ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ, 2021, том 122, № 6, с. 614-620

СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ

УДК 544.463+549.517.2+546.62+669.017.165

МЕХАНОХИМИЧЕСКИ СТИМУЛИРОВАННЫЕ РЕАКЦИИ ВОССТАНОВЛЕНИЯ ОКСИДА ЖЕЛЕЗА АЛЮМИНИЕМ

© 2021 г. Т. Ф. Григорьева^{*a*, *}, Т. Ю. Киселева^{*b*}, С. А. Петрова^{*c*}, Т. Л. Талако^{*d*}, С. В. Восмериков^{*a*}, Т. А. Удалова^{*a*, *e*}, Е. Т. Девяткина^{*a*}, А. А. Новакова^{*b*}, Н. З. Ляхов^{*a*}

^аИнститут химии твердого тела и механохимии СО РАН, ул. Кутателадзе, 18, Новосибирск, 630128 Россия

^b Московский государственный университет им. М.В. Ломоносова, Физический факультет, Ленинские горы, 1, Москва, 119991 Россия

^сИнститут металлургии УрО РАН, ул. Амундсена, 101, Екатеринбург, 620016 Россия

^dНациональная академия наук Беларуси, Отделение физико-технических наук,

пр. Независимости, 66, Минск, 220072 Республика Беларусь

^еНовосибирский государственный технический университет, пр. К. Маркса, 20, Новосибирск, 630073 Россия

*e-mail: grig@solid.nsc.ru

Поступила в редакцию 03.12.2020 г. После доработки 27.01.2021 г. Принята к публикации 08.02.2021 г.

Методами рентгеноструктурного анализа, ИК- и мёссбауэровской спектроскопии изучены продукты механохимического восстановления оксида железа алюминием. Показано, что при стехиометрическом соотношении оксида железа и алюминия продукты механохимической реакции содержат железо, α -Al₂O₃ и большое количество шпинели (герцинит), которое незначительно уменышается при увеличении времени механической активации. По данным мёссбауэровской спектроскопии, при увеличении содержания алюминия в два раза по сравнению со стехиометрическим процесс восстановления оксида железа идет быстрее, а избыток алюминия взаимодействует с восстановленным железом с формированием интерметаллических фаз Fe_xAl_y, преимущественно моноалюминида железа FeAl, упрочненного частицами α -Al₂O₃. При трехкратном превышении содержания алюминия вода стехиометрическим процесс механохимического восстановления замедляется, и в продуктах возрастает количество интерметаллидов Fe_xAl_y с бо́льшим содержанием алюминия.

Ключевые слова: механохимический синтез, оксид железа, алюминий, герцинит, интерметаллические соединения системы железо—алюминий

DOI: 10.31857/S0015323021060036

введение

Основная часть современных жаростойких сталей и сплавов – это материалы, формирующие при окислении на своей поверхности сплошную защитную оксидную пленку на основе Al₂O₃. Известно, что потенциально перспективными жаростойкими материалами являются алюминиды железа, никеля и др., представляющие интерес как конструкционные материалы благодаря высокой удельной прочности. Одним из методов получения таких композиционных материалов является механохимический синтез. Несмотря на то, что энтальпии образования интерметаллических соединений (ИМС) невелики [1], механохимически были синтезированы многочисленные ИМС [2-5], в том числе алюминиды никеля, железа, меди, золота [6-10]. Изучено влияние интенсивных пластических деформаций на формирование ИМС [11–14]. Особый интерес в качестве жаропрочного материала представляет моноалюминид железа, однако его прочность уменьшается при температурах выше 600°С при сохранении высокой коррозионной стойкости. Чтобы повысить устойчивость материала к высокотемпературной ползучести, используются керамические частицы в качестве упрочнителя. Однако когезионная прочность композитов на основе моноалюминида железа ограничена невысокой смачиваемостью большинства упрочняющих фаз. Решение этой проблемы становится возможным, если в процессе механохимического синтеза алюминида железа одновременно формируется устойчивая керамическая фаза, например, оксид алюминия. В этом случае для механохимического синтеза становятся перспективными высокоэнергетические системы, среди которых наибольший тепловой эффект наблюдается для реакции восстановления оксида железа алюминием, в ходе которой образуются как моноалюминид железа, так и оксид алюминия.

Механохимическое восстановление оксидов более активными металлами проводилось Шафером и МакКормиком [15].

При механической активации (МА) стехиометрической смеси Fe₃O₄ с алюминием реакция идет в режиме самораспространяющегося высокотемпературного синтеза [16]. В продуктах реакции содержатся сферические частицы α-A1₂O₃, что указывает на то, что температура была выше точки плавления Al_2O_3 (2325 K), по крайней мере, в некоторых частях барабана. По данным рентгенофазового анализа, непосредственно перед инициированием реакции в образце присутствуют только Fe₃O₄ и Al. Как и в большинстве механостимулированных реакций, инициированию реакции предшествует незначительное химическое взаимодействие. Были также исследованы образцы, взятые сразу же после окислительно-восстановительной реакции. Так как внутри барабана достигалась очень высокая температура, предполагалось образование только конечных продуктов, α -Fe и α -Al₂O₃. Однако в образце были найлены следы исходных реагентов и значительное количество герцинита FeAl₂O₄.

Аналогичные результаты были получены при восстановлении алюминием гематита Fe_2O_3 [17]. Стехиометрическая смесь порошков разбавлялась 25 вес. % Al_2O_3 для уменьшения температуры реакции. Механостимулированная реакция наблюдается только при очень интенсивной механоактивации в мельнице SPEX при использовании восьми стальных шаров Ø8 мм и восьми таких же шаров Ø10 мм для активации 5 г порошка. В продуктах, проанализированных сразу же после окислительно-восстановительной реакции, содержался промежуточный сложный оксид FeAl₂O₄, часть алюминия была растворена в фазе OЦK-Fe.

Целью работы было изучение возможности снижения содержания шпинели в продуктах механохимического восстановления оксида железа Fe₂O₃ алюминием при образовании моноалюминида железа FeAl в качестве основной фазы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных материалов использовали порошки оксида железа Fe₂O₃ (ТУ 6-09-5346-87) и металлического алюминия ПА-4.

Механохимическое взаимодействие компонентов в стехиометрической смеси $Fe_2O_3 + 2AI$, рассчитанной на полное восстановление оксида железа, а также в смесях с двух- и трехкратным превышением содержания алюминия над стехиометрическим, проводили в высокоэнергетической планетарной шаровой мельнице $A\Gamma O-2$ с водяным охлаждением. Объем барабана 250 см³, диаметр шаров 5 мм, загрузка шаров 200 г, навеска обрабатываемой смеси 10 г, скорость вращения барабанов вокруг общей оси ~1000 об/мин.

ИК-спектроскопические исследования проводили на ИК-спектрометре Tensor-27 в диапазоне 4000–400 см⁻¹.

Мёссбауэровские спектры регистрировали на лабораторном мёссбауэровском спектрометре MS1101Em с использованием радиоактивного источника ⁵⁷Co(Rh). Калибровку спектрометра осуществляли относительно стандарта α-Fe. Модельную расшифровку спектров проводили с помощью программы Univem. В расшифровке полученных спектральных данных использованы значения сверхтонких параметров спектров из работ по мёссбауэровским исследованиям систем Fe—Al [18—20] и оксидов железа [21].

Рентгеноструктурные исследования проводили на дифрактометре D8 Advance, Bruker (Cu K_{α} излучение, Ni-фильтр, позиционно-чувствительный детектор VÅNTEC1, шаг $\Delta 2\theta = 0.021^{\circ}$, время в точке 1100 с). Фазовый состав и кристаллическую структуру образцов определяли по данным рентгеновской дифракции с использованием программного пакета DIFFRAC^{plus}: EVA [22] и базы данных Межлународного центра дифракционных данных (ICDD) PDF4 [23]. Параметры элементарных ячеек сосуществующих фаз рассчитывали методом наименьших квадратов с использованием программы Celref [24]. Количественное содержание фаз определяли из полнопрофильного анализа по методу Ритвельда [25] с использованием программного пакета DIFFRAC^{plus}: TOPAS [26].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Стехиометрический состав $Fe_2O_3 + 2Al$

Реакция $Fe_2O_3 + 2Al = Al_2O_3 + 2Fe$ является одной из самых экзотермичных среди металлотермических с участием оксида железа ($\Delta H \approx 752 \text{ кДж/моль}$) [27].

ИК-спектроскопическое исследование продуктов механохимического синтеза показало, что после 30 с МА реакционной смеси стехиометрического состава в высокочастотной области валентных колебаний (v) связи Fe–O наблюдается сдвиг полосы от 525 до 555 см⁻¹ (рис. 1а, 1б), обусловленный изменениями в структуре α -Fe₂O₃. Увеличение времени МА до 60 с (рис. 1в) ведет к появлению в спектре четких интенсивных полос, характерных для α -Al₂O₃, с двумя максимумами при 640 и 610 см⁻¹, относящимися к колебаниям v Al–O октаэдра [AlO₆], и при 465 см⁻¹ – δ [AlO₆] [28]. Дальнейшая МА не изменяет ИК-спектра продукта.

Рентгеноструктурный анализ (рис. 2) показал, что МА смеси оксида железа и алюминия стехиометрического состава в течение 120 с приводит к

Рис. 1. ИК-спектры смеси $Fe_2O_3 + 2Al$, исходной (a) и после МА в течение 30 (б) и 60 с (в). A – оптическая плотность, отн. ед.

восстановлению оксида железа алюминием и образованию в продуктах реакции около 21 мас. % шпинели FeAl₂O₄ (табл. 1).

Рис. 2. Дифрактограммы смеси $Fe_2O_3 + 2AI$ после MA в течение 120 с: а – эксперимент, б – разложение на компоненты методом Ритвельда. $1 - \alpha$ -Fe, $2 - Al_2O_3$, $3 - FeAl_2O_4$.

Мёссбауэровские спектры после 40 с МА фиксируют восстановленное железо (α -Fe) и небольшой остаток исходного оксида железа α -Fe₂O₃ (гематит), появляется подспектр с параметрами магнетита Fe₃O₄, дублетные подспектры от незначительного количества интерметаллидов системы Fe–Al (Fe₂Al₅, FeAl₂) и подспектр железо-алюминиевой шпинели, герцинита Fe_xAl_{2-x}O₄ [29] (значительное количество, сопоставимое со свободным α -Fe) (рис. 3а, табл. 2). Увеличение времени МА до 120 с ведет к практически полному расходованию исходного оксида железа с формированием фазы твердого раствора алюминия в железе α -Fe(Al) и небольшому снижению содержания шпинели (рис. 36, табл. 2).

Составы $Fe_2O_3 + 4Al u Fe_2O_3 + 6Al$

По данным мессбауэровской спектроскопии, при увеличении в исходной смеси содержания металла-восстановителя (алюминия) в 2 раза по сравнению со стехиометрическим α -Fe₂O₃ почти весь расходуется уже за 40 с MA, как и в стехиометрической смеси (рис. 3в, табл. 2). Бо́льшая часть восстановленного железа взаимодействует с избыточным алюминием с формированием основной интерметаллической фазы FeAl и небольших количеств Fe₂Al₅ и FeAl₂. Часть α -Fe остается в виде свободного металла. Увеличение времени

Состав	Фаза	Пространственная группа	а, нм	С, НМ	<i>V</i> , нм ³	Количество фазы, мас. %
$Fe_2O_3 + 2Al$	α-Fe	Im-3m	0.2874(1)	_ 1.2986(7)	0.0237(1)	50.2(7)
	Al_2O_3	<i>R</i> -3 <i>c</i>	0.4762(2)		0.2551(2)	28.3(8)
	FeAl ₂ O ₄	Fd-3m	0.8117(4)	_	0.5348(8)	21.5(8)

Таблица 1. Фазовый состав смеси Fe₂O₃+2Al после MA в течение 120 с

Образец	Время МА, с	<i>H</i> _{эфф} , (±2) кЭ	δ, (±0.02) мм/с	Δ, (±0.02) мм/с	Γ, (±0.02) мм/с	<i>S</i> , (±1) %	Фазовый состав
$Fe_2O_3 + 2Al$	40	512	0.36	-0.18	0.32	5	α-Fe ₂ O ₃
		494	0.33	0.62	0.32	3	Fe ₃ O ₄
		460	0.64	0.01	0.32	4	Fe ₃ O ₄
		330	-0.05	0.01	0.27	37	α-Fe
			0.85	1.79	0.77	45	$\operatorname{Fe}_{2-x}\operatorname{Al}_{x}\operatorname{O}_{4}$
			0.16	0.96	0.45	4	Fe ₂ Al ₅
			0.23		0.48	2	FeAl
	120	325	-0.08	0.01	0.28	65	α-Fe(Al)
			0.87	1.78	0.77	29	$\operatorname{Fe}_{2-x}\operatorname{Al}_{x}\operatorname{O}_{4}$
			0.25	0.45	0.35	4	Fe ₂ Al ₅
			0.20		0.40	2	FeAl
$Fe_2O_3 + 4Al$	40	512	0.36	-0.2	0.27	4	α-Fe ₂ O ₃
		490	0.25	-0.35	0.27	3	Fe ₃ O ₄
		460	0.46	0.02	0.29	3	Fe ₃ O ₄
		329	0.0	-0.01	0.27	14	α-Fe
			0.16	0.41	0.30	19	FeAl ₂
			0.27	0.44	0.29	4	Fe ₂ Al ₅
			0.20		0.36	53	FeAl
	120	325	0.03	0.01	0.42	8	α-Fe(Al)
			0.15	0.40	0.30	19	FeAl ₂
			0.24	0.49	0.27	4	Fe ₂ Al ₅
			0.18		0.39	53	FeAl
$Fe_2O_3 + 6Al$	40	512	0.29	-0.18	0.30	72	α-Fe ₂ O ₃
		490	0.28	-0.26	0.77	8	Fe ₃ O ₄
		460	0.46	0.00	0.75	11	Fe ₃ O ₄
			0.19	0.47	0.50	2	FeAl ₂
			0.15	0.41	0.40	2	Fe ₂ Al ₅
			0.23		0.50	5	FeAl
	120	515	0.24	-0.02	0.45	4	α -Fe ₂ O ₃
			0.18	0.43	0.36	41	Fe ₂ Al ₅
			0.23	0.44	0.38	55	FeAl ₂

Таблица 2. Результаты фазового анализа методом мёссбауэровской спектроскопии продуктов МА смесей $Fe_2O_3 + 2AI$, $Fe_2O_3 + 4AI$ и $Fe_2O_3 + 6AI$. ($H_{3\phi\phi} - 3\phi\phi$ ективное магнитное поле на ядре ⁵⁷Fe, δ – изомерный сдвиг, Δ – квадрупольное расщепление, Γ – экспериментальная ширина линии, *S* – площадь подспектра)

Рис. 3. Мёссбауэровские спектры смесей $Fe_2O_3 + 2Al$ (a, б), $Fe_2O_3 + 4Al$ (в, г) и $Fe_2O_3 + 6Al$ (д, е) после МА в течение 40 (а, в, д) и 120 с (б, г, е).

МА до 120 с приводит к накоплению фазы FeAl и появлению, кроме Fe_2Al_5 и FeAl₂, фазы твердого раствора алюминия в железе α -Fe(Al) (рис. 3г, табл. 2).

При трехкратном избытке алюминия в исходной смеси заметно уменьшается скорость механохимического восстановления. По данным мёссбауэровской спектроскопии (рис. 3д, табл. 2), в процессе МА такой смеси в течение 40 с на восстановление расходуется менее $30\% \alpha$ -Fe₂O₃, появляются Fe₃O₄ и небольшие количества интерметаллидов Fe₂Al₅, FeAl₂ и FeAl. После 120 с MA продукт представляет собой смесь интерметаллидов Fe_2Al_5 и $FeAl_2$ и незначительного количества α -оксида железа.

По данным ИК-спектроскопии (рис. 4) фаза α -Al₂O₃ формируется только после 60 с MA.

ЗАКЛЮЧЕНИЕ

Таким образом, проведенные исследования показали, что избежать образования нежелательной промежуточной фазы — шпинели, можно при проведении механостимулированной реакции восстановления оксида железа двукратным избытком алюминия. В качестве основной фазы формирует-

Рис. 4. ИК-спектры смеси $Fe_2O_3 + 6Al$, исходной (а) и после МА в течение 40 (б) и 60 с (в). A – оптическая плотность, отн. ед.

ся моноалюминид железа, упрочненный частицами α-Al₂O₃.

Работа выполнена в рамках совместного проекта БРФФИ-РФФИ при финансовой поддержке грантов БРФФИ № Т20Р-037 и РФФИ № 20-53-00037.

СПИСОК ЛИТЕРАТУРЫ

- Miedema AR, de Chatel PF, de Boer FR. Cohesion in alloys – fundamentals, of a semi-empirical model // Physica B + C. 1980. V. 100. Is. 1. P. 1–28.
- 2. Григорьева Т.Ф., Баринова А.П., Ляхов Н.З. Механохимический синтез интерметаллических соединений // Усп. химии. 2001. Т. 70. № 1. С. 52–71.
- Елсуков Е.П., Дорофеев Г.А., Коныгин Г.Н., Фомин В.М., Загайнов А.В. Сравнительный анализ механизмов и кинетики механического сплавления в системах

Fe(75)X(25); X = C, Si // Φ MM. 2002. T. 93. No 3. C. 93–104.

- Елсуков Е.П., Дорофеев Г.А., Ульянов А.Л., Загайнов А.В. Структурно-фазовые превращения при механическом сплавлении системы Fe(50)Ge(50) // ФММ. 2003. Т. 95. № 5. С. 88–95.
- Елсуков Е.П., Ульянов А.Л., Порсев В.Е., Колодкин Д.А., Загайнов А.В., Немцова О.М. Особенности механического сплавления высококонцентрированных сплавов Fe–Cr //ФММ. 2018. Т. 119. № 2. С. 165–170.
- Иванов Е.Ю., Григорьева Т.Ф., Голубкова Г.В., Болдырев В.В., Фасман А.Б., Михайленко С.Д. Механохимический синтез алюминидов никеля // Изв. СО АН СССР, сер. хим. наук. 1988. Вып. 6. С. 80–83.
- Григорьева Т.Ф., Голубкова Г.В., Иванов Е.Ю. Образование пересыщенных твердых растворов при МС кристаллических никеля и алюминия // Изв. СО АН СССР, сер. хим. наук. 1989. Вып. 5. С. 107–110.
- 8. Григорьева Т.Ф., Баринова А.П., Болдырев В.В. Влияние размерного фактора и концентрации электронов на степень пересыщения твердых растворов на основе меди, полученных механохимическим синтезом // Неорганич. материалы. 1996. Т. 32. № 1. С. 41–43.
- Свиридова Т.А., Шевчуков А.П., Шелехов Е.В., Борисова П.А. Использование механического сплавления и последующего отжига для получения интерметаллида CuAl₂ // ФММ. 2011. Т. 112. № 4. С. 378– 392.
- 10. Волкова Е.Г., Волков А.Ю., Антонов Б.Д. Структура интерметаллида Al₂Au, полученного методом механосинтеза // ФММ. 2018. Т. 119. № 7. С. 693–702.
- Счастливцев В.М., Зельдович В.И. Влияние экстремальных воздействий на структуру и свойства сплавов // ФММ. 2018. Т. 119. № 9. С. 909–912.
- Воронина Е.В., Аль Саеди А.К., Иванова А.Г., Аржников А.К., Дулов Е.Н. Структурно-фазовые превращения в процессе приготовления упорядоченных тройных сплавов систем Fe–Al–M (M = Ga, B, V, Mn) с использованием механосплавления // ФММ. 2019. Т. 120. № 12. С. 1314–1321.
- Ларионова Н.С., Никонова Р.М., Ульянов А.Л., Мокрушина М.И., Ладьянов В.И. Деформационно-индуцированные структурно-фазовые превращения при механосинтезе Fe-фуллерит в толуоле // ФММ. 2019. Т. 120. № 9. С. 936-945.
- 14. Васильев Л.С., Ломаев С.Л. Влияние давления на процессы формирования и эволюции наноструктуры в пластически деформируемых металлах и сплавах // ФММ. 2019. Т. 120. № 6. С. 654–660.
- Schaffer G.B., McCormic P.G. Combustion synthesis by mechanical alloying // Scripta Met. 1989. V. 23. № 6. P. 835–838.
- Takacs L. Reduction of magnetite by aluminum: a displacement reaction induced by mechanical alloying // Mater. Lett. 1992. V. 13. Is. 2–3. P. 119–124.
- 17. Concas G., Corrias A., Manca E., Morongiu G., Paschina G., Spano G. An X-ray Diffraction and Mössbauer Spectroscopy Study of the Reaction between Hematite and Aluminium Activated by Ball Milling // Z. Naturforsch, A. 1998. V. 53. № 5. P. 239–244.

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 122 № 6 2021

- 18. Checchetto R., Tosello C., Miotello A., Principi G. Structural evolution of Fe–Al multilayer thin films for different annealing temperatures // J. Phys.: Condens. Matter. 2001. V. 13. № 5. P. 811–821.
- Cardellini F., Contini V., Gupta R., Mazzone G., Montone A., Perin A., Principi G. Microstructural evolution of Al– Fe powder mixtures during high-energy ball milling // J. Mater. Sci. 1998. V. 33. № 10. P. 2519–2527.
- Kiseleva T.Yu., Grigor'eva T.F., Gostev D.V., Potapkin V.B., Falkova A.N., Novakova A.A. Structural Study of Fe–Al Nanomaterial Produced by Mechanical Activation and Self-Propagating High-Temperature Synthesis // Moscow University Physics Bulletin. 2008. V. 63. № 1. P. 55–60.
- Cornell R.M., Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. John Wiley & Sons, 2006. 703 p.
- DIFFRAC^{plus}: EVA. Bruker AXS GmbH, Ostliche. Rheinbruckenstraße 50, D-76187, Karlsruhe, Germany. 2008.
- 23. Powder Diffraction File PDF4+ ICDD Release 2015.

- 24. *Laugier J., Bochu B.* LMGP-Suite of Programs for the interpretation of X-ray Experiments. ENSP. Grenoble: Lab. Materiaux Genie Phys. 2003.
- 25. *Rietveld H.M.* A Profile Refinement Method for Nuclear and Magnetic Structures // J. Appl. Crystallogr. 1969. V. 2. P. 65–71.
- DIFFRAC^{plus}: TOPAS. Bruker AXS GmbH, Ostliche. Rheinbruckenstraße 50, D-76187, Karlsruhe, Germany. 2006.
- 27. Подергин В.А. Металлотермические системы. М.: Металлургия, 1992. 272 с.
- 28. *Tarte P.* Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO₄ tetrahedra and AlO₆ octahedra // Spectrochimica Acta, Part A. 1967. V. 23. № 7. P. 2127–2143.
- Andreozzi G.B., Baldi G., Berbardini G.P., Di Benedetto F, Romanelli M. ⁵⁷Fe Mössbauer and electronic spectroscopy study on a new synthetic hercynite-based pigment // J. European Ceramic Society. 2004. V. 24. № 5. P. 821–824.