ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ, 2021, том 122, № 1, с. 53-60

СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ

УДК 536.424.1

ДИНАМИЧЕСКАЯ ТЕОРИЯ ВЛИЯНИЯ СИЛЬНОГО МАГНИТНОГО ПОЛЯ НА МАРТЕНСИТНОЕ ПРЕВРАЩЕНИЕ В СТАЛЯХ ПРИ РАЗМЕРАХ ЗЕРНА АУСТЕНИТА ВБЛИЗИ КРИТИЧЕСКОГО ЗНАЧЕНИЯ

© 2021 г. М. П. Кащенко^{*a*, *b*, *, Н. М. Кащенко^{*a*}, В. Г. Чащина^{*a*, *b*}}

^аУральский федеральный университет, ул. Мира, 19, Екатеринбург, 620002 Россия ^bУральский государственный лесотехнический университет, ул. Сибирский тракт, 37, Екатеринбург, 620100 Россия *e-mail: mpk46@mail.ru Поступила в редакцию 12.08.2020 г. После доработки 01.09.2020 г. Принята к публикации 03.09.2020 г.

В динамической теории мартенситных превращений температура M_s начала превращения соответствует условиям, оптимальным для генерации неравновесными *d*-электронами волн, управляющих ростом мартенситного кристалла. При этом существенную роль играет учет относительного затухания *s*-электронов Γ'_e . Общий анализ, позволивший впервые предложить аналитическую формулу

для критического размера $D_c(\Gamma'_e)$ зерна аустенита, применяется при интерпретации результатов для хромоникелевых сталей, в которых превращение инициировано сильными магнитными полями. Магнитное поле (напряженностью *H*) в условиях положительной объемной магнитострикции понижает химический потенциал электронов. В результате величина $D_c(\Gamma'_e, H)$ снижается, и аустенит

с диаметром зерна *D*, стабилизированный условием $D < D_c(\Gamma'_e, 0)$ в отсутствие поля, дестабилизируется, так как выполняется неравенство $D > D_c(\Gamma'_e, H)$. Динамическая теория предсказывает резкое нарастание $D_c(\Gamma'_e, 0)$ при $\Gamma'_e \rightarrow 1$. В пользу этого свидетельствует величина $D_c(\Gamma'_e) \ge 1$ мм для стали 67Х2Н22, которая на три порядка больше $D_c(\Gamma'_e, 0) \approx 1$ мкм для сплава Fe–31Ni. Обсуждаются и другие особенности влияния магнитного поля на мартенситное превращение.

Ключевые слова: мартенситные превращения, динамическая теория, критический размер зерна, объемная магнитострикция, дестабилизация аустенита магнитным полем

DOI: 10.31857/S0015323021010058

введение

Мартенситное превращение (МП) в сплавах железа протекает с ярко выраженными признаками фазового перехода I рода. Скорость роста кристаллов превышает скорость продольных упругих волн, что безальтернативно свидетельствует о существовании и решающей роли управляющего волнового процесса (УВП), обеспечивающего кооперативный характер превращения. Старт роста кристалла в ходе охлаждения при температуре M_s связан с возникновением начального возбужденного (колебательного) состояния (НВС) в упругом поле дислокационных центров зарождения (ДЦЗ). Причем УВП наследует информацию о поле деформации в области HBC и переносит пороговую деформацию, нарушая устойчивость аустенита. Процесс протекает при существенном отклонении от температуры T_0 равновесия исходной (аустенит, γ) и конечной (мартенсит, α) фаз, т.е. в существенно неравновесных условиях.

Перечисленные положения отражают в сжатой форме основы новой парадигмы МП, воплощенной в динамической теории МП [1–5]. Полнота описания γ-α МП в динамической теории достигается в силу того, что УВП позволяет проследить принципиальную связь между особенностями электронного строения γ-фазы, упругими полями ДЦЗ, с одной стороны, и наблюдаемыми макроскопическими морфологическими признаками (металловедческой "визитной карточкой" МП), с другой стороны. Это свидетельствует о физической обоснованности и надежности динамической теории.

Одним из важных результатов теории является вывод аналитической формулы для критического размера $D_{\rm c}(\Gamma_{\rm e})$ зерна аустенита, зависящего от относительного эффективного затухания s-электронов $\Gamma_{\rm e}'$.

При этом учитывается, что HBC имеет форму вытянутого параллелепипеда, и выполняется характерное соотношение пространственных масштабов:

$$L/d_{\rm m} \sim 10^2, \tag{1}$$

где $d_{\rm m}$ поперечный размер HBC, L – размер свободного от дислокаций объема зерна (при единственной дислокации в зерне L совпадает с размером зерна D). Индекс m в обозначении $d_{\rm m}$ отражает выбор системой максимально большого поперечного размера HBC, еще совместимого с пороговыми условиями деформации метастабильно устойчивого аустенита.

При трактовке температуры M_s как оптимальной для генерации неравновесными электронами волн, управляющих ростом мартенситного кристалла, показано, что в случае $\Gamma'_e \rightarrow 1$, $M_s(\Gamma'_e) \rightarrow 0$ K, и формально $D_c \rightarrow \infty$. Разумеется, реально речь может идти о некотором конечном значении $(D_c)_{max} \equiv D^*$ при $\Gamma'^* \leq 1$. Значит, образование мартенсита охлаждения оказывается невозможным для поликристаллического аустенита с размером зерна D, если

$$D < D^*, \tag{2}$$

т.е. (2) — условие стабилизации аустенита. Однако действие сильного магнитного поля напряженностью H, особенно при наличии положительного изменения объема за счет магнитострикции, понижает химический потенциал электронов μ , что ведет к снижению Γ'_e и D_c (Γ'_e , H), так что выполняется неравенство

$$D > D_{\rm c}(\Gamma'_{\rm e}, H),$$

и аустенит дестабилизируется. Этот вопрос освещен в общем виде в [3] и применительно к сплавам Fe-(30-32%)Ni и Fe-31Ni-0.28C. Существенно, что добавление 0.28 мас. % С увеличива-

ет на порядок величину $D_{\rm c}(\Gamma_{\rm e})$ (до 10 мкм) по сравнению с Fe–31Ni. Объяснение высокого темпа роста величины $\Gamma_{\rm e}$ при добавлении углерода приводится в [1], поэтому ясно, что рост содержания углерода должен сопровождаться быстрым нарастанием $D_c(\Gamma'_e)$. В связи с этим представляет интерес обработка с позиций динамической теории данных [6] для сталей С_xX2H22 при концентрациях углерода x = 0.24, 0.36, 0.45, 0.57, 0.67,0.77 мас. %. Именно анализ этих данных, дополненных исследованием [7], является основной целью данной работы.

ФОРМУЛЫ ДЛЯ $M_{\rm S}$ И $D_{\rm C}(\Gamma_{\rm E}')$

Полагаем, что неравновесность электронной подсистемы в межфазной области на стадии роста кристалла в основном связана с градиентом химпотенциала $\nabla \mu$. Тогда основой для выбора оптимальных условий генерации волн служит анализ значений производных по химическому потенциалу μ от модифицированного равновесного распределения Ферми f. Это распределение учитывает размытие не только из-за температурного фактора (непосредственно учитываемого в f), но и из-за процессов рассеяния s-электронов, характеризуемых затуханием Г_s. Заметим, что именно высокое затухание Г_s обеспечивает приемлемую населенность d-состояний над (и под) уровнем µ в актуальном интервале энергий за счет процессов d-s-d перераспределения. Производные $\partial f/\partial \mu'$, наряду с $\nabla \mu$, задают неравновесные поправки к функции распределения, определяя степень инверсии населенностей пар состояний 3d-электронов, активных в генерации волн [1-3]. Идея состоит в поиске оптимальных "траекторий" на плоскости безразмерных переменных $T', \Gamma',$

$$T' = \frac{k_{\rm B}T}{|\overline{\varepsilon}_d - \mu|}, \quad \Gamma' = \frac{\hbar\Gamma}{2|\overline{\varepsilon}_d - \mu|},\tag{3}$$

вдоль которых будет сравнительно медленно изменяться значение неравновесной поправки при одновременном снижении *T*' и росте Г'. Такое поведение отражает типичную ситуацию понижения температуры M_s при росте концентраций дополнительных к железу компонентов сплава. В (3) $\overline{\epsilon}_d$ играет роль средней энергии актуального для генерации волн интервала энергий $|\overline{\epsilon}_d - \mu| \approx$ $\approx 0.2-0.3$ эВ, k_B – постоянная Больцмана, \hbar – постоянная Планка. На рис. 1 представлены результаты расчета $\partial f/\partial \mu'$.

Семейства тонких линий — это линии постоянного уровня, на которых функция $\partial f/\partial \mu'$ принимает постоянные (отмеченные на линиях) зна-

В (7) вклад $\Gamma(T)$ связан с рассеянием на термически активируемых неоднородностях (вакансии, фононы, магноны и т.п.) и убывает при снижении *Т*. Вклад Γ_i связан с примесным рассеянием, в случае бинарного сплава $\Gamma_i = \Gamma(C) \sim C(1-C)$, где С – концентрация легирующей добавки. Вклад $\Gamma(D)$ в действительности обусловлен влиянием на затухание s-электронов неоднородности с характерным поперечным пространственным масштабом d_m. Эта неоднородность связана с выделением энергии в области НВС. Благодаря соотношению пространственных масштабов (1), при L = D рассеяние на такой неоднородности можно интерпретировать как зависимость от *D*. Характерное время $\tau_{s} \approx d_{m}/v_{s}$ пересечения s-электронами области $d_{\rm m}$ со скоростью $v_{\rm s}$, поэтому в со(-1)

$$\hbar\Gamma(D) \approx \hbar v_{\rm s} \Phi(L/d)/2D,$$
(9)

где $\Phi(L/d)$ феноменологическая постоянная, отражающая соотношение масштабов. Удобно выбрать $\Phi(L/d)$ в виде

$$\Phi(L/d) = \beta \times 10^{\eta}, \ 1 \le \beta \le 10, \ 2 \le \eta \le 5.$$
 (10)

Тогда, согласно (3), (9), (10),

$$\Gamma'(D) = \hbar v_{\rm s} \beta \times 10^{\rm n} / (4 \left| \overline{e}_d - \mu \right| D). \tag{11}$$

Далее при оценках полагаем $v_{\rm s} = 10^6$ м/с, $\hbar = 1.054 \times 10^{-34}$ Дж с, $k_{\rm B} = 1.38 \times 10^{-23}$ Дж/К.

Вклад $\Gamma(T)$, содержащий, в общем случае, несколько слагаемых с разными степенями температурных зависимостей, представим в виде

$$\Gamma(T) = a_0(T)T, \qquad (12)$$

или, согласно (3),

$$\Gamma'(T) = a_0(T)T'/2,$$
 (13)

где конкретные значения $a_0(T)$ будем находить из дополнительных соображений. Отметим лишь, что, как показывает анализ [3], при температурах *T*, отличающихся от 273 на ΔT порядка ± 10 К, величина a_0 (*T*) ≈ 1 .

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 122 **№** 1 2021

Рис. 1. Результаты расчета $\partial f / \partial \mu'$ [1-3].

ответствии с соотношением неопределенностей для энергии и времени величина

$$\hbar\Gamma(d) \approx \hbar/2\tau_{\rm s} \approx \hbar v_{\rm s}/2d_{\rm m}$$
. (8)

Заметим, однако, что имеется еще один пространственный масштаб, связанный с поперечным размером d_{tw} двойников превращения. Величина d_{tw} , в свою очередь, может быть на два-три порядка меньше $d_{\rm m}$, и, соответственно, на 4-5 порядков меньше *L* и *D*. Поскольку размер зерна *D* является удобным для наблюдения параметром, вместо $\hbar\Gamma(d)$ можно использовать явную запись

чения, а штриховые линии 1 и 2 определяются соответственно условиями

$$\frac{\partial \mathbf{f}}{\partial T'} \left[\frac{\partial \mathbf{f}}{\partial \mu'} \right]_{\Gamma'} = 0, \quad \frac{\partial \mathbf{f}}{\partial \Gamma'} \left[\frac{\partial \mathbf{f}}{\partial \mu'} \right]_{T'} = 0.$$

Эти линии отвечают максимумам функции $\partial f/\partial \mu'$ по переменным T', Г' и проходят через точки. в которых прямые линии, параллельные соответственно вертикальной и горизонтальной осям координат, касаются линий постоянного уровня. Сплошная линия 3 на рис. 1 – проекция на плоскость (Γ', T') "гребня" на рельефе функции $\partial f / \partial \mu'$. Область между линиями 1 и 2 представляет собой область значений параметров Т' и Г', для которых инверсная разность населенностей достигает максимальных слабо изменяющихся (при изменении ТиГ) значений.

Достаточно подробное обсуждение в [1] показало, что отображение наблюдаемых зависимостей $M_{s}(T)$ для сплавов Fe–Ni на плоскость (Γ', T') тяготеют к линии 2, описываемой параболой

$$1 - \Gamma' = 4T^{'2}.$$
 (4)

Наиболее интересный для целей нашей работы промежуток между парой точек ($\Gamma' = 1, T' = 0$) и ($\Gamma' = 0.96, T' = 0.1$), лежащих на кривой (4), дополнительно обрабатывали в [3, 5] с помощью аппроксимаций вида:

$$1 - \Gamma' = B(T')^P, \tag{5}$$

при *P* > 2.

Здесь мы используем самую простую аппроксимацию "траектории" между указанной парой точек в виде прямой (P = 1, B = 0.4):

$$1 - \Gamma' = 0.4T'.$$
 (6)

Затухание Г имеет несколько вкладов

$$\Gamma(T,C,D) = \Gamma(T) + \Gamma_i + \Gamma(D).$$
(7)

Рис. 2. Изменение объема аустенита стали 40Х2Н20 в магнитном поле до 1.51 МА/м при температуре 77 К [8].

Отождествляя T с M'_{s} и подставляя в (6) выражения для затухания электронов, находим

$$M_{\rm s}(D) = M_{\rm s\infty} \{1 - (D_{\rm c}/D)\},$$
 (14)

$$M_{\rm s\infty} = \left|\overline{\varepsilon}_d - \mu\right| \left(1 - \Gamma_{\rm e}'\right) / (0.4 + 0.5a_0)k_{\rm B}, \qquad (15)$$

$$D_{\rm c} = \hbar 10^2 v_{\rm s} / \left(4 \left| \overline{\varepsilon}_d - \mu \right| \left(1 - \Gamma_{\rm e}' \right) \right). \tag{16}$$

Заметим, что эффективное затухание Γ_e включает и дополнительное к Γ_i слагаемое, обусловленное рассеянием на коротковолновых колебаниях, связанных с формированием двойников, типичных для пластинчатых кристаллов. Полагаем, что μ зависит от H за счет магнитострикционного изменения объема. Используя связь μ с концентрацией s-электронов n ($\mu \sim (n)^{2/3}$), получаем

$$\Delta \mu/\mu = -(2/3)\Delta V/V. \qquad (17)$$

При $\mu \approx 10$ эВ и $\Delta V/V = 10^{-3}$ из (17) имеем $\Delta \mu \approx -6.7 \times 10^{-3}$ эВ, что по температурной шкале соответствует снижению μ на величину $\Delta \mu/k_{\rm B} \approx 77.5$ К и,

Таблица 1. Данные [6] и параметр *a*₀

Марка стали	<i>M</i> _s , K	$\Delta H/\Delta T$, MA/MK	a_0
24X2H22	263	0.256	1
36X2H22	177	0.224	0.78220
45X2H22	130	0.196	0.63443
57X2H22	77	0.182	0.56054
67X2H22	4.2	0.161	0.44971
77X2H22	_	0.144	0.35999

Рис. 3. Зависимость H(T) импульсного магнитного поля, инициирующего мартенситное превращение в сталях: 1 - 24X2H22; 2 - 36X2H22; 3 - 45X2H22; 4 - 57X2H22; 5 - 67X2H22; 6 - 77X2H22.

следовательно, увеличению параметра $|\overline{\epsilon}_d - \mu|$. Достижение значений $\Delta V/V = 10^{-3}$ в сильных полях вполне возможно. Например, как следует из рис. 2, при линейной экстраполяции

$$\Delta V/V = \lambda_H H \tag{18}$$

коэффициент $\lambda_H \approx 4.3 \times 10^{-5} (MA/M)^{-1}$. Тогда для H = 36 MA/M получаем $\Delta V/V \approx 1.55 \times 10^{-3}$.

Для удобства сопоставления с данными в отсутствие поля представим параметр $|\overline{\epsilon}_d - \mu|$ в виде

$$\overline{\varepsilon}_{d} - \mu = |\overline{\varepsilon}_{d} - \mu_{0}|(1 + \Delta_{H}), \quad \mu_{0} \equiv \mu_{H=0}, \quad (19)$$
$$\Delta_{H} = 2\mu_{0}\lambda_{H}H/(3|\overline{\varepsilon}_{d} - \mu_{0}|). \quad (20)$$

Тогда формулы (14)-(16) принимают вид

$$M(D)_{\rm s} = M_{\rm s0\infty} \left[1 - \frac{D_{\rm c0}}{D} + \frac{\Delta_H}{1 - \Gamma'_{\rm e0}} \right],$$
 (21)

$$M_{\rm s0\infty} = \left|\overline{\epsilon}_d - \mu_0\right| \left(1 - \Gamma_{\rm e0}'\right) / (0.4 + 0.5a_0)k_{\rm B}, \qquad (22)$$

$$D_{\rm c} = D_{\rm c0} \left[1 + \Delta_H / \left(1 - \Gamma_{\rm e0}^{\prime} \right) \right]^{-1}, \qquad (23)$$
$$D_{\rm c0} = \hbar\beta \times 10^{\eta} v_{\rm s} / \left(4 \left| \overline{\epsilon}_d - \mu_0 \right| \left(1 - \Gamma_{\rm e0}^{\prime} \right) \right).$$

ОБРАБОТКА ДАННЫХ ЭКСПЕРИМЕНТА

Данные работы [6] приведены на рис. 3 и в табл. 1. Значениям температур M_s при H = 0 соответствуют прямоугольники на оси T на рис. 3, значениям $\Delta H/\Delta T$ – наклоны линейных участков зависимостей H(T). Кроме экспериментальных данных, в таблице приведены значения a_0 , полученные из согласования наблюдаемых наклонов и найденных с помощью (21) и (20).

Ì

Чтобы провести начальную калибровку параметров $|\overline{\epsilon}_d - \mu|$ и a_0 , необходимую для обработки данных, нужно сопоставить данные для одной из рассматриваемых сталей с конкретной точкой на линии (6). Опыт обработки данных [3, 5] для сплавов Fe—Ni показывает, что в качестве пробного выбора температуре M_s стали 24Х2H22 можно сопоставить точку ($\Gamma' = 0.96$, T = 0.1). Близость $M_s \kappa 273$ К позволяет принять $a_0 = 1$, а из требова-

ния $M'_{s} = 0.1$ следует $|\overline{\epsilon}_{d} - \mu| \approx 362.94 \times 10^{-23}$ Дж ≈ 0.22684 эВ или 2630 К по температурной шкале. Оценим, к какому наклону приведет выбранная калибровка. Из (21) и (20) получаем

. . .

$$\frac{dH}{dM_{\rm s}} = 3(0.4 + 0.5a_0) k_{\rm B}/2\mu_0\lambda_H.$$
(24)

Из (24) при $a_0 = 1$, $\mu_0 \approx 10$ эВ $\approx 1.6 \times 10^{-18}$ Дж, $\lambda_H \approx 4.3 \times 10^{-5}$ (МА/м)⁻¹, $k_B = 1.38 \times 10^{-23}$ Дж/К находим dH/dM_s ≈ 0.271 МА/мК, что неплохо согласуется с экспериментальными данными 0.256 МА/мК в табл. 1. Экспериментальные данные можно использовать для уточнения λ_H , принимая $\lambda_H \approx 4.552 \times 10^{-5}$ (МА/м)⁻¹. Фиксируя λ_H и μ_0 , найдем параметр a_0 для остальных сплавов с помощью (24), подставляя вместо dH/dM_s значения из табл. 1. Медленное изменение параметра a_0 , по-видимому, обусловлено значительным вкладом в $\Gamma(T)$ рассеяния на магнитных неоднородностях в условиях парапроцесса в аустените, обладающем сложной неколлинеарной магнитной структурой.

Следует отметить, что наряду с линейной зависимостью $H(M_s)$ в сильных полях имеются нелинейные участки при слабом поле. Условно на рис. 3 эти участки заменены отрезками прямых 1', 2' и 5'. Отрезки 1', как и 2', с большим наклоном отражают наличие суперпарамагнитного состояния аустенита. Действительно, наличие разориентированных ферромагнитных кластеров при наложении слабого поля сопровождается появлением намагниченности, главным образом, за счет разворота моментов и смещения доменных стенок, при незначительном изменении объема, что соответствует малым значениям параметра $\lambda_{\rm H}$ в (24) и, значит, большой величине dH/dM_s. Другая особенность (условно отраженная линией 5') обусловлена повышением λ_{H} и будет обсуждаться ниже.

Отметим, в [6] при изготовлении образцов использован аустенит с размерами зерен D = 5-7 мм, из которых для измерений изготавливали монокристаллические цилиндры диаметром 3-5 мм и длиной образующей 12 мм. Поэтому, для определенности, принимаем D = 5 мм. После этого выбора, хотя и несколько условного, но достаточного для оценки порядка величин, можно восполь-

Таблица 2. Результаты обработки данных [6]

Mac. % C	$M_{\rm s0\infty},{ m K}$	$\Delta M_{\rm s}, {\rm K}$	$\frac{D_{c0}}{D}$	$rac{D_{\mathrm{c}H}}{D_{\mathrm{c}0}}$	Γ _e
0.24	280	123	0.060	0.695	0.9042
0.36	196	140	0.098	0.584	0.9410
0.45	151	154	0.163	0.495	0.9588
0.57	99.4	162	0.225	0.379	0.9743
0.67	28.6	177	0.853	0.139	0.9932
CD	24.7	179	1	0.121	0.9942
0.77	4.0	190	6.530	0.020	0.9991

зоваться (20)–(22) при отыскании D_{c0} и $D_{c.}$ Заранее ясно, что близость $M_{\rm s}$ к 0 К для сплава с 0.67 мас. % углерода означает существование некоторой концентрации углерода $C_D > 0.67$ мас. %, при которой выполняется равенство $D_{c0} = D$. Очевидно также, что для стали 77Х2Н22 выполняется неравенство $D_{c0} > D$. Обработка выполнена при значениях ($\beta = 1$, $\eta = 2$) и ($\beta = 4$, $\eta = 3$). В табл. 2 приведены округленные результаты вычислений при ($\beta = 4$, $\eta = 3$) и фиксированных ($\epsilon_d - \mu_0$) = = 0.22684 эВ, D = 5 мм, $\Gamma'(D) = 5.78608 \times 10^{-3}$, $\lambda_H = 4.552 \times 10^{-5}$ (MA/м)⁻¹, H = 32 MA/м, $\Delta_H =$ = 0.042096.

Прокомментируем данные табл. 2.

1. Добавленная нами концентрация $C_D \approx 0.69343$ мас. % С (при $D_{c0} = D$ и $M_{s0} = 0$) оценена на основе линейной интерполяции концентрационного темпа изменения D_{c0}/D при переходе от 0.57 к 0.67 мас. % С.

2. Случаю 0.77 мас. % С формально отвечает $M_{\rm s0} = -22.2$ К и $D_{\rm c0} > D$.

3. Расчет смещения температуры $M_{\rm s}$, согласно (21), дается выражением

$$\Delta M_{\rm s} = M_{\rm s0\infty} \left[\Delta_H / \left(1 - \Gamma_{\rm e0}' \right)^{-1} \right]. \tag{25}$$

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

1. Данные [6] свидетельствуют в пользу вывода динамической теории о нарастании критического размера зерна D_{c0} при росте относительного затухания s-электронов ($\Gamma'_e \rightarrow 1$). Действительно, уве-

личение содержания углерода от 0.24 до 0.77 мас. % сопровождается ростом D_{c0} на два порядка с достижением диапазона $D_{c0} \sim 1$ см.

Напомним, в большинстве работ (см., например, [9–14]) содержится качественная констата-

Рис. 4. Температурная зависимость критического магнитного поля хромоникелевых сталей: *1* – 67Х2H22; *2* – 50Х2H20 [7].

ция существования критического размера зерна, а типичные количественные оценки D_{c0} составляли ~1 мкм (в [11] – 10 мкм, в [14] – 25.4 мкм).

2. Стремление уточнить зависимость $H(M_s)$ в области низких температур и полей [7] привело к интересным результатам, отраженным на рис. 4.

Сравнение рис. 3 и 4 показывает, во-первых, что для стали 67Х2Н22 в [7] отсутствует мартенсит охлаждения. В свете проведенных расчетов это легко объясняется тем, что для образцов в [7] выполняется неравенство $D_{c0} > D$. Действительно, из табл. 2 следует, что $D_{c0} \approx 0.853 \ D \approx 4.26 \ \text{мм}$. Диаметры же цилиндрических образцов в [7] меньше (1.2 и 3 мм), чем в [6], и меньше оценочного значения D_{c0} . Кроме того, гомогенизирующий отжиг (6 ч в [7] и 12 ч в [6]) должен приводить наряду с кристаллами, объем которых свободен от ДЦЗ, к образованию кристаллов с субзеренной структурой с масштабами $L < D_{c0}$. Существованием границ субзерен подтверждается, на наш взгляд (см. [15]), наблюдаемыми пакетами параллельных мартенситных кристаллов, не только синхронно возбуждающихся у границ зерен, но и "преломляющихся" на таких границах. Во-вторых, на зависимости $H(M_{\rm s})$ надежно идентифицирован минимум при $T \approx 38$ K, явно указывающий на изменения в магнитной структуре аустенита, начальная магнитная восприимчивость $\chi_0(T)$ которого, согласно [7], обладает максимумом при $T \approx 28$ К. В [7] эта особенность $\chi_0(T)$ предположительно связывается с магнитным упорядочением в значимой части аустенита, запоздавшей (в силу смешанного характера обменного взаимодействия) по отношению к ферромагнитному превращению при 70 К, приведшему к образованию ферромагнитных кластеров. Полагая, что переход от слабых полей

(при которых наблюдали $\chi_0(T)$) к критическим сопровождается [16] ростом температуры θ , соответствующей максимуму χ , естественно связать минимум на кривой $H(M_s)$ с максимумом λ_H . В формуле (24) это легко отразить, задавая λ_H в виде

$$\lambda_H = \lambda^* - b(T - \theta)^2, \ b = \text{const} > 0, \qquad (26)$$

где λ^* — максимальное значение λ_H при $\theta = 38$ K, которому соответствует $H_{\min} \approx 2.9$ MA/м (рис. 4). Началу линии 1 при T = 0 соответствует $H \approx 5.3$ MA/м. Для линейного участка линии 1 $dH/dT \approx 0.195$ превышает использованное нами ранее значение 0.161 (см. табл. 1). Учитывая качественный характер оценок, отнесем это изменение к а₀, принимая $a_0 \approx 0.63$ и сохраняя для линейного участка использованное ранее $\lambda_H = 4.552 \times 10^{-5} \, (MA/M)^{-1}$. Чтобы определить значения трех неизвестных параметров $(D_{c0}/D, b, \lambda^*)$, запишем (22), с учетом (26), для трех точек, добавляя к двум указанным $(T_1 = \theta = 38 \text{ K}, H_1 = H_{\min} \approx 2.9 \text{ MA/M}; T_2 = 0, H_2 \approx$ ≈ 5.3 MA/м) третью точку графика справа от минимума ($T_3 \approx 61.5$ K, $H_3 \approx 5.3$ MA/м). Решая систему трех уравнений, получаем: $D_{\rm c0}/D \approx 1.28, b \approx 1.05 \times$ × 10⁻⁷ K⁻² (MA/m)⁻¹, $\lambda^* \approx 12.84 \times 10^{-5}$ (MA/m)⁻¹. Легко проверить с помощью (26), что значение λ_H для линейного участка зависимости H(T) достигается при $T_4 \approx 66.1$ K, так что при $T \ge T_4$ следует полагать λ_H постоянной, почти в три раза меньшей λ^* . Таким образом, снижение наклона (двукратное, при огрубленном линейном описании) на участке 5' рис. 3 имеет вполне понятную причину. Очевидно, что легко модифицировать вид λ_{H} и для описания участков 1', 2' на рис. 3, отражая его уменьшение.

3. Из анализа данных табл. 2 следует, что смещение $\Delta M_{\rm s}$ нарастает по мере снижения температуры $M_{\rm s}$. Это обусловлено снижением величины $D_{\rm c}$ в магнитном поле. Снижение $D_{\rm c}$ сопровождается хорошо известным эффектом дестабилизаций аустенита [17], стабилизированного либо измельчением зерна, либо пластической деформацией, так что выполняется условие $D < D_{\rm c0}$ (либо $L < D_{\rm c0}$). В сильном поле $D > D_{\rm cH}$ и существует $M_{\rm sH} > 0$ К.

4. При фиксированном химическом составе сплава температуры M_{s0i} спонтанного МП разные для разных размеров зерен D_i . Однако в сильном поле, если $D_{cH} \ll D_i$, то величиной D_c/D можно пренебречь, и, согласно (14), $M_{sH} = M_{sH\infty}$, т.е. все кривые $H(M_{sH})$ стремятся к одной точке, что и наблюдается (рис. 5).

5. При переходе к параметрам ($\beta = 1, \eta = 2$) и сохранении D = 5 мм значения D_{cH}/D_{c0} меняются незначительно, а D_{c0}/D снижаются существенно, как и смещения ΔM_s .

Рис. 5. Зависимость порогового магнитного поля от размера зерна D [17, 18] для сплава Fe–31% Ni–0.25C: I - D = 16 мкм, 2 - D = 45 мкм; 3 - D = 180 мкм.

6. Как уже отмечено выше, затуханию $\Gamma(D)$ физически соответствует $\Gamma(d_{\rm m})$, поэтому за отношением $D_{\rm c}/D$ стоит $(d_{\rm mc}/d_{\rm m})$:

$$d_{\rm mc} = \hbar v_{\rm s} / \left(4 \left| \overline{\varepsilon}_d - \mu \right| \left(1 - \Gamma_{\rm e}' \right) \right). \tag{27}$$

Поскольку магнитное поле, приводящее к увеличению удельного объема, должно приводить к снижению межфазного энергодеформационного порога, область локализации НВС в упругом поле ДЦЗ будет удаляться от ДЦЗ, что приведет к росту $d_{\rm m}$. Это должно сопровождаться увеличением толщины возникающих кристаллов при увеличении поля. Такой эффект идентифицирован в [17] в качестве перехода от тонкопластинчатого к пластинчатому мартенситу. В связи с этим уместно отметить, что в сильном поле параметр $d_{\rm mc}/d_{\rm m}$ снижается не только из-за уменьшения $d_{\rm mc}$, но и за счет роста $d_{\rm m}$.

7. Уместно напомнить также, что в динамической теории предсказан [19] и экспериментально подтвержден [20] специфический ориентационный эффект формирования кристаллов мартенсита в сильном магнитном поле.

ЗАКЛЮЧЕНИЕ

Анализ экспериментальных данных [6] и [7] показал, что динамическая теория МП адекватно описывает наблюдаемые особенности МП в сильных магнитных полях.

Надежной опорой для выводов является морфологический анализ, систематизированный в [17], генетически связанный в динамической теории с упругими полями ДЦЗ.

Существенную роль в МП играет увеличение удельного объема при магнитострикции, что обусловливает особенности протекания превращения, не изменяя его физической природы. В связи с этим оказываются неактуальными представления о гипотетических микроскопических зародышах мартенсита, как и попытки интерпретации МП в сильных магнитных полях в качестве магнитного фазового перехода I рода [21].

Авторы выражают признательность Министерству науки и высшего образования России за поддержку при исполнении государственного задания № 075-00243-20-01 от 26.08.2020 в рамках темы FEUG-2020-0013 "Экологические аспекты рационального природопользования".

СПИСОК ЛИТЕРАТУРЫ

- Кащенко М.П. Волновая модель роста мартенсита при γ-α превращении в сплавах на основе железа. Изд. 2-е. М.-Ижевск: НИЦ "Регулярная и хаотическая динамика", ИИКИ, 2010. 280 с.
- Кащенко М.П., Чащина В.Г. Динамическая модель сверхзвукового роста мартенситных кристаллов // УФН. 2011. Т. 181. № 4. С. 345–364.
- Кащенко М.П., Чащина В.Г. Динамическая модель γ-α мартенситного превращения в сплавах железа и решение проблемы критического размера зерна. М.-Ижевск: НИЦ "Регулярная и хаотическая динамика", ИИКИ, 2010. 133 с.
- Кащенко М.П., Чащина В.Г. Проблема критического размера зерна при γ-α мартенситном превращении. Термодинамический анализ с учетом пространственных масштабов, характерных для стадии зарождения мартенсита // Физ. мезомех. 2010. Т. 13. № 1. С. 29–35.
- 5. *Кащенко М.П., Чащина В.Г.* Зависимость температуры начала γ–α мартенситного превращения от размера зерна // Физ. мезомех. 2010. Т. 13. № 1. С. 37–45.
- Леонтьев А.А. Особенности формирования мартенсита в сталях под действием магнитного поля. Дис. ... канд. ф.-м. н., Свердловск, 1985. 188 с.
- Ромашов Л.Н., Леонтьев А.А. Садовский В.Д. Мартенситное превращение в хромоникелевой стали под действием магнитного поля при температурах ниже 77 К // ФММ. 1988. Т. 66. № 5. С. 935–942.
- Золотаревский И.В., Лоскутова С.В., Снежной В.Л., Шейко Л.М. О магнитострикции парапроцесса аустенитных сплавов вблизи мартенситной точки // ФММ. 1979. Т. 47. № 6. С. 1312–1313.
- Scheil E. Über die Umwandlung des Austenit in geharten Stahle // Z. anorg. Chem. 1929. V. 180. S. 1–6.
- 10. Гайдуков М.Г., Садовский В.Д. К вопросу о влиянии величины зерна аустенита на мартенситное превращение в стали // ДАН СССР. 1954. Т. 96. № 1. С. 67-69.
- Umemoto M., Owen W.S. Effects of austenitizing temperature and aaustenite grain size on the formation of athermal martensite in an iron-nickel and an iron-nickelcarbon alloy // Metal. Trans. 1974. V. 5. P. 2041–2046.
- 12. Иванов Ю.Ф., Кащенко М.П., Марков А.Б., Ротштейн В.П. Критический размер зерна для зарож-

дения α-мартенсита // ЖТФ. 1995. Т. 65. № 3. С. 99-102.

- Блинова Е.Н., Глезер А.М., Дьяконова Н.Б., Жорин В.А. Размерный эффект при мартенситном превращении в сплавах железо-никель, закаленных из расплава // Изв. РАН. Сер. физ. 2001. Т. 65. № 10. С. 1444–1449.
- 14. Кащенко М.П., Кащенко Н.М., Королев А.В. Оглезнева С.А., Чащина В.Г. Оценка критического размера зерна при γ-α мартенситном превращении с атермической макрокинетикой на примере системы Fe-Ni-Cr // Физ. мезомех. 2017. Т. 20. № 6. С. 56-61.
- Кащенко М.П., Чащина В.Г. Динамическая интерпретация формирования параллельных тонкопластинчатых кристаллов в сильных магнитных полях // МиТОМ. 2014. № 7. С. 3–7.
- Белов К.П. Ферромагнетики и антиферромагнетики вблизи точки Кюри // УФН. 1958. Т. 65. № 2. С. 207–256.

- 17. Счастливцев В.М., Калетина Ю.В., Фокина Е.А. Мартенситное превращение в магнитном поле. Екатеринбург: УрО РАН, 2007. 322 с.
- 18. Фокина Е.А., Смирнов Л.В., Олесов В.Н. Счастливцев В.М., Калетина Ю.В., Калетин А.Ю. Влияние размера зерна аустенита на особенности мартенситного превращения при охлаждении и магнитной обработке сплавов Fe–Ni–C // ФММ. 1996. T. 81. № 1. C. 103–111.
- Кащенко М.П. Интерпретация ряда характерных морфологических признаков мартенсита систем Fe-Ni, Fe-C в модели фононного мазера // ΦMM. 1984. Т. 58. № 5. С. 862–869.
- Леонтьев А.А., Счастливцев В.М., Ромашов Л.Н. Габитус и ориентация кристаллов мартенсита, образующихся под действием магнитного поля // ФММ. 1984. Т. 58. № 5. С. 950–957.
- Золотаревский И.В., Лоскутова С.В., Щетинина М.О. Влияние магнитного состояния аустенита на мартенситное превращение в сплавах Fe−Ni // ΦMM. 2018. T. 119. № 8. C. 794 –801.