условия $U(C_{Amin}^-) = U(C_{Amin}^+)$ посредством варьирования величины µ. При выполнении этого условия система состоит из двух равновесных гомогенных фаз [14]. Значение µ, для которого оно выполняется, обозначим µ_e, а концентрации в точках минимумов – как значения равновесных пределов растворимости C_{Ae}^- и

 C_{Ae}^{+} . В числитель правой части (4) входит производная от $F(C_A)$, поэтому в выражении (2) из $F(C_A)$ исключены постоянная и линейные по концентрации слагаемые. После определения μ_e и C_{Ae}^{\pm} становится возможным вычисление σ_S и δ со-

гласно выражениям (7)–(9) и (10). В случае квазирегулярного раствора $d\mu_{XS}/dC_A$ заменяется осредненным значением и выносится

из-под знака интегралов в правой части (7) и (10). Тогда вместо выражения (11) следует взять объемную плотность термодинамического потенциала

$$g(C_A) = n_0(F(C_A) - \mu C_A)$$

и провести с ней те же процедуры, а затем вычислить σ_s , используя (8). Для регулярного раствора процедура строится так же, все отличие заключается в замене $F(C_A)$ на $F_{\text{reg}}(C_A)$, для которого в выражении (2) полагаем $(b_A^f = b_B^f = b_{\text{reg}}), b_A^s = b_B^s = 0.$

Оценка величины n_0 произведена в соответствии с соотношением $n_0 = \rho/m_0 N_A$, где m_0 – масса атома, ρ – плотность вещества. Величину Λ оценивали соотношением $\Lambda \approx 3a$, где a – параметр решетки [14]. Получено для ОЦК Nb: $\Lambda = 0.990$ нм, $\Lambda n_0/\sqrt{2} = 0.648 \times 10^{-4}$ моль/м², для ГЦК Cu: $\Lambda = 1.086$ нм, $\Lambda n_0/\sqrt{2} = 1.081 \times 10^{-4}$ моль/м² и для ГЦК Fe: $\Lambda = 1.089$ нм, $\Lambda n_0/\sqrt{2} = 1.089 \times 10^{-4}$ моль/м².

ОЦК-сплав Nb—Си был взят как сплав, хорошо описывающийся моделью регулярного твердого раствора, для которого $F_{XS} = 46024 \times C_{Nb} \times C_{Cu} \, \text{Дж/моль}$ при $b_{Nb}^f = b_{Cu}^f = b_{reg} = 46024 \, \text{Дж/моль}, \ b_{Nb}^s = b_{Cu}^s = 0 \, \text{Дж/(моль K)}$ [19]. В соответствии с этой термодинамической моделью, значение постоянной μ_{NbCu}^{reg} принято равным нулю, а расчет σ_S проводили по выражению (14) с $(\Lambda n_0/\sqrt{2})\sqrt{2b_{reg}} = 1.966 \times 10^{-4} \, (\text{Дж моль})^{1/2}/\text{м}^2$. Модель регулярного раствора наиболее проста при расчетах и позволяет тестировать результаты для более сложных моделей.

При заданной для системы Nb-Cu зависимости F от состава полное взаимное растворение компонентов сплава наступает при температуре 2769.2 К. Отметим, что пределы, в которых эта концентрационная зависимость принята к описанию – это 300–2800 К [19]. По данным той же работы, сплав имеет ОЦК-решетку, поэтому для него взято значение, приводимое для ОШК-Nb. Отметим, что используемые термодинамические модели сплавов не учитывают специфику, связанную с агрегатным состоянием, поэтому мы не разделяем области твердого тела и жидкости. Для сплава ГЦК Си-Fe взято усредненное значение $\Lambda n_0 / \sqrt{2} \approx 1.085 \times 10^{-4}$ моль/м² (среднее между ГЦК-Си и ГЦК-Fe). Этот сплав описывается моделью нерегулярного твердого раствора, для которого $b_{\text{Fe}}^{f} = 54124.0 \, \text{Дж/моль и} \, b_{\text{Cu}}^{f} = 42288.0 \, \text{Дж/моль а ко-$ эффициенты вклада в энергию избыточной энтропии положительны: $b_{\text{Fe}}^s = 13.4637 \text{ Дж}/(\text{моль K})$ и $b_{Cu}^{s} = 3.4292 \, \text{Дж}/(\text{моль K})$. Это приводит к тому, что вклад избыточной энтропии отрицателен по отношению к вкладу избыточной энтальпии (5), поэтому значение избыточной энергии с ростом температуры уменьшается. Такое поведение типично для большинства сплавов.

ГЦК-сплав Fe—Cu описывается концентрационной зависимостью F, приведенной в [19], в интер-

Таблица 1. Температурные зависимости пределов растворимости, удельной межфазной энергии и толщины межфазной границы, рассчитанные для ОЦК-сплава Nb-Cu

<i>Т</i> , К	$C_{\rm Nb} = C_{\rm Cu}, \%$	σ_S , Дж/м ²	δ, нм		
500	0.002	1.4057	2.287		
900	0.218	1.1676	2.656		
1300	1.591	0.8938	3.181		
1700	5.086	0.6022	3.951		
2100	11.72	0.3202	5.266		
2500	24.07	0.0870	8.715		
2750	42.81	0.0017	33.56		

вале (700–1800) К. При этом полное взаимное растворение компонентов достигается при 1879.4 К.

По данным [19] существуют сплавы, например, Ni-W, Ti-W, Ni-Cu, Fe-Mn, Fe-Co, для которых коэффициенты избыточной энтальпии и избыточной энтропии имеют противоположные знаки. Для того чтобы исследовать влияние этой особенности концентрационных зависимостей на параметры межфазной границы, получаемые в рамках предлагаемого нами подхода, мы рассмотрели некоторый формальный бинарный сплав А-В с ГЦК-решеткой и теми же значениями параметров $\Lambda n_0 / \sqrt{2} \approx 1.085 \times 10^{-4}$ моль/м² и $\Lambda = 1.087$ нм, что и у сплава Fe-Cu, но с противоположными знаками коэффициентов избыточной энтропии: b_A^f = = 54124.0 Дж/моль и b_B^f = 42288.0 Дж/моль, b_A^s = = -13.4637 Дж/(моль K) и $b_B^s = -3.4292$ Дж/ (моль K). В предыдущей работе [14] по ошибке именно этот сплав был указан как Fe-Cu, поэтому ниже мы показываем результаты расчетов и параметров интерфейса, и бинодали для обеих систем – реальной Fe-Cu и системы A-B, полученной инверсией знаков коэффициентов. Мы рассматриваем это как допустимый вариант, поскольку нашей основной задачей является изучение влияния выбора вариантов моделирования, а не описание конкретных систем.

РЕЗУЛЬТАТЫ РАСЧЕТА ТЕМПЕРАТУРНЫХ ЗАВИСИМОСТЕЙ

В табл. 1–3 приведены данные численного расчета для трех термодинамических моделей: модели регулярного раствора (сплав Nb–Cu), модели квазирегулярного раствора, и общего случая (сплав Fe–Cu и сплав *A*–*B*, отличающийся от Fe–Cu знаком избыточной энтропии).

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 122 № 1 2021

ГАПОНЦЕВ и др.

Таблица 2. Температурные зависимости постоянной равновесия, пределов растворимости, удельной межфазной энергии и толщины межфазной границы, рассчитанные для ГЦК-сплава Fe—Cu в варианте квазирегулярного раствора (G) и в общем случае (U)

<i>T</i> , K	μ_G , Дж/моль	$C_{\rm Fe}^G,\%$	$C_{Cu}^G, \%$	δ_G , нм	σ_S^G , Дж/м ²	μ_U , Дж/моль	$C_{\mathrm{Fe}}^{U},\%$	$C_{\mathrm{Cu}}^{U},\%$	δ_U , нм	σ_S^U , Дж/м ²
700	3.48	0.11	0.05	1.955	1.930	1420.5	0.14	0.04	1.956	1.931
900	12.89	0.56	0.38	2.176	1.608	653.1	0.61	0.35	2.176	1.608
1100	12.54	1.67	1.52	2.478	1.265	142.9	1.70	1.50	2.478	1.263
1300	-46.89	3.80	4.30	2.912	0.908	-172.0	3.74	4.36	2.912	0.906
1500	-253.70	7.42	9.94	3.596	0.557	-424.7	7.25	10.17	3.598	0.554
1700	-734.50	13.5	20.4	4.924	0.246	-826.4	13.3	20.28	4.928	0.242
1870	-1465.70	23.2	36.1	8.460	0.052	-1481.2	23.1	36.27	8.453	0.049

Таблица 3. Температурные зависимости постоянной равновесия, пределов растворимости, удельной межфазной энергии и толщины межфазной границы, рассчитанные для ГЦК-сплава A-B, параметры которого отличаются от параметров ГЦК-сплава Fe–Cu знаком избыточной энтропии, в варианте квазирегулярного раствора (G) и в общем случае (U)

<i>Т</i> , К	μ_G , Дж/моль	$C^G_A, \%$	$C^G_B,\%$	δ_G , нм	σ_S^G , Дж/м ²	μ_U , Дж/моль	$C^U_A, \%$	$C^U_B,\%$	δ_U , нм	σ_S^U , Дж/м ²
900	16.4	0.24	0,02	1.923	2.564	6301.7	0.56	0.006	1.929	2.577
1100	55.6	0.67	0.05	2.022	2.463	6074.0	1.33	0.027	2.032	2.478
1300	133.3	1.40	0.13	2.124	2.358	5837.0	2.45	0.078	2.137	2.374
1500	259.3	2.41	0.26	2.226	2.250	5623.0	3.85	0.168	2.241	2.267
1700	439.3	3.67	0.44	2.329	2.142	5455.0	5.45	0.304	2.345	2.158
1900	675.5	5.14	0.67	2.433	2.035	5348.0	7.18	0.487	2.449	2.051

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Известно, что модель квазирегулярного раствора, в отличие от модели регулярного раствора, позволяет описывать сплавы, у которых бинодаль имеет асимметричную форму, т.е. эта модель лучше описывает реальные системы. С другой стороны, модель квазирегулярного твердого раствора приводит практически к тем же температурным зависимостям удельной энергии межфазной границы и ее толщины, что и расчеты, проводимые без характерных для этой модели ограничений. Так, значения толщины интерфейса, рассчитанные для сплава Fe-Cu в общем случае и в модели квазирегулярного раствора, отличаются не более, чем на 0.09%. Значения удельной межфазной энергии в диапазоне температур 700-1700 К отличаются не более, чем на 1.65%, и только при температуре 1870 К вблизи критической точки отличие достигает 6.2%.

Из сравнения пределов растворимости для сплава Fe–Cu (табл. 2) и сплава A-B (табл. 3) видно, что положения бинодалей этих сплавов существенно отличаются. Кроме того, для сплава A-B, в противоположность Fe–Cu, положение бинодали существенно различно для модели квазирегулярного раствора и более общей модели, не

имеющей дополнительных ограничений. Тем не менее, различие толщин интерфейса, рассчитанных в модели квазирегулярного раствора и в общей модели, не превосходит 0.7%, а соответствующее различие значений удельной энергии интерфейса не больше 0.8% в диапазоне температур от 900 до 1900 К.

Расчеты температурных зависимостей удельной межфазной энергии и толщины межфазной границы, проводимые в модели квазирегулярного раствора, существенно проще, чем расчеты в общем случае. Кроме того, построение бинодали в рамках модели квазирегулярного раствора использует непосредственно вид концентрационной зависимости $F(C_A)$ и полностью эквивалентно построению Гиббса для определения значений равновесных пределов растворимости. Это позволяет достаточно легко решить обратную задачу и определить коэффициенты $F(C_A)$ по положению бинодали. Фактически, такой анализ выполнен при нахождении распределения $F(C_A)$ на основе экспериментальных данных о равновесных фазовых диаграммах бинарных сплавов в [19]. Однако подход авторов [19] не позволяет построить температурные зависимости параметров межфазной границы. Эту задачу решает предложенный в данной работе метод, который дает способ расчета температурных зависимостей $\delta(T)$ и $\sigma_s(T)$ для бинарных сплавов, опирающийся на вид равновесных фазовых диаграмм, значение длины корреляции состава Λ и число узлов решетки в единице объема. Две последние величины характеризуют структуру сплава и в рамках предлагаемого подхода рассматриваются как не зависящие от состава и температуры. Можно отметить, что их зависимость от температуры нетрудно учесть, не прибегая к существенному изменению формализма.

ЗАКЛЮЧЕНИЕ

Работа частично выполнена в рамках гос. задания Минобрнауки (тема "Давление" № АААА-А18-118020190104-3 и тема "Квант" No AAAA-A18-118020190095-4).

Авторы выражают признательность участникам семинара Лаборатории диффузии ИФМ УрО РАН и особенно заведующему лабораторией д. т. н., проф. В.В. Попову, д. ф.-м. н., проф. И.М. Куркину и д. ф.-м. н., проф. А.Е. Ермакову за обсуждение работы и полезные замечания. Особую признательность авторы выражают также к. ф.-м. н. В.Я. Раевскому за помощь, оказанную при выполнении численных расчетов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Belashchenko K.D., Vaks V.G. The master equation approach to configurational kinetics of alloys via the vacancy exchange mechanism: general relations and features of microstructural evolution // J. Phys.: Condens. Matter. 1998. V. 10. № 9. P. 1965–1983.
- Yang A.J.M., Fleming P.D., Gibbs J.H. Molecular theory of surface tension // J. Chem. Phys. 1976. V. 64. № 9. P. 3732–3747.
- Plapp M., Gouyet J.-F. Spinodal decomposition of an ABv alloys: Patterns at unstable surfaces // Eur. Phys. J. B.1999. V. 9. № 2. P. 267–282.
- 4. *Gouyet J.-F., Appert C.* Stochastic and hydrodynamic lattice gas models: mean-field kinetic approaches // Int. J. Bifurc. and Chaos. 2002. V. 12. № 2. P. 227–259.
- Martin G., Bellon P., Soisson F. Modelling Diffusion Controlled Solid State Kinettics in Equilibrium and Driven Alloys // Defect and Diffusion Forrum. 1997. V. 143–147. P. 385–402.
- 6. *Prochet P., Bellon P., Chaffron L., Martin G.* Phase Transformations under Ball Milling: Theory versus Ex-

periment // Mater. Sci. Forum. 1996. V. 225–227. P. 207–216.

- Gornostyrev Yu.N., Razumov I.K., Yermakov A.Ye. Finite Size Effect in Spinodal Decomposition of Nanograined Materials // J. Mater. Sci. 2004. V. 39. № 16–17. P. 5003–5009.
- 8. *Hart E.W.* Thermodynamics of Inhomogeneous Systems // Phys. Rev. 1959. V. 113. № 3. P. 412–416.
- Cahn J.W., Hilliard J.E. Free Energy of a Nonuniform System. I. Interfacial Free Energy // J. Chem. Phys. 1958. V. 28. № 2. P. 258–267.
- Cahn J.W. Free Energy of a Nonuniform System. II. Thermodynamic Basis // J. Chem. Phys. 1959. V. 30. № 5. P. 1121–1124.
- Pankratov I.R., Vaks V.G. Generalized Ginzburg-Landau functionals for alloys: General equations and comparison to the phase-field method // Phys. Rev. B. 2003. V. 68. № 13. P. 134208–134225.
- Вакс В.Г., Журавлев И.А., Хромов К.Ю. Расчеты бинодалей и спинодалей в многокомпонентных сплавах различными статистическими методами с применением к сплавам железо-медь-марганец // ЖЭТФ. 2010. Т. 138. Вып. 5. С. 902–920.
- Хачатурян А.Г. Теория фазовых превращений и структура твердых растворов. М.: Наука, 1974. 384 с.
- Гапонцев В.Л., Гапонцев А.В., Кондратьев В.В. Определение положения бинодали бинарного сплава на основе гипотезы слабой нелокальности // ФММ. 2019. Т. 120. № 12. С. 1166–1171.
- Гапонцев В.Л., Селезнев В.Д., Гапонцев А.В. Распад равновесной межфазной границы в сплавах замещения при механосплавлении // ФММ. 2017. Т. 118. № 7. С. 665–678.
- Czubayko U., Wanderka N., Naundorf V., Ivchenko V.A., Yermakov A.Ye., Uimin M.A., Wollenberg H. Characterization of nanoscaled heterogeneities in mechanically alloyed and compacted Cu–Fe // Mater. Sci. Forum. 2000. V. 343–346. P. 709–714.
- Ivchenko V.A., Uimin M.A., Yermakov A.Ye., Korobeinikov A.Yu. Atomic Structure and Magnetic Properties of Cu₈₀Co₂₀ Nanocrystalline Compounds Produced by Mechanical Alloying // Surf. Sci. 1999. V. 40. № 3. P. 420–428.
- Costa B.F.O., Le Caër G., Luyssaert B. Mőssbauer studies of phase separation in nanocrystalline Fe_{0.55 - x}Cr_{0.45}Sn_x alloys preparred by mechanical alloying // J. Alloys Compounds. 2003. V. 350. № 1. P. 36–46.
- Kaufman L., Nesor H. Coupled phase diagrams and termodchemmical data for transition metal binary systems. Ch. III // CALPHAD. 1978. V. 1, 2. № 2. P. 117–146.