СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ

УДК 669.3'21:539.25

ФОРМИРОВАНИЕ УПОРЯДОЧЕННОЙ СТРУКТУРЫ В СПЛАВЕ Cu-50Pd (ат. %)

© 2021 г. О. С. Новикова^{а, *}, О. В. Антонова^а, А. Ю. Волков^а

^аИФМ УрО РАН, ул. С. Ковалевской, 18, Екатеринбург, 620108 Россия *e-mail: novikova@imp.uran.ru Поступила в редакцию 10.09.2020 г. После доработки 28.01.2021 г.

Принята к публикации 18.02.2021 г.

Проведено электронно-микроскопическое исследование эволюции структуры эквиатомного сплава Cu—50Pd в ходе перестройки A1 разупорядоченной фазы в упорядоченную по типу B2. Разупорядоченное состояние в исходных образцах формировалось двумя путями: сильной пластической деформацией прокаткой ($e \approx 3.8$) и закалкой от 700°C. Упорядочение проводилось отжигом исходных образцов в течение двух недель при температуре 350°C. Подтверждены литературные данные о том, что скорость атомного упорядочения по типу B2 в предварительно деформированном сплаве Cu—Pd значительно выше, чем после закалки от высокой температуры. Отжиг предварительно деформированного сплава Cu—50Pd приводит к формированию рекристаллизованной упорядоченной структуры с размером зерна менее 1 мкм. Обнаружено, что при температуре 350°C в разупорядоченной матрице закаленного сплава выделяются и растут частицы B2-фазы в виде стержней.

Ключевые слова: сплавы медь-палладий, атомное упорядочение, микроструктура, просвечивающая электронная микроскопия

DOI: 10.31857/S0015323021070056

1. ВВЕДЕНИЕ

Сплавы Cu-Pd вблизи эквиатомного состава отличаются высокой коррозионной стойкостью и каталитической способностью, что позволяет использовать их в энергосберегающих технологиях [1]. Кроме того, мембраны из упорядоченных по типу В2-сплавов медь-палладий отличаются повышенной стойкостью к образованию сульфидов на поверхности, значительно превосходя по этим характеристикам мембраны из чистого палладия (важную роль здесь также играет существенно меньшая цена изделий из сплава) [1, 2]. Согласно фазовой диаграмме [3], однофазное, упорядоченное по типу В2 состояние может формироваться в сплавах Cu-Pd, содержащих от 36 до 47 ат. % Pd. Надежно установлено, что максимальную скорость атомного упорядочения имеет сплав Cu-40 ат. % Pd; при приближении к эквиатомному составу скорость формирования упорядоченной фазы резко снижается [4, 5].

Ранее нами было показано [6, 7], что интенсивная пластическая деформация (ИПД) существенно ускоряет формирование упорядоченной по типу *B*2-структуры в сплавах Cu–Pd. Рентгеноструктурный анализ (РСА) выявил, что после деформации ($e \approx 3.8$) и последующего длительного отжига в температурном интервале 250–450°С в эквиатомном сплаве Cu-50Pd (далее обозначение ат. % будет опускаться) формируется практически однофазное, упорядоченное по типу В2-состояние. Это не соответствует фазовой диаграмме системы медь-палладий [3], на которой этот сплав помещен в двухфазную область (A1 + B2). Более того, в полученном структурном состоянии удельное электросопротивление сплава составляет $\rho = 5.48 \times 10^{-8}$ Ом м [6], что существенно ниже литературных данных [8]. Это исследование подтвердило выводы работы [9], в которой, согласно теоретическим расчетам, было установлено, что формирование однофазного, упорядоченного по типу В2-состояния в эквиатомном сплаве CuPd является энергетически выгодным. Нами не было обнаружено детальных электронно-микроскопических исследований сплава Cu-50Pd после различных термомеханических обработок.

Вероятно, причиной того, что микроструктура и свойства упорядоченного сплава Cu—50Pd изучены далеко недостаточно, является очень низкая скорость $A1 \rightarrow B2$ -фазового превращения. Кинетика атомного упорядочения этого сплава была подробно рассмотрена нами в работе [6] на основе данных резистометрии. Однако к настоящему времени изменение физико-механических свойств не

Обработка	Фазовый состав	<i>а</i> _{<i>A</i>1} , нм	<i>а</i> _{<i>B</i>2} , нм	ρ, мкОм см
Исходное состояние: закалка от 700°	А1 (ГЦК)	0.3765	—	38.64
Закалка + 350°С, 2 недели, охлаждение в воде	А1(ГЦК) + В2(ОЦК) Преобладает А1-фаза	0.3766	0.2977	35.50
Исходное состояние: ИПД (є ≈ 3.8)	A1	0.3770	_	38.36
ИПД + 350°С, 2 недели, охлаждение в воде	<i>B</i> 2 + <i>A</i> 1 Преобладает <i>B</i> 2-фаза	0.3767	0.2977	7.58
ИПД + 350°С, 1.5 месяца + 300°С, 1.5 месяца + + охлаждение по 10 град/сутки	<i>B</i> 2 + следы <i>A</i> 1	_	0.2978	5.48

Таблица 1. Результаты РСА и резистометрии сплава Cu-50Pd в двух исходных состояниях и после длительных термообработок

сопоставлено с эволюцией микроструктуры в процессе атомного упорядочения сплава Cu—50Pd.

Целью настоящей работы является проведение электронно-микроскопического исследования эквиатомного сплава Cu-50Pd в различных структурных состояниях.

2. МАТЕРИАЛ И МЕТОДИКА

Сплав получали из меди и палладия чистотой 99.98% методом двойного переплава в вакууме не хуже 10^{-2} Па с разливкой в графитовый тигель. Согласно результатам рентгеновского микроанализа (Superprobe JCXA-733), состав полученного сплава соответствует соотношению: 49.8Cu—50.2Pd (ат. %).

Слиток диаметром 8 мм был гомогенизирован в течение трех часов при температуре 850°C, а затем закален в воде. Фольга толщиной 0.1 мм для микроструктурных исследований была получена прокаткой при комнатной температуре (истинная деформация $e \approx 3.8$). После этого часть образцов отжигали при температуре 700°C в течение одного часа с последующим охлаждением в воде. Таким образом, в работе изучали два исходных разупорядоченных состояния, которые были получены с помощью предварительной деформации или закалки. Упорядоченное состояние формировалось в результате отжига исходных образцов при температуре 350°С в течение 2 нед. (334 ч). Все термообработки осуществляли в вакуумированных кварцевых или стеклянных ампулах.

Электронно-микроскопическое исследование микроструктуры сплава проводили с использованием микроскопа JEM-200СХ при ускоряющем напряжении 160 кВ. Фольги для электронной микроскопии получали электролитической полировкой в концентрированной азотной кислоте HNO₃. Плотность тока составляла 4 A/cm^2 , катодом служила пластина из платины. В процессе электрополировки электролит охлаждался холодной водой с тем, чтобы поддерживать его температуру не выше 20°С.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

В этой работе приведены результаты только электронно-микроскопических исследований. Полученные нами ранее и опубликованные в работах [6, 7, 10] данные РСА и резистометрии сведены в табл. 1. Представленные результаты дают достаточно четкое представление о кинетике атомного упорядочения в сплаве Cu—50Pd. Длительное (в течение нескольких месяцев) охлаждение от 350°С обеспечивает формирование в исходно деформированном сплаве сверхструктуры B2, в которой фиксируются следы разупорядоченной A1-фазы [6]. Свойства сплава после такой обработки будут использоваться нами ниже как эталонные для хорошо упорядоченного состояния.

3.1. Микроструктура закаленного сплава

В соответствии с данными РСА, исследуемый сплав в закаленном состоянии находится в разупорядоченном (*A*1) состоянии и имеет однофазную структуру с параметром ГЦК-кристаллической решетки: a = 0.3765 нм (табл. 1). Это соответствует литературным данным: согласно [3], параметр решетки закаленного сплава Си–49.9 ат. % Рd составляет a = 0.3767 нм.

Большинство зерен в закаленном сплаве имеют криволинейные границы, средний размер зерна составляет ~20 мкм (рис. 1). Все микродифракции (МД), полученные с образцов закаленного сплава, соответствуют разупорядоченной А1-фазе. К примеру, для двух зерен, которые обозначены на рис. 1 как I и II, были установлены сечения обратной решетки (С.О.Р.) с осями зон (О.З.) (011) и (012) A1 фазы. В ходе электронно-микроскопического исследования также были обнаружены длинные зерна с прямолинейными границами. Поскольку двойники неоднократно наблюдались ранее в закаленных сплавах Cu-Pd [11], мы предполагаем двойниковое происхождение таких границ. Внутри многих зерен наблюдается твидовый контраст, что свидетельствует о неравновесном структурном состоянии. Вообще, твидовый

Рис. 1. Светлопольное изображение микроструктуры закаленного сплава Cu–50Pd.

контраст неоднократно фиксировался ранее в ходе электронно-микроскопических исследований закаленных сплавов медь—палладий [11]; он является характерным признаком формирования ближнего атомного порядка [12].

Можно также отметить, что для некоторых C.O.P. были зафиксированы межплоскостные расстояния $\{hkl\}$, не отвечающие табличным значениям. Это вновь подтверждает формирование предпереходного состояния в исследуемом сплаве в процессе закалки.

3.2. Микроструктура сплава, упорядоченного после закалки

Согласно данным РСА и резистометрии (табл. 1), выдержка закаленного сплава при температуре 350°С в течение 334 ч (~2 нед.) переводит его в двухфазное (A1 + B2)-состояние. Причем, основной объем материала остается разупорядоченным. Параметры решеток разупорядоченной и упорядоченной фаз в этом случае составляют: a == 0.3766 нм и a = 0.2977 нм соответственно.

Используя данные резистометрии, можно приблизительно оценить соотношение объемов новой и старой фаз в сплаве после термообработки. Действительно, принимая во внимание, что полностью разупорядоченный сплав (100% *A*1-фазы) имеет электросопротивление: $\rho = 38.64 \times 10^{-8}$ Ом м, а в хорошо упорядоченном состоянии (~100% *B*2-фазы) $\rho = 5.48 \times 10^{-8}$ Ом м, по известной формуле [5] получаем, что в образце с электросопротивлением $\rho = 35.50 \times 10^{-8}$ Ом м сформировалось ~9.5% *B*2-фазы.

Результаты проведенного нами электронномикроскопического исследования подтверждают данные PCA и резистометрии: в ходе отжига при температуре 350°C в предварительно закаленном сплаве CuPd формируется двухфазная структура (A1 + B2); превращение происходит очень медленно и даже через 2 нед. термообработки в образце преобладает A1-фаза.

В микроструктуре предварительно закаленного сплава после указанной термообработки наблюдается большое количество частиц в виде линз и стержней различных размеров (рис. 2а, 2б). От большинства таких частиц обнаруживались лишь отдельные рефлексы, расчетные значения межплоскостных расстояний которых соответствуют B2-фазе. Показанные на рис. 26 вытянутые частицы (обозначены как 1 и 2) – достаточно крупные, что позволило получить С.О.Р., которые характерны для B2-фазы. Это подтверждается МД (рис. 2в) и темнопольным изображением этих частиц на рис. 2г, полученном в сверхструктурном рефлексе $\mathbf{g} = [001]_{B2}$.

Вопрос о кристаллографии выделений *B*2-фазы в разупорядоченной матрице исследуемого сплава требует проведения отдельных детальных исследований и поэтому рассмотрен в данной работе далеко недостаточно.

3.3. Микроструктура деформированного сплава

Согласно РСА, эквиатомный сплав CuPd в деформированном состоянии ($e \approx 3.8$) имеет однофазную ГЦК-структуру (А1) (табл. 1). Параметр решетки деформированного сплава составляет: a = 0.3770 нм, что несколько превышает параметр решетки этого сплава в закаленном состоянии. Некоторое увеличение параметра решетки в результате ИПД уже наблюдалось нами ранее при исследовании сплавов Cu-40Pd [13] и Cu-55Pd [14]. Это вызвано большим объемом неравновесных границ в наноструктурированном материале. Действительно, как следует из проведенной нами по методу Вильямсона-Холла оценки, размер областей когерентного рассеяния в исследуемом сплаве после пластической деформации составляет ~37 нм. Литературные данные по параметру решетки сильно деформированного сплава Си-50Pd отсутствуют.

На рис. 3 приведено наиболее типичное изображение микроструктуры исследуемого сплава в деформированном состоянии. На светлопольном изображении (рис. 3а) не фиксируются отчетливые границы от каких-либо структурных элементов. МД, полученная с участка диаметром ~0.5 мкм, имеет кольцевое расположение отражений, характерных для ГЦК-решетки (A1 фаза).

В группе рефлексов $\mathbf{g} = \langle 111 \rangle$ получено темнопольное изображение, на котором видна неправильной формы полосовая структура с субструктурой различной морфологии и размеров внутри каждой полосы (рис. 36). На рис. 3в приведено светлопольное изображение микроструктуры по-

ФОРМИРОВАНИЕ УПОРЯДОЧЕННОЙ СТРУКТУРЫ

Рис. 2. Микроструктура исходно закаленного сплава Cu–50Pd, упорядоченного отжигом 350° C, 2 недели: а, б – типичные светлопольные изображения; в – МД к (б), приведены C.O.P. с O.3. (5-1-2)*A*1 и (1-30)*B*2-фаз; г –темнопольное изображение частиц в **g** = [001]*B*2-фазы.

сле наклона фольги на 30°: наблюдается большее (чем на рис. 3а) количество полос со слабым контрастом от границ.

Следует отметить, что в ходе исследования образцов сильнодеформированного сплава Cu-50Pd мы практически не обнаружили ни отдельных дислокаций, ни сложных дислокационных конфигураций. Однако необходимо отметить, что на

Рис. 3. Микроструктура сплава CuPd после деформации $e \approx 3.8$: а – светлопольное изображение в плоскости фольги (на вставке – МД с центральной части снимка); б – темнопольное изображение в группе рефлексов $\mathbf{g} = \langle 111 \rangle A1$ -фазы; в – светлопольное изображение после наклона (а) на 30° (в левом углу – увеличенное изображение муарового контраста).

электронно-микроскопических изображениях часто наблюдался муаровый контраст. Для примера на вставке на рис. Зв демонстрируется формирование муарового контраста внутри одной из полос. Такое явление может быть вызвано концентрационными

Рис. 4. Микроструктура предварительно деформированного сплава после отжига 350°С, 2 нед.: а – светлопольное изображение; б – МД к (а). На вставке приведена гистограмма распределения зерен по размерам в полученном структурном состоянии.

неоднородностями в объеме материала, а также малыми различиями межплоскостного расстояния по толщине фольги [15], которые возникают в результате искажений кристаллической решетки вследствие сильной деформации [16].

3.4. Изменение микроструктуры деформированного сплава в результате длительного отжига

Отжиг при температуре 350°С в течение 334 ч приводит к формированию в исходно деформированном сплаве Cu—50Pd двухфазного (A1 + B2)-состояния (табл. 1). В соответствии с данными PCA, после такой обработки в сплаве преобладает упорядоченная B2-фаза. Параметры решеток разупорядоченной и упорядоченной фаз составляют: a == 0.3767 нм и a = 0.2977 нм соответственно. Согласно данным резистометрии, сплав в этом состоянии имеет достаточно низкое электрическое сопротивление $\rho = 7.58 \times 10^{-8}$ Ом м (табл. 1). На основе резистометрических данных и с использованием формулы из работы [5], объем упорядоченной *B*2-фазы в полученном структурном состоянии можно оценить как ~94%.

После предварительной деформации и двухнедельной выдержки при температуре 350°С в микроструктуре исследуемого сплава наблюдаются хорошо рекристаллизованные зерна размером от 0.25 до 2 мкм (рис. 4а). На МД с участка микроструктуры на рис. 4а можно выделить 3 С.О.Р. для *В*2-фазы с О.3.: [230], [344] и [384] (рис. 4б). Отметим, что для С.О.Р. с О.З. [230] межплоскостные расстояния не соответствуют табличным значениям, однако при этом соблюдаются угловые соотношения для упорядоченной ОЦК-решетки (В2-фаза). Два других С.О.Р. соответствуют табличным значениям межплоскостных расстояний, а также угловым соотношениям. В отдельных участках микроструктуры наблюдается сосуществование чистых рекристаллизованных зерен и исходной структуры с повышенной плотностью дислокаций (т.е. областей, в которых процессы рекристаллизации еще не начинались). Анализ МД с таких областей выявил сосуществование в них А1- и В2-фаз.

Гистограмма распределения зерен по размерам в полученном структурном состоянии сплава приведена на рис. 4 (см. вставку). Гистограмму строили на основе снимков микроструктуры по 300 измерениям.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Особенности зарождения и роста частиц новой фазы в исходной матрице всегда представляют интерес для материаловедов. К примеру, начальные стадии формирования упорядоченной фазы в разупорядоченном сплаве Cu—40Pd обсуждались в работах [11, 17]. Однако этот сплав имеет самую высокую скорость атомного упорядочения, поэтому зафиксировать в нем начальные стадии перестройки структуры было чрезвычайно затруднительно. Так, в предварительно закаленном сплаве Cu—40Pd зародыши упорядоченной фазы наблюдались уже через 3 мин отжига при 400°C [17].

В представленной работе проведено электронно-микроскопическое исследование микроструктуры эквиатомного сплава Cu-50Pd, который имеет очень низкую скорость $A1 \rightarrow B2$ -превращения. Это позволило впервые наблюдать формирование стержнеобразных частиц упорядоченной B2-фазы в разупорядоченной матрице медно-палладиевого сплава. Отметим, что для этого потребовался двухнедельный отжиг при температуре 350°C. Однако ранее, для упорядочения сплавов Cu-Pd, как правило, использовали более высокие температуры. К примеру, после длительного отжига при температуре 500°С в сплаве Cu-55Pd были обнаружены округлые зародыши новой фазы [14]. Отжиг разупорядоченного сплава Cu-40Pd при температуре 400°С привел к образованию зерен упорядоченной фазы, форма которых также близка к сферической [17].

Таким образом, в упорядочивающихся по типу *B*2-сплавах Cu–Pd наблюдается интересная особенность: зародыши упорядоченной фазы, которые образовались при температуре 350° С, имеют форму стержней, но при повышении температуры отжига они становятся сферическими. Причем, эта особенность наблюдается в широкой области концентраций (а, значит, не зависит от кинетики $A1 \rightarrow B2$ -превращения).

Кинетику атомного упорядочения в различных сплавах Cu–Pd изучали ранее в работах [5–7. 18]. Было обнаружено, что при отжигах эквиатомного сплава Cu-50Pd в температурном интервале 250-350°С, значение термодинамического параметра *n* из уравнения Джонсона–Мела–Аврами принимает значение $n \approx 0.8$ [6]. При дальнейшем увеличении температуры отжига значение параметра *п* повышается и становится $n \approx 2.5$ при 450°С. Как известно [19], изменение величины параметра *п* вызвано сменой механизма диффузионно-контролируемого превращения. К примеру, при формировании длинных цилиндров (стержней) $n \approx 1$, а при росте сфероидов *n* принимает значения около 1.5 [19]. Таким образом, полученные в нашей работе экспериментальные результаты хорошо удовлетворяют данным термодинамических расчетов.

Конечно, низкая скорость атомного упорядочения затрудняет использование эквиатомного сплава Cu-Pd на практике, в качестве мембранного материала в водородной энергетике. В то же время предварительная пластическая деформация значительно ускоряет атомное упорядочение по сравнению с закаленным состоянием. Следующим шагом в направлении дальнейшего повышения скорости $A1 \rightarrow B2$ -фазового превращения в сплаве Cu-50Pd может быть использование предварительной криодеформации. Как было показано нами в работе [20], разупорядоченная структура, сформировавшаяся в сплаве Cu-47Pd в результате криопрокатки, является крайне неустойчивой и начинает медленно упорядочиваться даже при комнатной температуре.

В целом, полученные результаты представляют несомненный научный и практический интерес, что вызывает необходимость продолжения этих исследований.

5. ЗАКЛЮЧЕНИЕ

Проведено электронно-микроскопическое исследование эволюции разупорядоченной микроструктуры эквиатомного сплава Cu-50Pd в ходе атомного упорядочения по типу В2. Разупорядоченное состояние в сплаве формировалось двумя путями: закалкой от 700°С и сильной деформацией прокаткой ($e \approx 3.8$). Установлено, что размер зерна в закаленном сплаве составляет ~20 мкм. В деформированном сплаве CuPd наблюдается неоднородная по объему микроструктура с высокой плотностью различных дефектов. Показано, что отжиг исходно закаленного и предварительно деформированного образцов сплава в течение 2-х недель при температуре 350°С приводит к формированию двухфазной (А1 + В2)-структуры. Подтверждены полученные ранее результаты РСА и резистометрии: предварительная деформация значительно ускоряет кинетику $A1 \rightarrow B2$ фазового превращения в исследуемом сплаве. Обнаружено, что в микроструктуре закаленного эквиатомного сплава CuPd в ходе отжига возникают и растут частицы упорядоченной фазы стержневидной формы. Сопоставление с литературными данными показывает, что отжиг при более высоких температурах приводит к формированию в сплавах Cu-Pd сферических выделений новой фазы. Эти результаты хорошо удовлетворяют проведенным нами ранее термодинамическим расчетам, где показано, что увеличение температуры отжига вызывает смену механизма диффузионно-контролируемых процессов зарождения и роста. Установлено, что отжиг при температуре 350°С приводит к образованию в предварительно деформированном эквиатомном сплаве Cu-50Pd рекристаллизованной, хорошо упорядоченной по типу В2-структуры со средним размером зерна ~0.5 мкм.

Работа выполнена при финансовой поддержке РФФИ (проект № 18-03-00532). Электронномикроскопическое исследование образцов проводилось с использованием приборного парка ЦКП ИФМ УрО РАН.

СПИСОК ЛИТЕРАТУРЫ

- Иевлев В.М., Белоногов Е.К., Максименко А.А. Ориентированная кристаллизация тонких пленок Pd– Cu // ФММ. 2008. Т. 105. № 6. С. 608–613.
- Акимова О.В., Велигжанин А.А., Светогоров Р.Д., Горбунов С.В., Рошан Н.Р., Бурханов Г.С. Кинетика поглощения водорода из газовой фазы диффузионными фильтрами-мембранами системы Pd-Y// ФММ. 2020. Т. 121. № 2. С. 172–178.
- Subramanian P.R., Laughlin D.E. Cu–Pd (Copper– Palladium) // J. Phase Equilibria. 1991. V. 12. № 2. P. 231–243.
- Белецкий Ю.И. Дзиграшвили Т.А., Кокорин В.В., Пан В.М., Чуистов К.В., Шевченко А.Д. Особенности физических свойств и упорядочение в сплавах Cu-Pd // ФММ. 1978. Т. 45. Вып. 6. С. 1200–1204.
- 5. Балина Е.А., Гельд П.В., Андреева Л.П., Зеленин Л.П. Кинетика процессов упорядочения и разупорядо-

чения двойных сплавов Cu-Pd // ФММ. 1990. № 12. С. 144–148.

- Volkov A. Yu., Novikova O.S., Antonov B.D. The kinetics of ordering in an equiatomic CuPd alloy: A resistometric study // J. Alloys and Compounds. 2013. V. 581. P. 625–631.
- Новикова О.С., Волков А.Ю. Кинетика атомного упорядочения сплава Си–49 ат. % Рd после интенсивной пластической деформации // ФММ. 2013. Т. 114. № 2. С. 179–188.
- 8. *Савицкий Е.М., Полякова В.П., Тылкина М.А.* Сплавы палладия. М.: Наука, 1967. 215 с.
- 9. Bruno E., Ginatempo B., Giuliano E.S. Fermi Surface Origin of Non-Stoichiometric Ordering in CuPd Alloys // J. Phys. Condens. Matter. 2001. № 13. P. 711–716.
- Antonova O.V., Novokova O.S., Volkov A.Yu. Structure of an equiatomic CuPd alloy after severe plastic deformation and subsequent ordering // Diagnostic, Resource and Mechanics of materials and structures. 2015. V. 5. P. 133–138.
- Антонова О.В., Волков А.Ю. Микроструктура упорядоченного сплава Си-40 ат. % Pd // ФММ. 2009. Т. 108. № 4. С. 395-405.
- K. Ohshima, D. Watanabe. Electron diffraction study of short-range-order diffuse scattering from disordered Cu-Pd and Cu-Pt alloys // Acta Cryst. 1973. V. A29. P. 520–525.
- 13. Antonova O.V., Volkov A.Yu. Changes of microstructure and electrical resistivity of ordered Cu-40Pd (at %) al-

loy under severe plastic deformation // Intermetallics. 2012. V. 21. P. 1–9.

- Novikova O.S., Volkov A.Yu. Determining temperature boundary of A1–(A1 + B2) phase transformation in the copper-55 at. % palladium alloy subjected to severe plastic deformation // Johnson Matthey Technology Review. 2014. V. 58. № 4. P. 195–201.
- Хирш П., Хови А., Николсон Р., Пэшли Д., Уэлан М. Электронная микроскопия тонких кристаллов. Пер. с англ. / Под ред. Л.М. Утевского. М.: Мир, 1968. 575 с.
- Mishin O.V., Godfrey A., Juul Jensen D., Hansen N. Recovery and recrystallization in commercial purity aluminum cold rolled to an ultrahigh strain // Acta Mater. 2013. V. 61. P. 5354.
- Телегин А.Б., Сюткин Н.Н., Шашков О.Д. Структура и механические свойства упорядоченного сплава медь-палладий // ФММ. 1981. Т. 52. № 3. С. 627-633.
- Волков А.Ю., Бараз В.Р., Новикова О.С., Половникова Е.И. Кинетика превращения беспорядок → порядок в сплаве Cu-47 ат. % Pd // Известия вузов. Физика. 2012. Т. 55. № 11. С. 17–23.
- 19. Кристиан Дж. Теория превращений в металлах и сплавах. М.: Мир, 1978. Т. 1. 806 с.
- Novikova O.S., Volkova E.G., Glukhov A.V., Antonova O.V., Kostina A.E., Antonov B.D., Volkov A.Yu. Evolution of the microstructure, electrical resistivity and microhardness during atomic ordering of cryogenically deformed Cu-47 at % Pd alloy // J. Alloys and Compounds. 2020. V. 838. P. 155591.