СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ

УДК 669.295

ВЛИЯНИЕ ЛЕГИРОВАНИЯ И ИСХОДНОЙ ОБРАБОТКИ НА ПРОЦЕССЫ ФОРМИРОВАНИЯ СТРУКТУРЫ В ЗАКАЛЕННЫХ СПЛАВАХ Ті–10% AI

© 2021 г. А. А. Попов^{*a*, *b*, *, Е. Н. Попова^{*a*, *b*}, М. С. Карабаналов^{*a*}, Н. А. Попов^{*a*, *b*, *, К. И. Луговая^{*a*}, Д. И. Давыдов^{*a*, *b*}}}

^аУральский федеральный университет им. первого Президента России Б.Н. Ельцина, ул. Мира, 19, Екатеринбург, 620002 Россия

^bИнститут физики металлов УрО РАН, ул. С. Ковалевской, 18, Екатеринбург, 620108 Россия

**e-mail: n.a.popov@urfu.ru* Поступила в редакцию 11.08.2021 г. После доработки 18.08.2021 г. Принята к публикации 23.08.2021 г.

Изучено влияние дополнительного легирования сплавов титана с 10 мас. % алюминия молибденом, ниобием, цирконием и оловом на формирование структуры при закалке от температур, соответствующих однофазной β - и двухфазной ($\alpha + \beta$)-областям, и значения периодов кристаллических решеток фаз, присутствующих в закаленном состоянии. Показано, что после закалки из β -области формируется α '-мартенсит пакетной морфологии. Легирование цирконием способствует увеличению дисперсности структуры. В сплавах, закаленных из двухфазной области, формируется $\alpha + \alpha$ '-структура с небольшим количеством α_2 -фазы. Проанализировано влияние легирования на периоды решетки $\alpha(\alpha')$ -фаз.

Ключевые слова: титановые сплавы, электронная микроскопия, интерметаллиды, фазовые превращения

DOI: 10.31857/S001532302112007X

введение

Титановые сплавы благодаря высоким характеристикам удельной прочности и удельной жаропрочности, являются одними из наиболее используемых материалов в авиационном двигателестроении [1]. Из них изготовляют детали вентилятора и компрессора низкого давления, которые работают при температурах не выше 600°С. На данный момент считается, что эта температура является предельной для жаропрочных сплавов титана. причем длительность эксплуатации при этой температуре ограничена. В тоже время сплавы на основе алюминидов титана могут работать и при более высоких температурах (650-700°С), однако их применение сдерживается низкими характеристиками пластичности и вязкости при комнатных температурах.

Хорошо известно [2-5], что для получения повышенных характеристик жаропрочности предпочтительно иметь в сплавах пластинчатую структуру при небольших содержаниях β -фазы в пределах 5-7%, которую получают за счет деформации или термической обработки в β -области. Возможными способами увеличения длительности использования сплавов при повышенных температурах являются как дополнительное легирование сплавов тугоплавкими элементами, так и создание двухфазных $\alpha + \alpha_2$ -структур. Оба этих подхода имеют существенные проблемы. Так, все тугоплавкие элементы, применяемые в титановой промышленности, а именно: молибден, вольфрам, ниобий и тантал, являются β-стабилизаторами, и их введение увеличивает количество термически нестабильной β-фазы, что в свою очередь будет увеличивать деформацию при ползучести. В случае создания $\alpha + \alpha_2$ -структуры при используемых в настоящее время режимах термической обработки наблюдается эффект охрупчивания сплавов вследствие образования высокодисперсных частиц, которые достаточно равномерно распределяются как по телу зерен, так и по их границам. В этой связи в промышленных сплавах минимизируют количество выделяющейся α2-фазы для сохранения комплекса вязко-пластических свойств.

Известно [6, 7], что процесс формирования двухфазной $\alpha + \alpha_2$ -структуры может проходить как путем образования дисперсных частиц по механизму зарождения и роста, так и по реакции упорядочения с образованием областей с дальним порядком. В последнем случае при относительно крупных размерах упорядоченных областей можно избежать эффекта охрупчивания и,

Обозначение сплава	Химический состав, мас. %						
	Al	Мо	Nb	Zr	Sn	0	Ti
Ti10Al	9.60	_	_	_	_	0.18	Остальное
Ti10Al1Mo1Nb	9.58	1.20	1.41	—	—	0.18	Остальное
Ti10Al1Mo1Nb4Zr	9.60	1.21	1.39	4.34	_	0.18	Остальное
Ti10Al1Mo1Nb3Sn	9.62	1.20	1.40	—	3.20	0.18	Остальное
Ti10Al1Mo1Nb4Zr3Sn	9.61	1.19	1.42	4.35	3.22	0.18	Остальное

Таблица 1. Химический состав исследуемых сплавов

Таблица 2. Химический состав сплава Ti10Al1Mo1Nb4Zr по данным MPCA (участки анализа, обозначены на рис. 1г)

Спектры	Al	Ti	Zr	Nb	Mo	Total
Спектр 1 ($\alpha + \alpha'$)	9.10	84.00	4.30	1.40	1.20	100.00
Спектр 2 (α)	10.40	84.90	4.20	0.50	0.00	100.00
Спектр 3 (α')	7.60	81.60	4.40	2.40	4.00	100.00

тем самым, создать сплав с термически стабильной двухфазной α + α₂-структурой. Для реализации различных механизмов формирования $\alpha + \alpha_2$ -структуры необходимо сформировать разные исходные структурные состояния и оценить процессы, которые обеспечивают распад пересыщенного α-твердого раствора с образованием упорядоченной фазы. Как было показано в работе [8], различные структурные состояния, полученные закалкой с разных температур, способствуют активации разных механизмов распада метастабильного α-твердого раствора. Кроме того, на наш взгляд, дополнительный вклад в получение термически стабильной двухфазной структуры можно реализовать, выполнив оценку влияния легирования на несоответствие решеток α и α₂-фаз. Создание сплава с их минимальным несоответствием позволит обеспечить пониженную удельную поверхностную энергию и, следовательно, дополнительно повысить термическую стабильность структуры.

В связи с этим целью данной работы является изучение закономерностей процессов формирования структуры в модельных сплавах системы Ti–10% Al, дополнительнолегированных как β -стабилизаторами (молибден, ниобий), так и "нейтральными" элементами (цирконий, олово), при закалке от температур, соответствующих однофазной β - и двухфазной (α + β)-областям, и установление влияния структуры на комплекс механических свойств.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Материалом исследования служили слитки из титановых сплавов, массой по 40 г, полученные в дуговой электрической печи Heraues L200d. Химический состав сплавов представлен в табл. 1. Слитки гомогенизировали в вакуумной печи при температуре 1200°С в течение 3-х ч с последующим медленным охлаждением.

Термическую обработку осуществляли закалкой в воде. Основными методами исследования служили растровая (РЭМ) и просвечивающая электронная микроскопия (ПЭМ), выполненные на микроскопах AURIGA CrossBeam и JEM2100 соответственно, и рентгеноструктурный анализ. проведенный на дифрактометре Brukker D8-Advance в Cu K_{α} -излучении в диапазоне углов 2 θ = $= 20^{\circ} - 75^{\circ}$. Погрешность в определении периода фаз не превышала ±0.0001 нм. Микролюрометрические измерения проводили с помощью прибора **MHTXCSM INSTRUMENTS по метолике Оливе**ра и Фарра [9]. При этом использовали следующие условия эксперимента: индентор – алмазная пирамидка, скорость нагружения 18 Н/мин, максимальная нагрузка 9 Н, время выдержки 15 с, скорость снятия нагрузки 18 Н/мин. Твердость образца определяли по глубине отпечатка, модуль упругости – по кривой разгрузки. Измерение твердости по Роквеллу (по пяти замерам) проводили на твердомере "Zwick Roell 6187.5 LKV" при нагрузке 150 кг.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В качестве температур нагрева под закалку были выбраны 1200 и 950°С для реализации различных структурных состояний. В первом случае $(T_{3ak} = 1200^{\circ}C, 3akaлka из \beta$ -области) по данным РЭМ в результате закалки формировался α'-мартенсит (рис. 1а, 1б), а в случае закалки с 950°С (двухфазная $\alpha + \beta$ – область) фиксировали крупные пластины α-фазы, разделенные прослойками α'-мартенсита (рис. 1в, 1г). Микрорентгеноспектральный анализ (МРСА) показал, что в процессе обработки в двухфазной области наблюдается перераспределение легирующих элементов между фазами: α-фаза обогащается алюминием до 10.0-10.5 мас. % и обедняется молибденом и ниобием (табл. 2, спектр 2). При этом, если молибден полностью переходит в α'-мартенсит, который образовался из β-фазы при закалке (спектр 3), то ниобий сохраняется в некотором количестве в α-фазе. Олово и цирконий распределяются между фазами практически равномерно. Содержание алюминия в α'-мартенсите, составляет 7.0-7.5 мас. %, а суммарное содержание

2021

Рис. 1. Типичные РЭМ-изображения микроструктуры сплавов, закаленных из β - (а, б) и из ($\alpha + \beta$)-области (в, г); а, в – сплав Til0Al1Mo1Nb; б, г – сплав Til0Al1Mo1Nb4Zr.

молибдена и ниобия соответствует молибденовому эквиваленту около 5 (спектр 3).

При исследовании структуры методами ПЭМ установлено, что преимущественно образуется мартенсит пакетной морфологии (рис. 2a, 2б), но иногда встречаются отдельно расположенные и различно ориентированные пластины. Внутри мартенситных игл наблюдаются скопления дислокаций и иногда микродвойники.

Наибольшее количество двойников обнаружено в сплаве Til0Al1Mo1Nb, а дополнительное введение олова и циркония существенно уменьшает количество образовавшихся двойников, что может косвенно свидетельствовать о повышении энергии дефектов упаковки вследствие такого легирования. Введение в химический состав сплавов циркония несколько повышает дисперсность структуры. На ряде микро-электронограмм наблюдаются сверхструктурные отражения от α_2 -фазы, однако сами частицы обнаружить не удалось, что обусловлено их крайне малым размером, и найти их в высоко дефектной матрице оказалось затруднительным. Судя по интенсивности сверхструктурных отражений количество α_2 -фазы увеличивается при введении в состав сплавов олова.

Рентгеновские дифрактограммы, полученные с закаленных из β-области образцов, свидетельствуют об однофазной структуре сплавов (рис. 3). В табл. 3 представлены периоды решетки мартен-

Таблица 3.	Периоды решетки	α'-мартенсита в	в сплавах, закаленн	ых изβ	в-области
------------	-----------------	-----------------	---------------------	--------	-----------

Сплав	Закалка 1200°С						
	а, нм	С, НМ	c/a	Уд. объем, $\text{нм}^3 \times 10^3$			
Ti10Al	0.2918	0.4665	1.598	17.199			
Ti10Al1Mo1Nb	0.2920	0.4657	1.595	17.193			
Ti10Al1Mo1Nb4Zr	0.2923	0.4650	1.591	17.203			
Ti10Al1Mo1Nb3Sn	0.2924	0.4647	1.587	17.204			
Ti10Al1Mo1Nb4Zr3Sn	0.2930	0.4634	1.582	17.225			

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 122 № 12 2021

Рис. 2. Светлопольные ПЭМ-изображения микроструктуры (а, б) и соответствующие микроэлектронограммы (в, г) сплавов Ti10Al1Mo1Nb (а, в) и Ti10Al1Mo1Nb4Zr3Sn (б, г), закаленных из β-области.

Рис. 3. Рентгеновские дифрактограммы исследуемых сплавов, закаленных из β-области.

ситной фазы, образовавшейся при закалке сплавов. Как следует из представленных результатов легирование способствует увеличению периода

"*a*" и уменьшению периода "*c*" мартенситной фазы, что обусловливает уменьшение отношения c/a и, тем самым, увеличивает возможное количе-

Рис. 4. Светлопольные ПЭМ-изображения микроструктуры (а, б) и соответствующие микроэлектронограммы (в, г) сплавов Ti10Al1Mo1Nb (а, в) и Ti10Al1Mo1Nb4Zr3Sn (б, г), закаленных из (α + β)-области.

ство систем скольжения, которые могут реализоваться при деформации. Поскольку размеры атомов циркония и олова больше, чем атомов титана, а при их введении возрастает период "a", можно предположить, что они преимущественно оккупируют базисные плоскости, в то время как атомы алюминия и молибдена меньших размеров располагаются по направлениям оси "c".

При легировании молибденом и ниобием удельный объем решетки, приходящийся на один атом, уменьшается, а при введении циркония и олова наблюдается его закономерный рост. В структуре сплавов, закаленных с 950°С, внутри пластин α -фазы наблюдается характерный контраст (рис. 4а), который обусловлен параллельным расположением дислокаций, вследствие их торможения различными препятствиями. На электронограммах при этом наблюдаются слабые диффузные рефлексы в положениях, соответствующих α_2 -фазе, однако самих частиц выявить не удалось. Это может быть следствием как высокой дисперсности и малой объемной доли выделений, так и формированием областей, обогащенных по алюминию, но еще не имеющих своей кристаллической решетки, т.е. предвыделений.

Однако такие области могут являться барьерами для движения дислокаций и приводить к образованию такой планарной структуры. По данным рентгеноструктурного анализа в закаленном состоянии в сплавах Til0Al1Mo1Nb и Til0Al1Mo1Nb4Zr, присутствуют только α и α' фазы, а при введении олова в сплавах Til0Al1Mo1Nb3Sn и Til0Al1Mo1Nb4Zr3Sn (рис. 46) дополнительно фиксируются отражения от α_2 -фазы. Разделить линии α и α' -фаз после такой обработки практически невозможно и поэтому в табл. 4 периоды этих фаз представлены как единое целое.

Сравнивая данные, представленные в табл. 3 и 4 видно, что для ($\alpha + \alpha'$) структуры характерны меньшие значения периода "*a*" и большие значения "*c*", чем для однофазного мартенситного состояния. Это приводит к возрастанию отношения

1322

Таблица 4. Периоды решетки α (α')-фаз в сплавах после закалки с 950°C

Сплав	Закалка 950°С					
	а, нм	С, НМ	c/a	Уд. объем, нм ³ × 10 ³		
Ti10Al	0.2909	0.4677	1.607	17.139		
Ti10Al1Mo1Nb	0.2917	0.4660	1.597	17.169		
Ti10Al1Mo1Nb4Zr	0.2917	0.4664	1.599	17.183		
Ti10Al1Mo1Nb3Sn	0.2917	0.4664	1.599	17.183		
Ti10Al1Mo1Nb4Zr3Sn	0.2918	0.4675	1.602	17.234		

Таблица 5. Влияние легирования и температуры закалки на твердость сплавов

Сплав	HRC		H	V	<i>Е</i> , ГПа	
	$T_{_{3aK}} = 1200^{\circ}C$	$T_{_{3\mathrm{a}\mathrm{K}}} = 950^{\circ}\mathrm{C}$	$T_{_{3\mathrm{a}\mathrm{K}}} = 1200^{\circ}\mathrm{C}$	$T_{_{3\mathrm{a}\mathrm{K}}} = 950^{\circ}\mathrm{C}$	$T_{_{3\mathrm{a}\mathrm{K}}} = 1200^{\circ}\mathrm{C}$	$T_{_{3\mathrm{a}\mathrm{K}}} = 950^{\circ}\mathrm{C}$
Ti10Al	31	27	367	378	131	119
Ti10Al1Mo1Nb	39	33	467	371	117	103
Ti10Al1Mo1Nb4Zr	40	34	516	387	127	122
Ti10Al1Mo1Nb3Sn	41	32	474	380	128	99
Ti10Al1Mo1Nb4Zr3Sn	44	35	542	403	118	100

"с/a", что должно несколько затруднять пластическую деформацию по призматическим и пирамидальным плоскостям скольжения. Следует отметить, что хотя по данным MPCA [Mo]_{экв} для β -фазы при такой обработке близок к 5-ти, линий, соответствующих образованию ромбического α "-мартенсита, зафиксировано не было.

Проведение дюрометрического исследования показало, что легирование приводит к увеличению твердости и снижению модуля упругости E (табл. 5). При этом наибольший вклад в упрочнение наблюдается за счет введения в состав сплавов β -стабилизаторов — молибдена и ниобия. Легирование оловом и цирконием способствует дополнительному упрочнению. Как и следовало ожидать, твердость сплавов, закаленных из двухфазной области, несколько ниже, чем сплавов, обработанных на α' -мартенсит.

ЗАКЛЮЧЕНИЕ

Таким образом, в работе установлено влияние легирования на формирование структуры, в сплавах системы титан — 10 мас. % алюминия, при за-

калке с температур, соответствующих однофазной β - и двухфазной ($\alpha + \beta$)-областям. Показано, что после закалки из β-области формируется α'-мартенсит пакетной морфологии. Легирование способствует увеличению дисперсности структуры. В сплавах, закаленных из двухфазной области, формируется $\alpha + \alpha'$ -структура с небольшим количеством α₂-фазы. Проанализировано влияние легирования на периоды решетки α(α')фаз. Установлено, что введение циркония и олова приводит к увеличению периода "а" и уменьшению "с" после закалки как из однофазной, так и двухфазной областей, что способствует лучшей деформируемости сплавов. В сплавах, содержащих олово, при закалке из двухфазной области обнаружена α₂-фаза.

"Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-38-90222".

СПИСОК ЛИТЕРАТУРЫ

1. Колачев Б.А. Титановые сплавы в конструкциях и производстве авиадвигателей и авиационно-кос-

мической технике / Под ред. А.Г. Братухина. М.: Изд-во МАИ, 2001. 416 с.

- Ильин А.А. Колачев Б.А., Полькин И.С. Титановые сплавы. Состав, структура, свойства: справочник. М.: ВИЛС – МАТИ, 2009. 520 с.
- 3. *Борисова Е.А.* Металлография титановых сплавов. М.: Металлургия, 1980. 464 с.
- 4. *Белов С.П.* Металловедение титана и его сплавов. М.: Металлургия, 1992. 352 с.
- 5. *Колачев Б.А., Елагин В.И., Ливанов В.А.* Металловедение и термическая обработка цветных металлов и сплавов. М.: МИСиС, 2005. 432 с.
- 6. Белов С.П., Ильин А.А., Мамонов А.М., Александрова А.В. Теоретический анализ процессов упо-

рядочения в сплавах на основе Ti_3Al . 1. О механизме упорядочения в сплавах на основе соединения Ti_3Al // Металлы. 1994. № 1. С. 134–138.

- Popov A., Rossina N., Popova M. The effect of alloying on the ordering processes in near-alpha titanium alloys // Mater. Sci. Eng. A. 2013. V. 564. P. 284–287.
- Popov A.A., Lugovaya K.I., Popova E.N., Makarov V.V., Zhilyakova M.A. Features of the Two-Phase (α + α₂) Structure Formation in the Ti–17 at % Al alloy // Phys. Met. Metal. 2020. V. 121. P. 791–796.
- Oliver W.S. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments // J. Materials Research. V. 7. № 6. 1992. P. 1564–1583.