ТЕОРИЯ МЕТАЛЛОВ

УДК 669.784:538.958

ЭНЕРГЕТИЧЕСКИЙ СПЕКТР И ОПТИЧЕСКИЕ СВОЙСТВА ФУЛЛЕРЕНА С₂₆ В МОДЕЛИ ХАББАРДА

© 2021 г. А.В.Силантьев*

Марийский государственный университет, пл. Ленина, 1, Йошкар-Ола, 424000 Россия *e-mail: kvvant@rambler.ru Поступила в редакцию 14.11.2020 г. После доработки 01.12.2020 г.

Принята к публикации 01.12.2020 г.

В рамках модели Хаббарда в приближении среднего поля получены в аналитическом виде антикоммутаторные функции Грина и энергетические спектры фуллерена C_{26} и эндоэдрального фуллерена $U@C_{26}$ с группой симметрии D_{3h} . Используя методы теории групп, проведена классификация энергетических состояний, а также определены разрешенные переходы в энергетических спектрах молекул C_{26} и $U@C_{26}$ с группой симметрии D_{3h} .

Ключевые слова: модель Хаббарда, функции Грина, энергетический спектр, фуллерен С₂₆ **DOI:** 10.31857/S0015323021040094

ВВЕДЕНИЕ

После открытия в 1985 г. фуллерена C_{60} [1] началось интенсивное исследование углеродных кластеров. Эти исследования привели к открытию целого ряда фуллеренов $C_n c n > 60$, эндоэдральных фуллеренов A@ C_n , а также нанотрубок. Исследования также проводили по поиску малых фуллеренов $C_n c n < 60$. В настоящее время большое число исследований посвящено изучению свойств малых фуллеренов: C_{20} [2, 3], C_{24} [4, 5], C_{28} [6, 7], C_{36} [8, 9]. Одним из малых является фуллерен C_{26} , существование которого было экспериментально подтверждено в ряде работ [10, 11]. Исследованию физических и химических свойств фуллерена C_{26} посвящено довольно много работ [12–15].

Фуллерен С₂₆ с группой симметрии D_{3h} состоит из 12 пентагонов и 3 гексагонов, как показано на диаграмме Шлегеля, рис. 1. Из диаграммы видно, что фуллерен C₂₆ с группой симметрии D_{3h} содержит пять неэквивалентных связей и четыре группы неэквивалентных атомов углерода: G₁ = $= \{1, 4, 9, 15, 21, 25\}, G_2 = \{2, 3, 5, 6, 8, 10, 14, 16, 20,$ 22, 24, 26}, $G_3 = \{7, 11, 13, 17, 19, 23\}, G_4 = \{12, 18\}.$ Множеству G₁ принадлежат атомы, которые находятся в вершинах сочленения одного гексагона и двух пентагонов, общая граница которых связывает два гексагона. Множеству G2 принадлежат атомы, которые находятся в вершинах сочленения одного гексагона и двух пентагонов, общая граница которых связывает гексагон и пентагон. Множеству G₃ принадлежат атомы, которые находятся в вершинах сочленения трех пентагонов, общая граница которых связывает пентагон и гексагон. Множеству

G₄ принадлежат атомы, которые находятся в вершинах сочленения трех пентагонов, общая граница которых связывает два пентагона.

Для описания электронных свойств углеродных наносистем широко используется модель Хаббарда [16]. В рамках этой модели были изучены электронные и оптические свойства различных наносистем [17-25]. Так, например, в рамках модели Хаббарда в приближении среднего поля были получены энергетические спектры и спектры оптического поглощения фуллерена С₆₀ [18], фуллерена С₇₀ [19], фуллерена С₃₆ с группой симметрии D_{6h} [20], фуллерена C₂₈ с группой симметрии T_d [21], фуллерена C_{24} с группами симметрии O_h , D₆ и D_{6d} [22] и фуллерена C₂₀ с группами симметрии I_h, D_{5d} и D_{3d} [23], в работе [24] были исследованы электронные свойства углеродных нанотрубок. Полученные в работах [18, 19] результаты достаточно хорошо согласуются с экспериментальными данными.

Целью данной работы является исследование энергетического спектра фуллерена C_{26} с группой симметрии D_{3h} в рамках модели Хаббарда в приближении среднего поля.

ЭНЕРГЕТИЧЕСКИЙ СПЕКТР ФУЛЛЕРЕНА С₂₆

Для описания π-электронной системы фуллерена С₂₆ воспользуемся моделью Хаббарда [16]:

$$H = \sum_{\sigma,i} \varepsilon_i n_{i\sigma} + \sum_{\sigma,i\neq j} t_{ij} c_{i\sigma}^+ c_{j\sigma} + \frac{1}{2} \sum_{\sigma,i} U_i n_{i\sigma} n_{i\overline{\sigma}}, \qquad (1)$$

Рис. 1. Фуллерен C_{26} с группой симметрии D_{3h} и его диаграмма Шлегеля с указанием положения атомов углерода и связей между атомами углерода.

где $c_{i\sigma}^+$, $c_{i\sigma}^-$ операторы рождения и уничтожения электронов со спином σ на узле *i*; $n_{i\sigma}^-$ оператор числа частиц со спином σ на узле *i*; ε_i^- энергия одноэлектронного атомного состояния на узле *i*; t_{ij}^- интеграл переноса, описывающий перескоки электронов с узла *i* на узел *j*; U_i^- энергия кулоновского отталкивания двух электронов, находящихся на *i*-ом узле; $\overline{\sigma} = -\sigma$.

Найдем энергетический спектр фуллерена C₂₆ в приближении среднего поля. Для этого в гамильтониане (1) сделаем следующую замену:

$$n_{i\sigma}n_{i\overline{\sigma}} \to n_{i\sigma} \langle n_{i\overline{\sigma}} \rangle + n_{i\overline{\sigma}} \langle n_{i\sigma} \rangle, \qquad (2)$$

где $\langle n_{i\sigma} \rangle$ — среднее число электронов со спином σ на узле *i*.

Подставляя соотношение (2) в гамильтониан (1), получим гамильтониан модели Хаббарда в приближении среднего поля:

$$H = \sum_{\sigma,i} \varepsilon'_{i\sigma} n_{i\sigma} + \sum_{\sigma,i\neq j} t_{ij} c^+_{i\sigma} c_{j\sigma}, \qquad (3)$$

где

$$\dot{\varepsilon_{i\sigma}} = \varepsilon_i + U \langle n_{\overline{\sigma}} \rangle. \tag{4}$$

Поскольку в фуллерене С₂₆ имеется четыре типа неэквивалентных связей, то, как видно из диаграммы Шлегеля, в рамках модели Хаббарда этим связям соответствуют четыре интеграла переноса:

$$t_{1,9} = t_{4,15} = t_{21,25} = t_a,$$

$$t_{1,2} = t_{1,6} = t_{3,4} = t_{4,5} = t_{8,9} = t_{9,10} = t_{14,15} =$$

$$= t_{15,16} = t_{20,21} = t_{21,22} = t_{24,25} = t_{25,26} = t_b,$$

$$t_{2,3} = t_{5,6} = t_{8,20} = t_{10,22} = t_{14,24} = t_{16,26} = t_c,$$

$$t_{2,11} = t_{3,13} = t_{5,17} = t_{6,7} = t_{7,8} = t_{10,11} = t_{13,14} =$$

$$= t_{16,17} = t_{19,20} = t_{19,26} = t_{22,23} = t_{23,24} = t_d,$$

$$t_{7,18} = t_{11,12} = t_{12,13} = t_{12,23} = t_{17,18} = t_{18,19} = t_e.$$

Используя гамильтониан (3) и данные рис. 1, запишем уравнения движения для всех операторов рождения $c_{f\sigma}^+(\tau)$, заданных в представлении Гейзенберга:

$$\frac{dc_{1\sigma}^{+}}{d\tau} = \varepsilon_{\sigma}^{+}c_{1\sigma}^{+} + t_{b}\left(c_{2\sigma}^{+} + c_{6\sigma}^{+}\right) + t_{a}c_{9\sigma}^{+}$$

$$\dots \qquad (5)$$

$$\frac{dc_{26\sigma}^{+}}{d\tau} = \varepsilon_{\sigma}^{+}c_{26\sigma}^{+} + t_{b}c_{25\sigma}^{+} + t_{c}c_{16\sigma}^{+} + t_{d}c_{19\sigma}^{+}$$

Система уравнений (5) имеет точное аналитическое решение. Используя это решение, можно найти фурье-образы антикоммутаторных функций Грина:

$$\left\langle \left\langle c_{j\sigma}^{+} \left| c_{j\sigma} \right\rangle \right\rangle = \frac{i}{2\pi} \sum_{m=1}^{18} \frac{Q_{j,m}}{E - E_m + ih}, \quad E_m = \varepsilon' + e_m, \quad (6)$$

где

$$Q_{x,1} = Q_{x,4} = Q_{x,5} = Q_{x,6} = Q_{x,7} = Q_{x,8} = Q_{x,9} =$$

= $Q_{p,1} = Q_{p,2} = Q_{p,3} = Q_{s,1} = Q_{s,2} = Q_{s,3} = Q_{s,4} =$
= $Q_{s,5} = Q_{s,6} = Q_{s,14} = Q_{s,15} = Q_{s,16} = Q_{s,17} = Q_{s,18} = 0;$
 $Q_{x,2} = \frac{\sqrt{(t_a - t_c)^2 + 8t_b^2} + t_c - t_a}{12\sqrt{(t_a - t_c)^2 + 8t_b^2}},$

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 122 № 4 2021

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 122 № 4 2021

$$Q_{s,k} = \frac{1}{2} \left(e_k^3 - e_k^2 (t_a + t_c) + e_k \left(t_a t_c - 2t_b^2 - 2t_d^2 \right) + 2t_a t_d^2 \right) : \left(4e_k^3 - 3e_k^2 (t_a + t_c) + (7) + 2\left(t_c t_a - 3t_e^2 - 2t_b^2 - 2t_d^2 \right) e_k + 3t_e^2 (t_a + t_c) + 2t_d^2 t_a \right),$$

$$k = 10, 11, 12, 13; \quad x \in G_1, \quad y \in G_2, \quad p \in G_3, \quad s \in G_4;$$

$$\begin{split} e_{1} &= t_{c}, \ e_{2} = -\frac{t_{a} + t_{c}}{2} + \frac{1}{2}\sqrt{(t_{a} - t_{c})^{2} + 8t_{b}^{2}}, \\ e_{3} &= -\frac{t_{a} + t_{c}}{2} - \frac{1}{2}\sqrt{(t_{a} - t_{c})^{2} + 8t_{b}^{2}}, \\ e_{4} &= \frac{2}{\sqrt{3}}\sqrt{t_{c}^{2} + 2t_{d}^{2}}\sin\left(\frac{\pi}{6} + \frac{\varphi_{3}}{3}\right), \\ e_{5} &= \frac{2}{\sqrt{3}}\sqrt{t_{c}^{2} + 2t_{d}^{2}}\cos\left(\frac{\varphi_{3} + \pi}{3}\right), \\ e_{6} &= -\frac{2}{\sqrt{3}}\sqrt{t_{c}^{2} + 2t_{d}^{2}}\cos\left(\frac{\varphi_{3}}{3}\right), \\ e_{7} &= \frac{t_{c}}{3} + \frac{2}{3}\sqrt{t_{c}^{2} + 6t_{d}^{2} + 9t_{e}^{2}}\cos\left(\frac{\varphi_{2}}{3}\right), \\ e_{8} &= \frac{t_{c}}{3} - \frac{2}{3}\sqrt{t_{c}^{2} + 6t_{d}^{2} + 9t_{e}^{2}}\cos\left(\frac{\varphi_{2} + \pi}{3}\right), \\ e_{9} &= \frac{t_{c}}{3} - \frac{2}{3}\sqrt{t_{c}^{2} + 6t_{d}^{2} + 9t_{e}^{2}}\sin\left(\frac{\pi}{6} + \frac{\varphi_{2}}{3}\right), \\ e_{10} &= \frac{1}{4}(t_{c} + t_{a} + 2\sqrt{A} + [8A + \frac{(t_{c} + t_{a})((t_{c} - t_{a})^{2} + 8t_{b}^{2} - 12t_{e}^{2}) + 8t_{d}^{2}(t_{c} - t_{a})} - \frac{-12z]^{1/2}}{\sqrt{A}}, \ e_{12} &= \frac{1}{4}(t_{c} + t_{a} - 2\sqrt{A} - [8A + \frac{(t_{c} + t_{a})((t_{c} - t_{a})^{2} + 8t_{b}^{2} - 12t_{e}^{2}) + 8t_{d}^{2}(t_{c} - t_{a})} - \frac{-12z]^{1/2}}{\sqrt{A}}, \ e_{13} &= \frac{1}{4}(t_{c} + t_{a} - 2\sqrt{A} - [8A - \frac{(t_{c} + t_{a})((t_{c} - t_{a})^{2} + 8t_{b}^{2} - 12t_{e}^{2}) + 8t_{d}^{2}(t_{c} - t_{a})} - \frac{-12z]^{1/2}}{\sqrt{A}}, \ e_{13} &= \frac{1}{4}(t_{c} + t_{a} - 2\sqrt{A} - [8A - \frac{(t_{c} + t_{a})((t_{c} - t_{a})^{2} + 8t_{b}^{2} - 12t_{e}^{2}) + 8t_{d}^{2}(t_{c} - t_{a})} - \frac{-12z]^{1/2}}, \ e_{13} &= \frac{1}{4}(t_{c} + t_{a} - 2\sqrt{A} - [8A - \frac{(t_{c} + t_{a})((t_{c} - t_{a})^{2} + 8t_{b}^{2} - 12t_{e}^{2}) + 8t_{d}^{2}(t_{c} - t_{a})} - \frac{-12z]^{1/2}}, \ e_{14} &= x_{1}, \ e_{15} &= x_{2}, \ e_{16} &= x_{3}, \ e_{17} &= x_{4}, \ e_{18} &= x_{5}, \ A &= \frac{t_{a}^{2}}{4} - \frac{t_{a}t_{c}}{6} + \frac{t_{e}^{2}}{4} + \frac{4t_{a}^{2}}{3} + \frac{4t_{b}^{2}}{3} + 2t_{e}^{2} + z, \\ z &= \frac{2}{3}[4(t_{d}^{2} + t_{b}^{2} + 3t_{e}^{2})(t_{d}^{2} + t_{b}^{2} - t_{c}t_{a}) + \frac{4}{3}(t_{c} - t_{a})^{2}]^{1/2}\cos(\frac{\pi}{3} - \frac{\varphi_{1}}{3}), \end{aligned}$$

где x_1, x_2, x_3, x_4, x_5 являются корнями следующего уравнения

$$x^{5} - (t_{a}^{2} + 4t_{b}^{2} + t_{c}^{2} + 2t_{d}^{2})x^{3} + t_{d}^{2}t_{c}x^{2} - 4t_{d}^{2}t_{b}^{2}t_{a} - t_{d}^{2}t_{d}^{2}t_{c} + (4t_{d}^{2}t_{b}^{2} + 4t_{b}^{4} + t_{a}^{2}t_{c}^{2} + 2t_{a}^{2}t_{d}^{2} + 2t_{b}^{2}t_{c}t_{a})x = 0.$$
(9)

Зная фурье-образ антикоммутаторной функции Грина, можно найти энергетический спектр квантовой системы, который определяется полюсами функции Грина [26]. Следовательно, энергетический спектр фуллерена C_{26} с группой симметрии D_{3h} определяется величинами E_m , которые входят в функцию Грина (6). Отметим, что величины e_m , которые определяются соотношениями (7), характеризуют энергетический спектр фуллерена C_{26} относительно энергии ε' .

Энергетические состояния фуллерена C_{26} с группой симметрии D_{3h} можно классифицировать в соответствии с неприводимыми представлениями группы D_{3h} . Как известно, группа D_{3h} имеет четыре одномерных неприводимых представлений a'_1, a''_1, a'_2, a''_2 и два двумерных неприводимых представлений e', e'' [27]. Можно показать, что энергетические состояния фуллерена C_{26} , определяемые полюсами функции Грина (6), связаны следующим образом с неприводимыми представлениями группы D_{3h} : $E_1(a''_1), E_2(a'_2), E_3(a'_2),$ $E_4(e''), E_5(e''), E_6(e''), E_7(a''_2), E_8(a''_2), E_9(a''_2), E_{10}(a'_1),$ $E_{11}(a'_1), E_{12}(a'_1), E_{13}(a'_1), E_{14}(e'), E_{15}(e'), E_{16}(e'),$ $E_{17}(e'), E_{18}(e').$

Важной физической характеристикой каждого энергетического уровня квантовой системы является степень его вырождения. Для того чтобы найти степень вырождения энергетических уровней фуллерена С₂₆, воспользуемся следующим соотношением [18, 19]:

$$g_i = \sum_{j=1}^{N} Q_{j,i},$$
 (10)

где *N* – число узлов в наносистеме.

Подставляя величины $Q_{j,i}$, которые определяются соотношениями (7), в формулу (10), получим для степеней вырождения энергетических уровней фуллерена С₂₆ следующие значения:

$$g_1 = g_2 = g_3 = g_7 = g_8 =$$

= $g_9 = g_{10} = g_{11} = g_{12} = g_{13} = 1,$ (11)
 $g_4 = g_5 = g_6 = g_{14} = g_{15} = g_{16} = g_{17} = g_{18} = 2.$

Таким образом, соотношения (8) и (11) описывают энергетические спектры фуллерена C_{26} с группой симметрии D_{3h} в модели Хаббарда в приближении среднего поля.

Результаты данных вычислений приведены в табл. 1, а также на рис. 2, и из них следует, что энергетический спектр фуллерена C_{26} с группой симметрии D_{3h} состоит из 18 энергетических состояний, из которых 10 состояний не вырождены, а 8 состояний являются двукратно вырожденными.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Исследования, выполненные в работе [15], показали, что расстояния между атомами углерода в фуллерене C_{26} с группой симметрии D_{3h} имеют следующие значения:

$$x_a = 1.540$$
 Å, $x_b = 1.428$ Å, $x_c = 1.450$ Å,
 $x_d = 1.473$ Å, $x_e = 1.410$ Å. (12)

Для того чтобы найти численные значения интегралов переноса, которые соответствуют фуллерену C_{26} , воспользуемся следующим соотношением [19, 22]:

$$t_s = -8957.33 \exp(-6.0207 x_s). \tag{13}$$

Подставляя (12) в соотношение (13), получим численные значения интегралов переноса для фуллерена С₂₆ с группой симметрии D_{3h}:

$$t_a = -0.84231 \ \Im B, \quad t_b = -1.65319 \ \Im B,$$

 $t_c = -1.44809 \ \Im B, \quad t_d = -1.26083 \ \Im B,$ (14)
 $t_a = -1.84241 \ \Im B.$

Подставляя численные значения интегралов переноса (14) в соотношение (8), получим для фуллерена С₂₆ численные значения для величин e_k , которые приведены в табл. 1.

Теперь, как это следует из (6), для того чтобы получить энергетический спектр фуллерена C_{26} , следует воспользоваться следующей формулой:

$$E_k = \varepsilon' + e_k. \tag{15}$$

Подставляя численные значения для e_k из табл. 1, а также $\varepsilon' = -4.979 \ \Im B$ [19] в соотношение (15), получим энергетический спектр фуллерена С₂₆ с группой симметрии D_{3h}. Результаты вычислений приведены в табл. 1, а также на рис. 2.

Рассмотрим структуру энергетического спектра фуллерена C_{26} . Как видно из соотношения (15) и рис. 2, в энергетической зоне фуллерена C_{26} энергетические уровни сосредоточены вблизи энергии

$$\varepsilon' = \varepsilon + U \langle n_{\overline{o}} \rangle. \tag{16}$$

Из соотношений (15), (8), (11), рис. 2 и табл. 1 следует, что в основном состоянии у фуллерена С₂₆ с группой симметрии D_{3h} на энергетическом уровне, который соответствует энергии $E_{16}(e')$, расположены две связывающие орбитали, на которых отсутствуют электроны. Поэтому фуллерен С26 с группой симметрии D₃, должен обладать довольно высокой химической активностью. Стабилизацию фуллерена C₂₆ можно осуществить при помощи образования эндофуллеренов М@С₂₆ с элементами, которые помещаются внутрь фуллерена и способны принимать электронные конфигурации М⁴⁺. В качестве таких элементов могут выступать, например, Ті, U. При образовании эндоэдральных фуллеренов $M@C_{26}$, четыре валентных электрона атома металла переходят в оболочку фуллерена С₂₆. Считается, что внедрение атома металла внутрь фуллерена не приводит к существенному изменению его энергетических уровней. Поэтому в первом приближении можно считать, что влияние внедренного атома приводит лишь к добавлению лишних электронов в остов фуллерена [28]. Четыре электрона, перешедшие с атома металла на фуллерен С₂₆, займут энергетический уровень $E_{16}(e')$. Проведенные исследования показали [15], что эндоэдральный фуллерен U@C₂₆, как и фуллерен С₂₆, обладает группой симметрии D_{3h}. Исследования эндоэдрального фуллерена U@C₂₆ также показали [15], что расстояния между атомами углерода в этой молекуле имеют следующие значения:

$$x_a = 1.531$$
 Å, $x_b = 1.480$ Å, $x_c = 1.486$ Å,
 $x_d = 1.514$ Å, $x_e = 1.433$ Å. (17)

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 122 № 4 2021

Таблица 1. Энергетический спектр фуллерена C_{26} с группой симметрии D_{3h} : значения энергии уровней, кратность их вырождения и неприводимые представления группы D_{3h} , к которым они относятся

N⁰	e_j , eV	E_j , eV	g_j	$E\left(\Gamma_{j}\right)$
1	-4.444	-9.423	1	$E_{13}(a'_1)$
2	-3.904	-8.883	1	$E_9(a_2'')$
3	-3.426	-8.405	2	$E_{18}(e')$
4	-2.535	-7.514	1	$E_{12}(a_1)$
6	-2.086	-7.065	2	$E_{17}(e')$
5	-2.036	-7.016	2	$E_{6}(e'')$
8	-1.212	-6.192	1	$E_3(a'_2)$
7	-1.071	-6.051	1	$E_8(a_2'')$
9	-0.454	-5.433	2	$E_5(e'')$
10	-0.286	-5.265	2	$E_{16}(e')$
11	1.058	-3.922	1	$E_{11}(a_1)$
12	1.448	-3.531	1	$E_1(a_1'')$
13	2.242	-2.738	2	$E_{14}(e')$
14	2.490	-2.489	2	$E_4(e^{\prime\prime})$
16	3.503	-1.477	1	$E_2(a'_2)$
15	3.556	-1.424	2	$E_{15}(e')$
17	3.527	-1.453	1	$E_7(a_2'')$
18	3.630	-1.349	1	$E_{10}(a_{1})$

Подставляя (17) в соотношение (13), получим численные значения интегралов переноса у молекулы U@C₂₆:

$$t_a = -0.88921 \ \Im B, \quad t_b = -1.20880 \ \Im B,$$

 $t_c = -1.16591 \ \Im B, \quad t_d = -0.98504 \ \Im B,$ (18)
 $t_a = -1.60416 \ \Im B.$

Подставляя численные значения интегралов переноса (18) в соотношение (8), получим для эндоэдрального фуллерена U@C₂₆ численные значения величин e_k , которые приведены в табл. 2.

Из соотношения (16) следует, что при помещении атома металла внутрь фуллерена происходит смещение энергии є':

$$\varepsilon' = \begin{cases} \varepsilon'_{C_n}, & \text{для } C_n \\ \varepsilon'_{C_n} + qU/n, & \text{для } M^{+q}@C_n^{-q} \end{cases},$$
(19)

где $\dot{\mathbf{c}}_{C_n}$ — это ε' , который соответствует фуллерену C_n ; q — число электронов, перешедших с атома металла на фуллерен C_n .

Рис. 2. Энергетический спектр C₂₆ с группой симметрии D_{3h}. Вертикальными стрелками показаны разрешенные переходы.

Из соотношения (19) следует, что при помещении атома урана внутрь фуллерена С₂₆ параметр є' смещается на десятые доли электрон-вольта:

$$\dot{\varepsilon}_{U@C_{26}} = \dot{\varepsilon}_{C_{26}} + \frac{qU}{n} = -4.979 + + \frac{4 \times 5.662}{26} = -4.108 \ \Im B,$$
(20)

где *U* = 5.662 эВ [25], ε' = -4.979 эВ [19].

Из рис. 2, 3, табл. 1 и 2 видно, что энергетические спектры молекул C₂₆ и U@C₂₆ отличаются друг от друга относительным расположением энергетических состояний $E_{17}(e')$, $E_6(e'')$, $E_3(a'_2)$, $E_8(a''_2)$, $E_2(a'_2)$, $E_{15}(e')$.

Одной из важнейших характеристик квантовой системы является спектр оптического поглощения. Используя полученные выше энергетические спектры молекул C_{26} и U@ C_{26} с группой симметрии D_{3h} , можно найти переходы, которые обуславливают оптические спектры этих молекул. С помощью теории групп [29] найдем, какие

Рис. 3. Энергетический спектр U@C₂₆ с группой симметрии D_{3h}. Вертикальными стрелками показаны разрешенные переходы.

переходы в молекулах C_{26} и U@ C_{26} разрешены, а какие запрещены с точки зрения симметрии.

Можно показать, что в энергетическом спектре молекулы с группой симметрии D_{3h} разрешены следующие переходы:

$$a_{1}' \leftrightarrow e', \ a_{2}' \leftrightarrow e', \ e' \leftrightarrow e', \ a_{1}'' \leftrightarrow e'',$$
(21)
$$a_{2}'' \leftrightarrow e'', \ e'' \leftrightarrow e'', \ a_{1}' \leftrightarrow a_{2}'', \ a_{2}' \leftrightarrow a_{1}'', \ e' \leftrightarrow e''.$$

Из анализа энергетических спектров (8), (11), (15) и (21) следует, что фуллерен C_{26} имеет 45 разрешенных переходов, молекула U@C₂₆ имеет 44 разрешенных перехода. Разрешенные переходы в молекулах C₂₆ и U@C₂₆ показаны вертикальными стрелками на рис. 2 и 3 соответственно. Из рисунков видно, в результате внедрения атома урана в фуллерен C₂₆ семь разрешенных переходов исчезают с двух связывающих орбиталей с энергией $E_{16}(e')$, так как четыре электрона, перешедших с атома урана на фуллерен C₂₆, заполняют четыре свободных энергетических состояния на двух связывающих орбиталях с энергией $E_{16}(e')$.

представления группы D _{3h} , к которым они относятся						
N⁰	e _j ,eV	E_j, eV	g_j	$E(\Gamma_j)$		
1	-3.592	-7.700	1	$E_{13}(a_1)$		
2	-3.276	-7.384	1	$E_9(a_2'')$		
3	-2.644	-6.752	2	<i>E</i> ₁₈ (<i>e</i> ')		
4	-2.148	-6.256	1	$E_{12}(a_1)$		
5	-1.612	-5.720	2	$E_6(e'')$		
6	-1.524	-5.632	2	$E_{17}(e')$		
7	-0.910	-5.018	1	$E_8(a_2'')$		
8	-0.688	-4.796	1	$E_{3}(a_{2}')$		
9	-0.357	-4.465	2	$E_5(e'')$		
10	-0.308	-4.416	2	$E_{16}(e')$		
11	0.615	-3.493	1	$E_{11}(a'_1)$		
12	1.166	-2.942	1	$E_1(a_1'')$		
13	1.763	-2.345	2	$E_{14}(e')$		
14	1.968	-2.140	2	$E_4(e^{\prime\prime})$		
15	2.712	-1.396	2	$E_{15}(e')$		
16	2.743	-1.365	1	$E_2(a_2)$		
17	3.020	-1.088	1	$E_7(a_2'')$		
18	3.070	-1.038	1	$E_{10}(a_1)$		

Таблица 2. Энергетический спектр эндофуллерена U@C₂₆ с группой симметрии D_{3h} : значения энергии уровней, кратность их вырождения и неприводимые представления группы D_{3h} , к которым они относятся

При этом появляются шесть новых переходов со связывающих орбиталей с энергией $E_{16}(e')$.

ЗАКЛЮЧЕНИЕ

Исследование фуллерена С26 с группой симметрии D_{3h} в рамках модели Хаббарда в приближении среднего поля показало, что в основном состоянии в этом фуллерене энергетический уровень $E_{16}(e')$ дважды вырожден и на этом уровне находятся две связывающие орбитали, при этом электроны на них отсутствуют. Это приводит к тому, что фуллерен C₂₆ с группой симметрии D_{3h} является неустойчивой молекулой. Образование эндофуллерена U@C₂₆ приводит к образованию устойчивой молекулы за счет перехода четырех электронов от атома урана на фуллерен С₂₆. Кроме того, данные исследования показали, что в формировании оптических спектров поглощения молекул C₂₆ и U@C₂₆ участвуют 45 и 44 разрешенных переходов соответственно.

Отметим также, что исследования оптических свойств фуллеренов C_{60} и C_{70} , выполненные в рамках модели Хаббарда [18, 19], показали хорошее соответствие между экспериментальными данными и теоретическими результатами. Это позволяет считать, что модель Хаббарда в приближении среднего поля достаточно хорошо описывает электронные свойства углеродных наносистем.

СПИСОК ЛИТЕРАТУРЫ

- Kroto H.W., Heath J.R., O'Brien S.C., Curl R.F., Smalley R.E. C₆₀: Buckminsterfullerene // Nature 1985. V. 318. P. 162–163.
- Yi-Peng An, Chuan-Lu Yang, Mei-Shan Wang, Xiao-Guang Ma, De-Hua Wang. First-principles study of structure and quantum transport properties of C₂₀ fullerene // J. Chem. Phys. 2009. V. 131. P. 024311.
- Katin K.P., Maslov M.M. Stone-Wales defects in nitrogen-doped C₂₀ fullerenes: Insight from ab initio calculations // Physica E. 2018. V. 96. P. 6–10.
- Lin W.-H., Tu Ch.-Ch., Lee S.-L. Theoretical studies of growth mechanism of small fullerene cage C₂₄(D_{6d})⁺// Inter. J. Quantum Chem. 2005. V. 103 P. 355–368.
- Zhang Y., Cheng X. Hydrogen storage property of alkali and alkaline-earth metal atoms decorated C₂₄ fullerene: A DFT study // Chem. Phys. 2018. V. 505. P. 26–33.
- Dognon J.-P., Clavaguera C., Pyykko P. A Predicted Organometallic Series Following a 32-Electron Principle: An@C₂₈ (An = Th, Pa⁺, U²⁺, Pu⁴⁺) // J. Am. Chem. Soc. 2009. V. 131. P. 238–243.
- Enyashin A.N., Ivanovskii A.L. Structural, electronic and elastic properties of ultra-light diamond-like crystalline allotropes of carbon-functionalized fullerenes C₂₈ // Chem. Phys. Letters. 2009. V. 473. P. 108–110.
- Naderi I F., Rostamian S., Naderi B. A study on the electronic and structural properties of fullerene C₃₆ and its interaction with amino acid // Inter. J. Phys. Sci. 2012. V. 7. 2006–2009.
- Grishakov K.S., Katin K.P., Maslov M.M. Strain-induced semiconductor-to-metal transitions in C₃₆based carbon peapods: Ab initio study// Diamond & Related Materials. 2018. V. 84. P. 112–118.
- Hallett R.P., McKay K.G., Balm S.P., Allaf A.W., Kroto H.W., Stace A.J. Reaction studies of carbon clusters// Z. Phys. D. 1995. V. 34. P. 65–70.
- Wang Z.X., Wang W.M., Zhu F.Y., Li X.P., Ruan M.L., Chen H., Huang R.B., Zheng L.S. Synthesis of C₂₆ crystallite polyethylene by C₂⁺ ion bombardment // High Energy Phys. Nucl. Phys. 2001. V. 25. P. 69–73.
- Kent R.C., Towler M.D., Needs R.J., Rajagopal G. Carbon clusters near the crossover to fullerene stability// Phys. Rev. B. 2000. V. 62. P. 15394.
- Maruyama M., Okada S. Two-Dimensional Metallic Molecular Sheet of Fused C₂₆ Fullerene // J. Phys. Soc. Jpn. 2013. V. 82. P. 043708.
- Hong B., Chang Y., Jalbout A.F., Su Z., Wang R. On the chlorides of C₂₆ fullerene. A theoretical study // Molecular Physics. 2007. V. 105. P. 95–99.
- 15. *Manna D., Ghanty T.K.* Prediction of a New Series of Thermodynamically Stable Actinide Encapsulated

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 122 № 4 2021

Fullerene Systems Fulfilling the 32-Electron Principle // J. Phys. Chem. C. 2012. V. 116. P. 25630–25641.

- Hubbard J. Electron correlations in narrow energy bands // Proc. Roy. Soc. London A. 1963. V. 276. P. 238–257.
- 17. Силантьев А.В. Исследование наносистем в модели Хаббарда в приближении среднего поля // Известия Вузов. Поволжский регион. Физ.-мат. науки. 2016. № 1. С. 101–112.
- Силантьев А.В. Энергетический спектр и оптические свойства фуллерена С₆₀ в модели Хаббарда // ФММ. 2017. Т. 118. № 1 С. 3–11.
- 19. Силантьев А.В. Энергетический спектр и оптические свойства фуллерена С₇₀ в модели Хаббарда // Оптика и спектроскопия. 2018. Т. 124. № 2. С. 159–166.
- Силантьев А.В. Энергетический спектр и оптические свойства фуллерена С₃₆ в модели Хаббарда // Оптика и спектроскопия. 2019. Т. 127. № 2. С. 191–199.
- Силантьев А.В. Энергетический спектр и оптические свойства фуллерена С₂₈ в модели Хаббарда // ФММ. 2020. Т. 121. № 6. С. 557–563.

- Силантьев А.В. Энергетический спектр и оптические свойства фуллерена С₂₄ в модели Хаббарда // ФММ. 2020. Т. 121. № 3. С. 227–234.
- Силантьев А.В. Влияние деформации на энергетический спектр и оптические свойства фуллерена С₂₀ в модели Хаббарда // ФММ. 2018. Т. 119. № 6. С. 541–549.
- Иванченко Г.С., Лебедев Н.Г. Проводимость двухслойных углеродных нанотрубок в рамках модели Хаббарда // ФТТ. 2007. Т. 49. С. 183–189.
- Силантьев А.В. Энергетический спектр и спектр оптического поглощения фуллерена С₆₀ в модели Хаббарда // ЖЭТФ. 2015. Т. 148. № 4. С. 749–757.
- 26. *Тябликов С.В.* Методы квантовой теории магнетизма. М.: Наука, 1975. 527 с.
- 27. *Каплан И.Г.* Симметрия многоэлектронных систем. М. Наука, 1969. 427 с.
- Елецкий А.В. Эндоэдральные структуры // УФН. 2000. Т. 170. № 2. С. 113–142.
- Вигнер Е.П. Теория групп и ее приложения к квантовомеханической теории спектров. М.: ИИЛ, 1961. 564 с.

346