ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА

УДК 537.622.4:537.621.2:539.213.27

ВЛИЯНИЕ ПАРАМЕТРОВ МНОГОСЛОЙНЫХ ПЛЕНОЧНЫХ СТРУКТУР НА ОСНОВЕ ПЕРМАЛЛОЯ НА ЧУВСТВИТЕЛЬНОСТЬ ЭФФЕКТА МАГНИТНОГО ИМПЕДАНСА

© 2021 г. Н. А. Бузников^а, А. В. Свалов^b, Г. В. Курляндская^{b, *}

^аНаучно-исследовательский институт природных газов и газовых технологий — Газпром ВНИИГАЗ, Развилка, Московская область, 142717 Россия ^bУральский федеральный университет, ул. Мира, 19, Екатеринбург, 620002 Россия *e-mail: galinakurlyandskaya@urfu.ru Поступила в редакцию 05.09.2020 г. После доработки 01.11.2020 г. Принята к публикации 11.11.2020 г.

Проведен теоретический анализ влияния числа слоев пермаллоя, их толщины, а также толщины и материала прослоек на величину эффекта магнитного импеданса (МИ) многослойных пленочных структур. Распределение электромагнитных полей по толщине пленочной структуры и МИ получены на основе совместного решения уравнений Максвелла и уравнения Ландау–Лифшица. Проведенный анализ показал, что МИ возрастает при уменьшении числа слоев пермаллоя и соответствующем увеличении их толщины. Установлено, что значения проводимостей центрального немагнитного слоя и прослоек по-разному влияют на величину МИ. Предсказано, что дальнейшее увеличение МИ может быть достигнуто при использовании прослоек из ферромагнитных материалов.

Ключевые слова: многослойные пленочные структуры, пермаллой, магнитный импеданс, магнитные биосенсоры

DOI: 10.31857/S0015323021030025

ВВЕДЕНИЕ

Одним из перспективных явлений для создания детекторов слабых магнитных полей является магнитный импеданс (МИ), обладающий рекордной чувствительностью по отношению к магнитному полю, позволяя детектирование даже биомагнитных сигналов [1, 2]. Эффект МИ заключается в изменении комплексного сопротивления магнитомягкого проводника, возбуждаемого переменным током, в присутствии внешнего поля. Эффект МИ может быть описан в рамках классической электродинамики на основе представлений о скин-эффекте и зависимости глубины скин-слоя от магнитной проницаемости проводника [1].

В качестве чувствительных МИ-элементов можно использовать магнитные проволоки, ленты и многослойные пленки [3, 4], но с точки зрения миниатюризации пленочные элементы наиболее перспективны. Классическая пленочная МИ-структура состоит из двух магнитомягких слоев, разделенных слоем неферромагнитного проводника [5]. В такой структуре возникновение МИ определяется индуктивностью магнитных слоев и электрическим сопротивлением центрального проводника. В качестве центрального слоя применяются высокопроводящие материалы (медь, алюминий, серебро). Для магнитных слоев используют магнитомягкие материалы, в частности, пермаллой Fe₁₉Ni₈₁, обладающий низкой коэрцитивной силой и высокими значениями намагниченности насыщения и магнитной проницаемости.

Для достижения высокой чувствительности МИ к внешнему полю суммарная толщина магнитных слоев должна составлять порядка 1 мкм [4]. Однако магнитные свойства однослойной пленки FeNi существенно зависят от ее толщины вследствие перехода в "закритическое" состояние [6, 7]. Толстые пленки FeNi характеризуются возникновением перпендикулярной анизотропии, увеличением коэрцитивной силы, что приводит к резкому уменьшению МИ. Для решения проблемы перехода в "закритическое" состояние было предложено структурирование слоев FeNi прослойками из проводящего немагнитного материала [8, 9]. Эффект МИ в наноструктурированных пленках экспериментально исследован для различных материалов прослоек (медь, серебро, титан) [8-10], но число исследований, касающихся влияния материала и толщины прослоек, очень ограничено.

Недавно был предложен теоретический подход для расчета МИ в многослойных пленках, ос-

Рис. 1. Схематическое изображение многослойной пленочной структуры и система координат, используемая в модели.

нованный на решении одномерных уравнений Максвелла [11]. В настоящей работе развит этот подход и проведен теоретический анализ влияния числа слоев пермаллоя, их толщины, а также толщины и материала прослоек на эффект МИ в многослойных пленках. Зависимости МИ от внешнего поля и частоты получены с учетом распределения электромагнитных полей и магнитной проницаемости слоев пермаллоя.

МЕТОДИКА РАСЧЕТА

Рассматриваемая многослойная пленочная структура $[F/M]_n/F/C/[F/M]_n/F$ длиной l и шириной w < l схематически показана на рис. 1. Структура состоит из высокопроводящего центрального слоя С толщиной $2d_0$ и двух внешних ферромагнитных слоев той же длины и ширины, что и центральный слой. Каждый из внешних слоев содержит n + 1 пленку пермаллоя F толщиной d_1 для блокировки перехода в "закритическое" состояние. Многослойная структура возбуждается переменным электрическим полем $U(t) = U_0 \exp(-i\omega t)$, и внешнее постоянное магнитное поле H_e направлено вдоль длинной стороны образца.

В модели границы между слоями структуры предполагаются плоскими, без неоднородностей и шероховатости. Хотя такое приближение упрощает реальную конфигурацию границ в многослойных структурах, оно позволяет получить аналитические выражения для распределения электромагнитных полей. Отметим, что учет шероховатости границ между слоями не приведет к существенным изменениям полученных результатов, если характерный размер шероховатости мал по сравнению с толщиной скин-слоя в различных слоях. Кроме того, к настоящему времени еще не накоплено достаточное количество экспериментальных данных, на основе которых можно было бы проводить детализированные расчеты [12, 13].

Зависимости МИ пленочной структуры от внешнего поля и частоты определяются магнитной проницаемостью слоев FeNi. Компоненты тензора магнитной проницаемости зависят от ряда факторов, таких как конфигурация доменной структуры, распределение осей анизотропии в слоях пермаллоя и т.д. Предположим, что все слои пермаллоя имеют одинаковые физические свойства и одноосную магнитную анизотропию, ось анизотропии лежит в плоскости пленки и составляет угол ψ с поперечным направлением. Будем также полагать, что значения магнитной проницаемости слоев определяются только процессом вращения намагниченности. Такое приближение справедливо для не слишком низких частот, когда вклад в магнитную проницаемость за счет смещения доменных границ мал из-за влияния вихревых токов [14]. Условимся, что вследствие усреднения по доменной структуре тензор магнитной проницаемости слоев пермаллоя имеет квазидиагональную форму. В этом случае МИ определяется только поперечной магнитной проницаемостью слоев пермаллоя [5].

Значение поперечной магнитной проницаемости μ_2 в слоях FeNi находится при помощи стандартной процедуры решения линеаризованного уравнения Ландау—Лифшица, что приводит к выражению [1]:

$$\mu_2 = 1 + \omega_m^2 \sin^2 \theta / [(\omega_m + \omega_1)\omega_2 - \omega^2 - i\kappa\omega_m \omega].$$
(1)

Здесь $\omega_m = \gamma 4\pi M$; M — намагниченность насыщения, γ — гиромагнитное отношение; θ — равновесное значения угла намагниченности в слоях FeNi по отношению к поперечному направлению; κ — параметр затухания Гильберта. Характерные частоты ω_1 и ω_2 определяются следующим образом:

$$\omega_{\rm l} = \gamma [H_{\rm a} \cos^2(\theta - \psi) + H_{\rm e} \sin \theta],$$

$$\omega_{\rm 2} = \gamma [H_{\rm a} \cos\{2(\theta - \psi)\} + H_{\rm e} \sin \theta],$$
(2)

где H_a — поле анизотропии слоев пермаллоя.

Равновесный угол намагниченности θ определяется при помощи минимизации свободной энергии и удовлетворяет уравнению:

$$H_{a}\sin(\theta - \psi)\cos(\theta - \psi) = H_{e}\cos\theta.$$
 (3)

Ограничимся случаем не слишком высоких частот, когда $\omega l/c \ll 1$, где c — скорость света в вакууме. Тогда распределение полей в многослойной пленке можно рассматривать как независящее от продольной координаты z. Полагая для оценки длину пленки l = 1 см, получим, что это приближение справедливо для частоты $f = \omega/2\pi \ll 5$ ГГц. Ширина пленочной структуры w достаточно велика по сравнению с ее толщиной, поэтому краевыми эффектами можно пренебречь. Такое приближение справедливо, если ширина пленочной структуры w превышает некоторое пороговое значение w_{th} , зависящее от толщины слоев и поперечной статической магнитной проницаемости слоев пермаллоя [15, 16]. Для типичных значений параметров многослойных пленочных структур пороговая ширина $w_{\rm th}$ мала: $w_{\rm th} \approx 10$ мкм.

При сделанных предположениях значения электромагнитных полей зависят только от координаты, перпендикулярной плоскости образца (см. координаты x, рис. 1). Вследствие симметрии пленочной структуры будем рассматривать только область значений x > 0. В одномерном приближении решение уравнений Максвелла для амплитуд продольного электрического поля e_j и поперечного магнитного поля h_j в слое j = 0, ...2n + 1(где j = 0 – центральный слой) имеет вид:

$$e_j = (c\lambda_k / 4\pi\sigma_k) [A_j ch(\lambda_k x) + B_j sh(\lambda_k x)], \qquad (4)$$

$$h_i = A_i \operatorname{sh}(\lambda_k x) + B_i \operatorname{ch}(\lambda_k x).$$
(5)

Здесь индекс k = 0, 1 и 2 соответствует материалам центрального слоя С; прослойки М и пермаллою F; A_j и B_j – постоянные; $\lambda_k = (1 - i)/\delta_k$; $\delta_k = c/(2\pi\omega\sigma_k\mu_k)^{1/2}$; σ_k и μ_k – удельная проводимость и поперечная магнитная проницаемость материала k. Для немагнитных центрального слоя (k = 0) и прослоек (k = 1): $\mu_0 = \mu_1 = 1$.

Значения постоянных A_j и B_j в выражениях (4) и (5) определяются из условий непрерывности электрического и магнитного полей на границах раздела слоев. Необходимо также учесть, что вследствие симметрии пленочной структуры поперечное магнитное поле в центре образца (x = 0) равно нулю. Из этого условия получаем $B_0 = 0$. Кроме того, дополнительные ограничения на значения амплитуд полей на поверхности пленочной структуры x = d определяются из условия возбуждения образца переменным электрическим полем:

$$e_{2n+1}(d) = e_{\text{ext}}(d) + U_0/l$$
, (6)

$$h_{2n+1}(d) = h_{\text{ext}}(d).$$
 (7)

Здесь $d = d_0 + nd_1 + (n+1)d_2$ – половина толщины пленочной структуры; e_{ext} и h_{ext} – амплитуды электрического и магнитного полей вне структуры (x > d). В общем виде аналитические выражения для распределения электромагнитных полей вне пленочной структуры получить не удается. Однако для структур, толщина которых мала по сравнению с их шириной ($2d \ll w$), можно использовать приближенные соотношения для e_{ext} и h_{ext} , полученные из решения для векторного потенциала поля [16, 17]. В этом приближении для амплитуд полей e_{ext} и h_{ext} имеем:

$$e_{\text{ext}} = C \frac{i\omega l}{2cw} \left[\frac{l}{2w} \ln \left(\frac{R+w}{R-w} \right) - \frac{4x}{l} \operatorname{arctg} \left(\frac{wl}{2Rx} \right) + \frac{w}{l} \ln \left(\frac{R+l}{R-l} \right) \right], \tag{8}$$
$$h_{\text{ext}} = C(2/w) \operatorname{arctg} (wl/2Rx), \tag{9}$$

где C – постоянная и $R = (l^2 + w^2 + 4x^2)^{1/2}$. После того как постоянные A_j , B_j и C будут найдены из условий непрерывности полей и условий (8) и (9) на границе пленочной структуры, импеданс многослойной пленки Z может быть определен как отношение приложенного напряжения к полному току, протекающему через образец:

$$Z = (2\pi/cw)U_0 / h_{\rm ext}(d).$$
(10)

Значение амплитуды магнитного поля на поверхности образца $h_{\rm ext}(d)$ определяется из решения системы уравнений для постоянных A_j и B_j и, следовательно, в неявном виде зависит от числа слоев и их физических свойств. Таким образом, предложенный подход может быть использован для анализа МИ в пленочных структурах с произвольным числом слоев и различными материалами центрального слоя и прослоек. Для дальнейшего анализа введем относительное изменение МИ $\Delta Z/Z = [Z(H_e) - Z(H_0)]/Z(H_0)$, где $H_0 = 100$ Э.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Проанализируем влияние параметров пленочной структуры на эффект МИ на примере структуры длиной l = 1 см и шириной w = 0.02 см при следующих параметрах слоев FeNi: намагниченность насыщения M = 750 Гс; поле анизотропии $H_a = 10$ Э; угол отклонения оси анизотропии от поперечного направления $\Psi = 0.05\pi$, удельная проводимость $\sigma_2 = 3 \times 10^{16}$ с⁻¹; постоянная затухания Гильберта $\kappa = 0.02$. Будем принимать, что толщина центрального слоя $2d_0$ составляет 500 нм.

На рис. 2 показана зависимость $\Delta Z/Z$ от внешнего поля Н_е, рассчитанная при различных частотах для многослойной структуры, у которой центральный слой и прослойки изготовлены из одного материала ($\sigma_1 = \sigma_0$). Результаты расчетов представлены только для области положительных внешних полей, так как в рамках рассматриваемой модели зависимость $\Delta Z/Z(H_e)$ симметрична по отношению к знаку внешнего поля. Относительное изменение МИ достигает максимума вблизи поля анизотропии H_a слоев FeNi. Такое поведение зависимости импеданса от внешнего поля является типичным для материалов, у которых направление оси анизотропии близко к поперечному направлению [1]. Как видно из рис. 2, для рассматриваемой структуры величина $\Delta Z/Z$ достигает максимума в диапазоне частот от 50 до 100 МГц. Отметим также, что отклик многослойной структуры является очень чувствительным к магнитным свойствам слоев FeNi (значению поля анизотропии и отклонению оси анизотропии от поперечного направления). При уменьшении Н_а и у поперечная магнитная проницаемость возрастает, что приводит к усилению скин-эффекта и увеличению МИ.

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 122 № 3 2021

Рис. 2. Относительное изменение импеданса $\Delta Z/Z$ в зависимости от внешнего поля $H_{\rm e}$ при различных значениях частоты *f*, МГц: 1 - f = 25; 2 - f = 50; 3 - f = 100; 4 - f = 150; 5 - f = 200. Параметры, использованные при расчетах: $d_1 = 3$ нм, $d_2 = 100$ нм, n = 4, $\sigma_0 = \sigma_1 = 5 \times 10^{17} \,{\rm c}^{-1}$.

Исследуем влияние числа слоев FeNi и их толщины на отклик МИ пленочной структуры. Для анализа частотной зависимости МИ введем максимальное относительное изменение импеданса $(\Delta Z/Z)_{\text{max}}$, которое соответствует максимальному значению $\Delta Z/Z$ для каждой частоты. Рисунок 3 иллюстрирует влияние числа магнитных слоев на частотную зависимость $(\Delta Z/Z)_{max}$. Отметим, что суммарная толщина всех слоев FeNi в рассматриваемых структурах постоянна: $2(n + 1)d_2 = 1000$ нм. Как следует из рис. 3, значение $(\Delta Z/Z)_{\text{max}}$ снижается с увеличением числа слоев FeNi и соответствующим уменьшением их толщины. Рассчитанные зависимости качественно согласуются с экспериментальными результатами работы [18], где было установлено, что многослойные пленки со слоями FeNi толшиной 50 и 100 нм имеют близкие по величине большие значения относительного изменения МИ, тогда как эффект МИ в структурах с более тонкими слоями пермаллоя оказывается меньше. Отметим, что противоположную тенденцию наблюдали в работе [19], в которой было обнаружено, что пленочные структуры со слоями FeNi с толщиной 25 нм имеют значительно более высокие значения относительного изменения МИ по сравнению со структурами с толщиной слоев пермаллоя 170 нм. Это расхождение результатов моделирования и эксперимента может быть связано с деградацией свойств толстых слоев

Рис. 3. Частотная зависимость $(\Delta Z/Z)_{\text{max}}$ для различного числа слоев FeNi и их толщины: 1 - n = 4, $d_2 = 100$ нм; 2 - n = 9, $d_2 = 50$ нм; 3 - n = 19, $d_2 = 25$ нм; 4 - n = 49, $d_2 = 10$ нм. Остальные параметры, использованные при расчетах, такие же, как на рис. 2.

Fe-Ni вследствие перехода в "закритическое" состояние.

На рис. 4 представлено влияние проводимости центрального слоя σ_0 на частотную зависимость ($\Delta Z/Z$)_{max}. Из рисунка видно, что эффект МИ относительно мал, когда проводимость центрального слоя примерно равна проводимости пермаллоя. С увеличением σ_0 максимум частотной зависимости ($\Delta Z/Z$)_{max} резко возрастает и сдвигается в сторону более низких частот. Аналогичные результаты были получены ранее при моделировании МИ в трехслойных пленочных структурах [5]. Таким образом, использование материалов с высокой удельной проводимостью центрального слоя является предпочтительным с точки зрения достижения высоких значений отклика МИ в многослойных пленочных структурах.

Влияние толщины прослоек d_1 на зависимость $(\Delta Z/Z)_{max}$ от частоты показано на рис. 5. Максимальное относительное изменение импеданса возрастает при уменьшении d_1 , так как увеличение толщины прослоек приводит к увеличению сопротивления многослойной структуры и снижению величины $(\Delta Z/Z)_{max}$. Отметим, что при очень малых значениях толщины прослойки между слоями FeNi возникают обменные взаимодействия, и это обстоятельство может существенно повлиять на эффект МИ. Критическая толщина прослойки, при которой нет обменных взаимодей-

Рис. 4. Частотная зависимость ($\Delta Z/Z$)_{тах} для различных значений удельной проводимости центрального слоя σ_0 , c^{-1} : $1 - \sigma_0 = 10^{16}$; $2 - \sigma_0 = 5 \times 10^{16}$; $3 - \sigma_0 = 10^{17}$; $4 - \sigma_0 = 2 \times 10^{17}$; $5 - \sigma_0 = 5 \times 10^{17}$. Остальные параметры, использованные при расчетах, такие же, как на рис. 2.

ствий, составляет несколько нанометров и зависит от свойств слоев FeNi.

Ряд экспериментальных исследований эффекта МИ проведен для многослойных структур с центральным медным слоем и разделительными прослойками из титана [10, 20]. Влияние различия в удельной проводимости центрального слоя и прослоек на частотную зависимость $(\Delta Z/Z)_{max}$ показано на рис. 6. Значения $(\Delta Z/Z)_{max}$ возрастают с уменьшением проводимости прослоек. При этом МИ слабо изменяется, когда проводимость прослоек σ_1 становится сравнимой с проводимосстью слоев пермаллоя σ_2 . Таким образом, использование разделительных прослоек с меньшей проводимостью позволит увеличить эффект МИ в многослойных пленочных структурах.

В работе [21] экспериментально исследованы магнитные свойства и эффект МИ в трехслойных пленочных структурах на основе пермаллоя, в которых в качестве магнитных прослоек использовали кобальт, железо, гадолиний и сплав Gd₂₁Co₇₉. Было установлено, что прослойки железа и кобальта не препятствуют формированию перпендикулярной магнитной анизотропии в слоях FeNi, а использование прослоек гадолиния и сплава Gd–Co препятствует переходу слоев пермаллоя в "закритическое" состояние и улучшает магнитомягкие свойства структур. Кроме того, измерения для структур [FeNi/Ti(6 нм)]₂/FeNi и

Рис. 5. Частотная зависимость $(\Delta Z/Z)_{\text{max}}$ для различных значений толщины прослоек d_1 , нм: $1 - d_1 = 2$; $2 - d_1 = 3$; $3 - d_1 = 5$; $4 - d_1 = 7$; $5 - d_1 = 10$. Остальные параметры, использованные при расчетах, такие же, как на рис. 2.

[FeNi/Gd(2 нм)]₂/FeNi показали, что в пленках с прослойками гадолиния МИ оказывается выше [21]. Таким образом, использование соответствующих магнитных прослоек может привести к уве-

Рис. 6. Частотная зависимость ($\Delta Z/Z$)_{тах} для различных значений проводимости прослоек σ_1 , c^{-1} : $1 - \sigma_1 = 10^{16}$; $2 - \sigma_1 = 10^{17}$; $3 - \sigma_1 = 2 \times 10^{17}$; $4 - \sigma_1 = 5 \times 10^{17}$. Остальные параметры, использованные при расчетах, такие же, как на рис. 2.

Puc. 7. Частотная зависимость (Δ*Z*/*Z*)_{тах} для магнитных и немагнитных прослоек при различных значениях μ_{sp} и σ_1 , c^{-1} : $1 - \mu_{sp} = 1$, $\sigma_1 = 2 \times 10^{17}$; $2 - \mu_{sp} = 2000$, $\sigma_1 = 2 \times 10^{17}$; $3 - \mu_{sp} = 1$, $\sigma_1 = 5 \times 10^{16}$; $4 - \mu_{sp} = 2000$, $\sigma_1 = 5 \times 10^{16}$. Остальные параметры, использованные при расчетах, такие же, как на рис. 2.

личению эффекта МИ в многослойных пленочных структурах.

Влияние магнитных прослоек ($\mu_1 \neq 1$) на эффект МИ может быть проанализировано в рамках предложенной в настоящей работе модели. Высокая магнитная проницаемость прослоек приводит к изменению электромагнитных полей в многослойной структуре и тем самым оказывает существенное влияние на МИ эффект. Предположим, что магнитная проницаемость прослоек максимальна в нулевом поле ($\mu_1 = \mu_{sp}$ при $H_e = 0$) и монотонно уменьшается до значения $\mu_1 = 0.1 \mu_{sp}$ при $H_{\rm e} = H_0 = 100$ Э. Для простоты будем полагать, что величина µ₁ не зависит от частоты. На рис. 7 представлены частотные зависимости $(\Delta Z/Z)_{max}$, pacсчитанные для многослойных структур с магнитными и немагнитными прослойками при двух значениях проводимости σ₁.

Для структур с магнитными прослойками максимальное значение изменения МИ немного увеличивается по сравнению с многослойными пленками с немагнитными прослойками. Возрастание $(\Delta Z/Z)_{max}$ в многослойных структурах с магнитными прослойками качественно может быть объяснено следующим образом. Для магнитных прослоек разница между глубиной скин-эффекта в прослойке δ_1 и в пермаллое δ_2 уменьшается, приводя к более однородному распределению электромагнитных полей по толщине пленочной структуры и к возрастанию эффекта МИ.

Отметим, что экспериментальные зависимости импеданса многослойных пленок от внешнего поля обычно имеют несимметричный характер по отношению к знаку поля и проявляют гистерезис. Эти обстоятельства могут быть обусловлены магнитостатическим взаимодействием между слоями FeNi [22]. В рамках предложенной модели мы пренебрегли магнитостатическими взаимодействиями, однако они могут быть качественно учтены путем введения дополнительного поля сдвига, действующего на отдельные слои пермаллоя.

выводы

В настоящей работе предложена электродинамическая модель для описания МИ в многослойной пленочной структуре на основе пермаллоя. Распределение электромагнитных полей по толщине пленочной структуры и импеданс образца получены на основе совместного решения уравнений Максвелла и уравнения Ландау—Лифшица. Результаты моделирования были использованы для исследования влияния параметров пленочной структуры на величину эффекта МИ.

Проведенный анализ показал, что МИ возрастает при уменьшении числа слоев пермаллоя и соответствующем их толщины. Установлено, что значения проводимостей центрального немагнитного слоя и прослоек по-разному влияют на величину магнитоимпедансного эффекта. Для получения максимального отклика МИ для центрального слоя необходимо использовать высокопроводящие неферромагнитные материалы, тогда как немагнитные прослойки должны иметь проводимость, сравнимую с проводимостью пермаллоя. Кроме того, теоретически предсказано, что дальнейшее увеличение эффекта МИ может быть достигнуто при использовании прослоек из ферромагнитных материалов.

Работа выполнена при поддержке Российского научного фонда, грант 18-19-00090.

СПИСОК ЛИТЕРАТУРЫ

- Knobel M., Vázquez M., Kraus L. Giant magnetoimpedance / In: Handbook of Magnetic Materials. Ed. by K.H.J. Buschow. Amsterdam: Elsevier, 2003. V. 15. P. 497–563.
- Kurlyandskaya G., Levit V. Magnetic Dynabeads® detection by sensitive element based on giant magnetoimpedance // Biosens. Bioelectron. 2005. V. 20. № 8. P. 1611–1616.
- 3. *Hika K., Panina L.V., Mohri K.* Magneto-impedance in sandwich film for magnetic sensor heads // IEEE Trans. Magn. 1996. V. 32. № 5. P. 4594–4596.
- 4. Антонов А.С., Гадецкий С.Н., Грановский А.Б., Дьячков А.Л., Парамонов В.П., Перов Н.С., Прокошин А.Ф.,

Усов Н.А., Лагарьков А.Н. Гигантский магнитоимпеданс в аморфных и нанокристаллических мультислоях // ФММ. 1997. Т. 83. № 6. С. 60–71.

- Panina L.V., Mohri K. Magneto-impedance in multilayer films // Sens. Actuators A. 2000. V. 81. № 1–3. P. 71–77.
- 6. *Sugita Y., Fujiwara H., Sato T.* Critical thickness and perpendicular anisotropy of evaporated permalloy films with stripe domains // Appl. Phys. Lett. 1967. V. 10. № 8. P. 229–231.
- Svalov A.V., Aseguinolaza I.R., Garcia-Arribas A., Orue I., Barandiaran J.M., Alonso J., Fernandez-Gubieda M.L., Kurlyandskaya G.V. Structure and magnetic properties of thin permalloy films near the "transcritical" state // IEEE Trans. Magn. 2010. V. 46. № 2. P. 333–336.
- Kurlyandskaya G.V., Elbaile L., Alves F., Ahamada B., Barrué R., Svalov A.V., Vas'kovskiy V.O. Domain structure and magnetization process of a giant magnetoimpedance geometry FeNi/Cu/FeNi(Cu)FeNi/Cu/FeNi sensitive element // J. Phys.: Condens. Matter. 2004. V. 16. № 36. P. 6561–6568.
- 9. Corrêa M.A., Bohn F., Chesman C., da Silva R.B., Viegas A.D.C., Sommer R.L. Tailoring the magnetoimpedance effect of NiFe/Ag multilayer // J. Phys. D: Appl. Phys. 2010. V. 43. № 29. P. 295004.
- García-Arribas A., Fernández E., Svalov A., Kurlyandskaya G.V., Barandiaran J.M. Thin-film magnetoimpedance structures with very large sensitivity // J. Magn. Magn. Mater. 2016. V. 400. P. 321–326.
- Buznikov N.A., Kurlyandskaya G.V. Modeling of magnetoimpedance effect in nanostructured multilayered films // J. Phys.: Conf. Ser. 2019. V. 1389. P. 012132.
- 12. Marques M.S., Mori T.J.A., Schelp L.F., Chesman C., Bohn F., Corrêa M.A. High frequency magnetic behavior through the magnetoimpedance effect in CoFeB/(Ta, Ag, Cu) multilayered ferromagnetic thin films // Thin Solid Films. 2012. V. 520. № 6. P. 2173– 2177.

- Mardani R. Fabrication of FM/NM/FM hetero-structure multilayers and investigation on structural and magnetic properties: application in GMI magnetic sensors // J. Supercond. Nov. Magn. 2020. V. 33. № 2. P. 503–509.
- Kraus L. Theory of giant magneto-impedance in the planar conductor with uniaxial magnetic anisotropy // Sens. Actuators A. 2003. V. 106. № 1–3. P. 187–194.
- Makhnovskiy D.P., Panina L.V. Size effect on magnetoimpedance in layered films // Sens. Actuators A. 2000. V. 81. № 1-3. P. 91-94.
- Sukstanskii A., Korenivski V., Gromov A. Impedance of a ferromagnetic sandwich strip // J. Appl. Phys. 2001. V. 89. № 1. P. 775–782.
- Gromov A., Korenivski V., Haviland D., van Dover R.B. Analysis of current distribution in magnetic film inductors // J. Appl. Phys. 1999. V. 85. № 8. P. 5202–5204.
- 18. Fernández E., Svalov A.V., Kurlyandskaya G.V., García-Arribas A. GMI in nanostructured FeNi/Ti multilayers with different thicknesses of the magnetic layers // IEEE Trans. Magn. 2013. V. 49. № 1. P. 18–21.
- Chlenova A.A., Svalov A.V., Kurlyandskaya G.V., Volchkov S.O. Magnetoimpedance of FeNi-based asymmetric sensitive elements // J. Magn. Magn. Mater. 2016. V. 415. P. 87–90.
- García-Arribas A., Combarro L., Goriena-Goikoetxea M., Kurlyandskaya G.V., Svalov A.V., Fernández E., Orue I., Feuchtwanger J. Thin-film magnetoimpedance structures onto flexible substrates as deformation sensors // IEEE Trans. Magn. 2017. V. 53. № 4. P. 2000605.
- Svalov A.V., Fernandez E., Garcia-Arribas A., Alonso J., Fdez-Gubieda M.L., Kurlyandskaya G.V. FeNi-based magnetoimpedance multilayers: Tailoring of the softness by magnetic spacers // Appl. Phys. Lett. 2012. V. 100. № 16. P. 162410.
- Васьковский В.О., Савин П.А., Лепаловский В.Н., Рязанцев А.А. Многоуровневое межслойное взаимодействие в слоистых пленочных структурах // ФТТ. 1997. Т. 39. № 12. С. 2191–2194.