СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАШЕНИЯ И ДИФФУЗИЯ

УЛК 669.3:620.186.5

МОДЕЛЬ ПЕРВИЧНОЙ РЕКРИСТАЛЛИЗАЦИИ В ЧИСТОЙ МЕДИ

© 2021 г. Н. В. Сахаров^{а, *}, В. Н. Чувильдеев^а

^a ННГУ им. Н.И. Лобачевского, просп. Гагарина, 23, Нижний Новгород, 603950 Россия
*e-mail: nvsaharov@nifti.unn.ru
Поступила в редакцию 28.12.2020 г.
После доработки 26.01.2021 г.
Принята к публикации 02.03.2021 г.

Предложена новая модель описания процесса первичной рекристаллизации в металлах. В предлагаемой модели скорость роста зародышей рекристаллизации определяется кинетикой снижения мощности дисклинационных диполей, распределенных в границах зародыша. Получено уравнение, связывающее объемную долю рекристаллизованного материала с температурой и временем отжига. Полученное уравнение имеет вид уравнения Аврами при n=1 и значении энергии активации, равном энергии активации диффузии по неравновесным границам зерен.

Ключевые слова: первичная рекристаллизация в металлах, неравновесные границы зерен

DOI: 10.31857/S0015323021070081

ВВЕДЕНИЕ

В настоящее время для описания первичной рекристаллизации в чистых металлах широко используется формальная теория рекристаллизации [1—3]. В ее основе лежит гипотеза о подобии протекания процессов рекристаллизации и фазового превращения. Предполагается, что уравнение, связывающее объемную долю рекристаллизованного материала f_V и время t его изотермического отжига, имеет следующий вид:

$$f_V = 1 - \exp(-Bt^n). \tag{1}$$

Уравнение (1) получило название уравнения Аврами, B и n в нем — численные коэффициенты. Значение B связано с энергией активации рекристаллизации аррениусовской зависимостью:

$$B = B_0 \cdot \exp(-Q/RT), \tag{2}$$

где B_0 — численный коэффициент, R — универсальная газовая постоянная. Согласно формальной теории рекристаллизации, при n=1 скорость процесса непрерывно уменьшается, при n>1 скорость рекристаллизации сначала растет, затем падает. В последнем случае кривая, описываемая уравнением (1), имеет вид сигмоиды. Значения n>1 в формальной теории рекристаллизации соответствуют тем случаям, когда процессу роста линейных размеров зародышей рекристаллизации предшествует процесс их зарождения. Конкретное значение n зависит от вида функции, описывающей скорость увеличения числа зародышей; от размерности пространства, в котором происходит рост (увеличение объема одновременно во

всех трех измерениях, в одной плоскости или в одном направлении); от того, являются ли места образования зародышей хаотически (случайно) распределенными по всему объему или они формируются в определенных местах (например, на границах зерен исходного металла). Максимальное значение n, получаемое по результатам теоретического анализа, равно 4.

Примерами экспериментальных работ, в которых кинетика первичной рекристаллизации была проанализирована с применением уравнения Аврами, являются статьи [4—11]. Объектом исследования в них выступала медь чистотой от 99.96 до 99.99%. Использование уравнения Аврами для анализа экспериментальных данных позволило определить значения параметров n и B из уравнения (1) и/или значений параметров k и Q из уравнения (2). Результаты вычислений, полученные в работах [4—11], обобщены в виде табл. 1 и 2.

Анализ данных, приведенных в табл. 2, показывает, что значения Q и n могут варьироваться в широких диапазонах: Q — от 68 до 159 кДж/моль (или от 7.6 до 15.3 $kT_{\rm m}$), n — от 0.32 до 4.8. Энергии активации рекристаллизации, полученные в [4—11], в большинстве случаев оказываются несопоставимыми с характерными значениями диффузионных параметров металлов: слишком высокими по сравнению с энергией активации зернограничной диффузии (\approx 10 $kT_{\rm m}$) и слишком низкими по сравнению с энергией активации объемной диффузии (\approx 20 $kT_{\rm m}$). Таким образом, физический смысл параметра Q, входящего в уравнение Аврами, остается неясным.

Таблица 1. Результаты вычисления параметров B и k из уравнения Аврами

Работа	Константы <i>В</i> и <i>k</i>
[5]	$k = 3.9 \times 10^7 \mathrm{c}^{-1}$ (ДСК при $T = \mathrm{const}$)
	$k = 5.6 \times 10^9 \mathrm{c}^{-1}$ (ДСК при d $T/\mathrm{d}t = \mathrm{const}$)
[6]	$B = 9.0 \times 10^{-5} (T = 165^{\circ}\text{C})$
	$B = 9.2 \times 10^{-5} (T = 170^{\circ}\text{C})$
	$B = 9.4 \times 10^{-5} (T = 175^{\circ}\text{C})$
[9]	$k = 1.31 \times 10^{12} \mathrm{c}^{-1}$
[10]	$B = 5.4 \times 10^{-5} (T = 160^{\circ}\text{C})$
	$B = 2.4 \times 10^{-3} \ (T = 210^{\circ}\text{C})$
	$B = 9.2 \times 10^{-3} (T = 230^{\circ}\text{C})$
	$B = 2.9 \times 10^{-1} (T = 290^{\circ}\text{C})$
	$B = 3.8 \times 10^{-3}$ (исходное состояние)
	$B = 3.9 \times 10^{-3}$ (прокатка 36%)
·	$B = 2.8 \times 10^{-3}$ (прокатка 91%)

Таблица 2. Значения Q и n, полученные из уравнения Аврами

Работа	Q, kT_m	n
[4]	_	1.72-2.67
[5]	9.5-11.3	2-4.8
[6]	_	1.29-1.48
[7]	11.5—15.3	0.8-1.2
[8]	10.5-11.3	0.87-1.01
[9]	14.5	1.4-3.5
[10]	7.6-15.1	0.32-0.75
[11]	-	3.09

Для преодоления трудностей, связанных с неоднозначностью интерпретации значений Q и n, получаемых из уравнения Аврами, некоторые авторы предпринимали попытки модификации формальной теории рекристаллизации (см., напр., [12, 13]). Предлагаемые в большинстве случаев изменения сводились к введению новых эмпирических коэффициентов или замене уже имеющихся в уравнениях (1) и (2). Как правило, такой подход позволял точнее описать экспериментальные результаты в каком-то конкретном случае, однако это не способствовало прояснению физического смысла коэффициентов Q, B и n, входящих в уравнения (1) и (2), и выявлению общих закономерностей их изменения при изменении основных характеристик (состава и параметров структуры) материала.

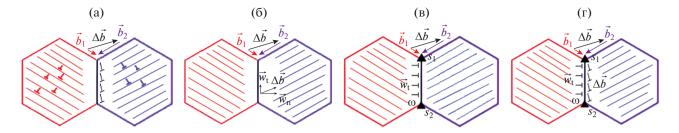
Следует заметить, что формальная теория рекристаллизации носит общий характер (настолько, насколько общим является термодинамиче-

ский подход, использованный при построении формальной теории фазовых превращений, или геометрический подход, использованный Колмогоровым в [14]). Альтернативным по отношению к термодинамическому или геометрическому подходу является другой способ изучения первичной рекристаллизации. Он основан на анализе изменений, происходящих с материалом на структурном уровне, и, в частности, установлении микромеханизмов формирования зародышей.

Существующие в настоящее время модели, описывающие процесс рекристаллизации "на языке" микромеханизмов формирования зародышей рекристаллизации, являются качественными. Подробный обзор этих моделей можно найти в [15].

В настоящей работе решается задача построения новой количественной модели первичной рекристаллизации в чистой меди. В представленной модели введено новое определение зародыша рекристаллизации, связанное с современными представлениям о структуре большеугловых границ зерен. Как будет показано ниже, применение новой модели для описания первичной рекристаллизации позволило установить физический смысл коэффициентов, входящих в уравнение Аврами.

МОДЕЛЬ ПЕРВИЧНОЙ РЕКРИСТАЛЛИЗАЦИИ


Определение зародыша рекристаллизации

Зародыши рекристаллизации в предлагаемой модели представляют собой свободные от дефектов участки материала, окруженные большеугловыми границами с распределенными в них дефектами. Наличие дефектов в границах зародышей существенно влияет на характер протекания первичной рекристаллизации.

Описание границ зародыша рекристаллизации

В процессе предварительной деформации металла решеточные дислокации активно взаимодействуют с большеугловыми границами. Происходящие при этом превращения на границах приводят к перестройке их структуры. Рассмотрим этот процесс подробнее.

Решеточные дислокации, осуществляющие пластическую деформацию, двигаются в плоскости скольжения в направлении границы между зернами 1 и 2 (плоскость скольжения перпендикулярна плоскости рис. 1). Как показано в [16], после перехода через границу зерен на ней остаются дислокации ориентационного несоответствия (ДОН), возникающие из-за существования взаимной разориентировки систем скольжения, действующих в соседних зернах. Вектор Бюргерса ДОН определяется разностью векто-

Рис. 1. Дефекты в границах зародышей рекристаллизации. а — формирование ДОН (обозначены черным) в границе зерен при прохождении дислокаций из зерна 1 (нарисовано красным, вектор Бюргерса действующей системы скольжения \vec{b}_1) в зерно 2 (нарисовано синим, вектор Бюргерса действующей системы скольжения \vec{b}_2); б — делокализация ДОН в границах с образованием тангенциальных компонент плотностью w_t и нормальных плотностью w_n ; в — дефекты, сформировавшиеся в границе после делокализации ДОН: тангенциальные компоненты делокализованных дислокаций плотностью w_t и стыковые дисклинационные диполи мощностью ω ; г — полный ансамбль дефектов в границах зародышей рекристаллизации: ДОН плотностью $\rho_b \Delta b$, тангенциальные компоненты продуктов их делокализации плотностью w_t и стыковые дисклинационные диполи мощностью ω .

ров Бюргерса, описывающих скольжение дислокаций в соседних зернах:

$$\Delta \mathbf{b} = \mathbf{b}_1 - \mathbf{b}_2$$
.

Как показано в [17, 18], в процессе взаимодействия границ зерен с ДОН последние делокализуются в границах зерен. Процесс делокализации может быть представлен как "размазывание" пластической несовместности, "заключенной" в ядре дислокации, по всей границе, на расстояния много больше размера ядра ДОН.

Делокализованные в границах зерен дислокации могут быть представлены состоящими из тангенциальных (по отношению к плоскости границы) и нормальных компонент. Вследствие того, что движение тангенциальных компонент осуществляется скольжением, а нормальных — переползанием, кинетика накопления разных компонент ДОН различна. Таким образом, в процессе взаимодействия решеточных дислокаций с границами зерен в последних будет формироваться система дефектов трех различных типов: ДОН с вектором Бюргерса $\Delta \mathbf{b}$ и плотностью (на единицу длины границы) $\rho_b \Delta b$, тангенциальные и нормальные продукты их делокализации плотностью w_t и w_n соответственно.

Согласно [19], увеличение плотности тангенциальных компонент делокализованных ДОН приводит к изменению диффузионных характеристик границ зерен, увеличение плотности нормальных компонент — к возникновению дополнительной разориентировки на границах. Возникновение дополнительной разориентировки на границах зерен можно описать как образование на границе дисклинационного диполя мощностью ω (рис. 1в).

Изменение диффузионных характеристик границы при попадании в нее ДОН и тангенциальных компонент продуктов их делокализации удобно

описывать, используя такой параметр, как относительный свободный объем границ зерен α . В соответствии с подходом, развитым в [19], свободный объем определяет диффузионные характеристики границ: его увеличение вследствие попадания в границы дислокаций и делокализации их ядер переводит границы в неравновесное состояние. Мерой повышения коэффициента диффузии по неравновесным границам зерен D_b^* является величина, равная увеличению свободного объема границ $\Delta\alpha$. В [19] получены выражения, связывающие изменение диффузионных параметров (предэкспоненциального множителя D_{b0}^* и энергии активации Q_b^*) с величиной свободного объема:

$$D_b^* = D_{b0}^* \exp\left(\frac{Q_b^*}{kT_{\rm m}} \frac{T_{\rm m}}{T}\right);$$
 (3)

$$D_{b0}^{*} = \varphi D_{L0} \exp\left(\frac{1}{k} \left(Z_{1} \left(\frac{\alpha^{*}}{\alpha + \Delta \alpha} - 1\right) + Z_{2} \left(\sqrt{\frac{\alpha^{*}}{\alpha + \Delta \alpha} - 1}\right)\right)\right);$$

$$(4)$$

$$Q_b^* = Q_L + W_1 \left(\frac{\alpha^*}{\alpha + \Delta \alpha} - 1 \right) + W_2 \left(\sqrt{\frac{\alpha^*}{\alpha + \Delta \alpha}} - 1 \right).$$
 (5)

При малых изменениях свободного объема ($\Delta \alpha \ll \alpha^*$) коэффициент диффузии по неравновесным границам зерен можно вычислить из уравнения:

$$D_b^* = D_b \exp(\Delta \alpha / \alpha_B), \tag{6}$$

где D_b — коэффициент диффузии по равновесным границам, $\alpha_{\rm B}$ — численный коэффициент, значение которого при T = 0.5 $T_{\rm m}$ равно 0.02 [19].

Из анализа уравнения (6) следует, что небольшие изменения $\Delta\alpha$ могут приводить к уменьшению энергии активации зернограничной диффузии и увеличению коэффициента диффузии по неравновесным границам зерен. Интервалы значений Q_b^* и D_b^* , соответствующие изменению $\Delta\alpha$ от 0 до 0.08, составляют 9.2—5.9 $kT_{\rm m}$ и 3.8 × 10^{-13} — 2.1×10^{-11} см²/с.

Анализ подвижности границ зародышей рекристаллизации

Согласно [20—22], скорость роста зерен d определяется величиной движущих сил рекристаллизации P и коэффициентом подвижности границ M:

$$\dot{d} = PM. \tag{7}$$

Наличие дефектов, распределенных в границах зародышей, приводит к тому, что коэффициент подвижности M границ с дефектами отличается от коэффициента подвижности бездефектных границ. Для вычисления M можно использовать уравнение, приведенное в [19]:

$$\frac{1}{M} = \frac{1}{M_b} + \frac{1}{M_{\omega}} + \frac{1}{M_{\rho}},\tag{8}$$

где M_b , M_{\odot} и $M_{\rm p}$ — коэффициенты подвижности бездефектной границы, дисклинационных диполей и дислокаций ориентационного несоответствия. Ниже приведены уравнения для вычисления M_b , M_{\odot} и $M_{\rm p}$, предложенные в [19]. Численные значения параметров, входящих в уравнения (9)—(12), указаны в Приложении.

$$M_b = A_b \cdot c_b, \tag{9}$$

$$M_{\omega} = A_{\omega} c_b \left(\frac{b}{d}\right)^2 \frac{1}{\omega^2},\tag{10}$$

$$M_{\rho} = A_{\rho} c_b \frac{b}{d} \frac{1}{\rho_b^{st} \Delta b}, \tag{11}$$

$$c_b = \frac{D_b^* \delta b}{kT}. (12)$$

Сравнение коэффициентов подвижности дефектов различных типов при характерных значениях величин, входящих в уравнения (9)—(12), показывает, что подвижность бездефектной границы существенно выше подвижности дефектов. Это означает, что в состоянии после деформации распределённые в границах дефекты "удерживают" их, не давая границам мигрировать. Таким образом, условием начала движения границы является равенство коэффициента подвижности самого "медленного" из дефектов коэффициенту подвиж-

ности бездефектной границы. Сравнение результатов вычисления M_{ω} и M_{ρ} при типичных значениях величин, входящих в уравнения (10) и (11), показывает, что $M_{\omega} \ll M_{\rho}$. Таким образом, минимальной подвижностью характеризуются дисклинационные диполи. Это означает, что границы начнут двигаться с заметной скоростью лишь в тот момент, когда подвижность дисклинационных диполей станет сопоставима с подвижностью бездефектной границы. Увеличение коэффициента подвижности дисклинационных диполей происходит вследствие протекания процессов возврата, приводящих к снижению ω . Согласно [19], кинетика изменения ω при отжиге описывается уравнением

$$\omega = \omega_0 \exp\left(-\frac{1}{t_3}t\right). \tag{13}$$

Характерное время процесса t_3 можно вычислить по формуле

$$\frac{1}{t_3} = A_{\omega} \frac{G\Omega}{kT_{\rm m}} \frac{T_{\rm m}}{T} \frac{1}{\left(d^*\right)^3} \delta D_{b0}^* \exp\left(-\frac{Q_b^*}{kT_{\rm m}} \frac{T_{\rm m}}{T}\right). \tag{14}$$

Критическое значение $\omega_{\rm kp}$, при котором подвижность дисклинационных диполей станет равна подвижности бездефектной границы, можно вычислить, приравняв уравнения (9) и (10):

$$\omega_{\rm kp} = \frac{b}{d}.\tag{15}$$

Эволюция ансамбля зародышей

Для перехода от рассмотрения движения границ одного зародыша к анализу роста зародышей в ансамбле необходимо сделать ряд предположений. В частности, следует уточнить характер взаимного влияния зародышей и то, как именно распределены значения подвижности в рассматриваемом ансамбле.

В модели предполагается, что зародыши располагаются на значительном расстоянии друг от друга и не оказывают взаимного влияния в процессе роста. Предполагается, что движение границ зародышей можно рассматривать независимо друг от друга.

В предлагаемой модели анализируется случай, когда значения M границ в рассматриваемом ансамбле равномерно распределены от некоторого M_{\min} до M_{\max} . Для рассмотренного выше случая, когда кинетика роста зародышей контролируется снижением мощности дисклинационных диполей, это равносильно предположению, что значения ω_0 в границах ансамбля распределены также равномерно от некоторого минимального $\omega_{0\min}$ до некоторого максимального значения $\omega_{0\max}$. В этом случае кинетика увеличения числа границ, способных мигрировать в данный момент време-

ни, будет повторять экспоненциальную кинетику снижения мощности дисклинационного диполя.

Если число таких границ пропорционально объемной доле рекристаллизованного материала f_{ν} то временная зависимость $f_{\nu}(t)$ примет вид:

$$f_V = 1 - \exp\left(-\frac{1}{t_3}t\right). \tag{16}$$

ВЕРИФИКАЦИЯ МОДЕЛИ. ПРОЦЕДУРА ОБРАБОТКИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

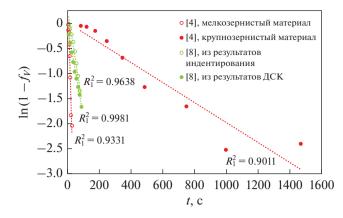
Для верификации предложенной модели был проведен реанализ экспериментальных данных, полученных в работах [4—11] с использованием уравнения Аврами. В процессе верификации из уравнения (14) вычисляли энергию активации Q_b^* . Входящую в уравнение величину t_3 определяли, приравняв ее к обратному значению коэффициента B из уравнения (2). Полученное значение сравнивали с энергией активации диффузии по равновесным границам зерен Q_b , составляющим для меди $9.2 \ kT_{\rm m}$ [19].

При анализе данных [6, 10] были использованы приведенные в статьях значения B, в случае анализа данных [5, 9] коэффициент B вычисляли по уравнению (2) из приведенных в работах значений k и Q. В процессе реанализа данных, представленных в работах [4, 8, 11], величину t_3 определяли по углу наклона прямой, полученной линейной аппроксимацией экспериментальных данных в координатах $\ln(1-f_V)-t$.

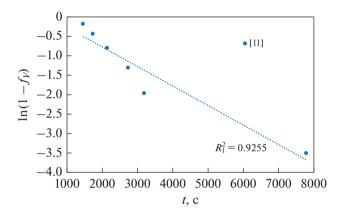
Анализ данных работы [7] проводили, принимая время двукратного снижения интенсивности определенного компонента текстуры равным времени такого же снижения объемной доли рекристаллизованного материала. После этого по уравнению (16) вычисляли значение $1/t_3$, затем по уравнению (14) вычисляли Q_b^* . Температуру принимали равной среднему значению экспериментального интервала температур. Значения параметров, использованных при вычислениях, приведены в приложении. Результаты вычисления энергии активации зернограничной диффузии приведены в табл. 3.

Анализ данных табл. 3 позволяет сделать вывод, что в случае анализа экспериментальных данных работ [4—11] с использованием предлагаемой модели энергия активации рекристаллизации в большинстве случаев составляет от 6 до 9 $kT_{\rm m}$. Полученные значения Q_b^* согласуются с экспериментальными результатами измерений энергии активации зернограничной диффузии и результатами теоретических расчетов, выполненных в [19]. Меньшие значения энергии активации рекристаллизации

Таблица 3. Значения Q и n, вычисленные по предлагаемой модели


Работа	Q, kT_{m}	n
[4]	6.1-7.5	1
[5]	5.3-8.1	1
[6]	7.6-7.8	1
[7]	8.2-9.4	1
[8]	8.5-8.6	1
[9]	7.9	1
[10]	7.6-9.7	1
[11]	6.4	1

соответствуют случаям, когда границы зерен находятся в неравновесном состоянии; при этом степень отклонения значения Q_b^* от равновесного зависит от уровня неравновесности границ. Заметим, что границы зерен деформированного поликристалла всегда находятся в неравновесном состоянии. Таким образом, полученные значения энергии активации представляются разумными.


Помимо вычисления значений Q_b^* , в процессе реанализа работ [4, 8, 11] приведенные в них экспериментальные данные линеаризовали в различных координатах. Зависимости $f_V(t)$ строили в координатах $\ln(1-f_V)-t$ и $\ln(1-f_V)-\ln t$. Линейный характер зависимостей $f_V(t)$ в координатах $\ln(1-f_V)-t$ и $\ln(1-f_V)-\ln t$ соответствует уравнению (16), полученному в рамках предлагаемой модели, и уравнению Аврами соответственно.

Для каждой зависимости методом наименьших квадратов вычисляли коэффициенты детерминации R^2 , характеризующие точность аппроксимации экспериментальных данных линейной зависимостью. Для вычислений использовали стандартные средства пакета программ Excel. Значения R_1^2 характеризуют точность аппроксимации данных в координатах $\ln(1-f_V)-t$, значения R_2^2 точность аппроксимации в координатах $\ln(1-f_V)-\ln t$.

Временные зависимости объемной доли рекристаллизованного материала, линеаризованные в разных координатах, приведены на рис. 2—4. Значения R_1^2 и R_2^2 , характеризующие точность линейной аппроксимации, приведены в табл. 4. Сравнение значений R_1^2 и R_2^2 позволяет сделать вывод, что точность аппроксимации экспериментальных значений при анализе данных на основе предлагаемой модели сопоставима с точностью аппроксимации экспериментальных данных уравнением Аврами.

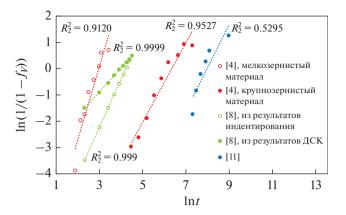

Рис. 2. Графики зависимости объемной доли рекристаллизованного материала от времени отжига, построенные в координатах $\ln(1-f_V)-t$ на основе экспериментальных данных [4, 8].

Рис. 3. Графики зависимости объемной доли рекристаллизованного материала от времени отжига, построенные в координатах $\ln(1-f_V)-t$ на основе экспериментальных данных [11].

выводы

1. Предложена новая модель первичной рекристаллизации в чистой меди. В рамках модели предполагается, что кинетика первичной рекри-

Рис. 4. Графики зависимости объемной доли рекристаллизованного материала от времени отжига, построенные в координатах $\ln(1-f_V)-\ln t$ на основе экспериментальных данных [4, 8, 11].

сталлизации определяется характером эволюции дефектной структуры границ зародышей рекристаллизации.

- 2. В рамках предложенной модели получено уравнение для описания кинетики изменения объемной доли рекристаллизованного материала в процессе первичной рекристаллизации. Полученное уравнение имеет вид уравнения Аврами при n=1 и Q, равном энергии активации диффузии по неравновесным границам зерен.
- 3. Проведен реанализ данных экспериментальных работ, посвященных описанию первичной рекристаллизации. Показано, что значения энергии активации диффузии по границам зерен, полученные на основании новой модели, находятся в хорошем соответствии с результатами теоретических расчетов. Показано, что точность аппроксимации экспериментальных данных по уравнению из разработанной модели сопоставима с точностью аппроксимации экспериментальных данных данных по уравнению Аврами.

Работа выполнена при поддержке проекта № 075-03-2020-191/5 Минобрнауки России.

Таблица 4. Значения R_1^2 и R_2^2 , характеризующие точность аппроксимаций экспериментальных данных при расчете с использованием разных моделей

Работа	Комментарии	$R_{ m l}^2$ по предлагаемой модели	R_2^2 , по уравнению Аврами
[4]	Мелкозернистый материал	0.9331	0.9120
	Крупнозернистый материал	0.9011	0.9527
[8]	Из результатов индентирования	0.9638	0.9990
	Из результатов ДСК	0.9981	0.9999
[11]	_	0.9255	0.8295

ПРИЛОЖЕНИЕ

Численные значения параметров

Обозна- чение	Параметр	Характерное численное значение	Источник
$\overline{A_b, A_\omega, A_\rho}$	Численные коэффициенты	10	[19]
\overline{b}	Вектор Бюргерса	$2.56 \times 10^{-10} \mathrm{m}$	[23]
В	Коэффициент в уравнении Аврами	$10^{-1} - 10^{-5} \mathrm{c}^{-n}$	[4]-[11]
d*	Масштаб массопереноса, на котором суммарный заряд дисклинационных диполей равен нулю	0.3 мкм	[19]
$\overline{D_{b}}$	Коэффициент диффузии по равновесным границам	$3.8 \times 10^{-13} \text{cm}^2/\text{c}$	[19]
D_b^*	Коэффициент диффузии по неравновесным границам	$5 \times 10^{-13} - 5 \times 10^{-11}$ cm ² /c	[19]
D_{b0}^*	Предэкспоненциальный множитель коэффициента диффузии по неравновесным границам зерен	$9.8 \times 10^{-2} \mathrm{cm^2/c}$	[19]
D_{L0}	Предэкспоненциальный множитель коэффициента диффузии в расплаве	$1.5 \times 10^{-3} \mathrm{cm^2/c}$	[19]
\overline{G}	Модуль сдвига	42 ГПа	[23]
\overline{k}	Постоянная Больцмана	1.38×10^{-23} Дж/К	[23]
M	Подвижность границы с дефектами	$10^{-12}\mathrm{cm}^3\mathrm{H}^{-1}\mathrm{c}^{-1}$	[19]
$\overline{M_{ m b}}$	Подвижность бездефектной границы	$10^{-8} \text{ cm}^3 \text{ H}^{-1} \text{ c}^{-1}$	[19]
$\overline{M_{\omega}}$	Подвижность дисклинационного диполя	$10^{-12}\mathrm{cm}^3\mathrm{H}^{-1}\mathrm{c}^{-1}$	[19]
$\overline{M_{ ho}}$	Подвижность ДОН	$10^{-9}\mathrm{cm}^3\mathrm{H}^{-1}\mathrm{c}^{-1}$	[19]
n	Коэффициент в уравнении Аврами	0.32-4.8	[4-11]
P	Движущие силы роста зародышей рекристаллизации	10 ⁴ H/см ²	[20-22]
Q	Энергия активации в уравнении Аврами	$7.6-15.3 kT_{\rm m}$	[4-11]
$\overline{Q_b^*}$	Энергия активации диффузии по неравновесным границам	$6-8.5 kT_{\rm m}$	[19]
$\overline{Q_{ m L}}$	Энергия активации диффузии в расплаве	$3.6 kT_{\rm m}$	[23]
R	Универсальная газовая постоянная	8.3	[23]
t	Время инкубационного периода рекристаллизации	3600 c	[19]
<i>t</i> ₃	Характерное время снижения мощности дисклинационного диполя	$10^{3} c$	[19]
$T_{\rm m}$	Температура плавления меди	1357 K	[23]
W_1		$6.75 kT_{\mathrm{m}}$	[19]
$\overline{W_2}$	Величины, используемые для вычисления коэффициента диффу-	11.3 <i>kT</i> _m	[19]
Z_1	зии по неравновесным границам и зависящие от термодинамических характеристик материала	12 <i>k</i>	[19]
Z_2		9.6 <i>k</i>	[19]
α	Относительный свободный объем границ зерен	0.35-0.4	[19]
α*	Пороговое значение свободного объема границ	0.5	[19]
Δα	Изменение свободного объема границ при попадании в них дефектов	0.01-0.1	[19]

Обозна- чение	Параметр	Характерное численное значение	Источник
$\alpha_{\rm B}$	Коэффициент в уравнении (6)	0.02 (при $T = 0.5T_{\rm m}$)	[19]
δ	Ширина границ зерен	$5 \times 10^{-8} \text{cm}$	[19]
φ	Численный коэффициент в уравнении (4)	0.1	[19]
$\rho_b \Delta b$	Плотность ДОН	10^{-3}	[19]
ω	Мощность дисклинационного диполя	$10^{-2} - 10^{-1}$	[19]
$\overline{\omega_0}$	Начальная мощность дисклинационного диполя	10^{-1}	[19]
Ω	Атомный объем меди	$1.18 \times 10^{-29} \mathrm{m}^3$	[23]
$G\Omega/kT_{\rm m}$	_	26.5	_

СПИСОК ЛИТЕРАТУРЫ

- Головин И.С. Зернограничная релаксация в меди до и после равноканального углового прессования и рекристаллизации // ФММ. 2010. № 4. С. 424–432.
- 2. *Новикова О.С., Волков А.Ю.* Кинетика атомного упорядочения сплава Си—49 ат. % Рd после интенсивной пластической деформации // ФММ. 2013. № 2. С. 179—188.
- Чурюмова А.Ю., Поздняков А.В. Моделирование эволюции микроструктуры металлических материалов в процессе горячей пластической деформации и термической обработки // ФММ. 2020. Т. 121. № 11. С. 1162—1186.
- 4. *Hutchinson B., Jonsson S., Ryde L.* On the kinetics of recrystallisation in cold worked metals // Scripta Metal. 1989. V. 23. № 5. P. 671–676.
- 5. *Kruger P., Woldt E.* The use of an activation energy distribution for the analysis of the recrystallization kinetics of copper // Acta Metal. et Mater. 1992. V. 40. № 11. P. 2933–2942.
- Field D.P., Nowell M.M., Trivedi P., Wright S.I., Lillo T.M. Local orientation gradient and recrystallization of deformed copper // Solid State Phenomena. 2005. V. 105. P. 157–162.
- Hansen N., Leffers T., Kjems J.K. Recrystallization kinetics in copper investigated by in situ texture measurements by neutron diffraction // Acta Metal. 1981. V. 29. № 8. P. 1523–1533.
- 8. Nanda T., Kumar B.R., Sharma S., Singh V., Pandey O.P. Effect of thermal cycling process parameters on recrystallization kinetics for processing of fine-grained pure copper // Mater. and Manufacturing Processes. 2017. V. 32. № 1. P. 34–43.
- 9. *Pérez A., Lopez-Olmedo J.P., Farjas J.* Isoconversional analysis of copper recrystallization // Thermal Analysis and Calorimetry. 2016. V. 125. № 2. P. 667–672.
- 10. Niu R., Han Ke, Su Yi-F., Besara T., Siegrist T.M., Zuo X. Influence of grain boundary characteristics on thermal stability in nanotwinned copper // Scientific Reports. 2016. V. 6.

- 11. *Woldt E., Jensen D. J.*, Recrystallization kinetics in copper: Comparison between techniques // Metal. Mater. Trans. A. 1995. V. 26. № 7. P. 1717–1724.
- Vandermeer R.A., Rath B.B. Modeling recrystallization kinetics in a deformed iron single crystal // Metall. Trans. A. 1989. V. 20A. P. 391.
- 13. Furu T., Nes E., 1992. In: Fuentes, Sevillano (Eds.), Recrystallization'92, p. 311. San Sebastian, Spain.
- 14. *Колмогоров А.Н.* К статистической теории кристаллизации металлов // Изв. АН СССР Сер. математика. 1937. № 1(3). С. 355—359.
- 15. Кондратьев Н.С., Трусов П.В. Механизмы образования зародышей рекристаллизации в металлах при термомеханической обработке // Вестник Пермского национального исследовательского политехнического ун-ета. Механика. 2016. № 4. С. 151—174.
- 16. Перевезенцев В.Н., Рыбин В.В., Чувильдеев В.Н. Накопление дефектов на границах зерен и предельные характеристики структурной сверхпластичности // Поверхность. Физика, химия, механика. 1983. № 10. С. 108—115.
- 17. *Pumphrey P.H.*, *Gleiter H.* The annealing of dislocations in high-angle grain boundaries // The Philosophical Magazine: A J. Theoretical Experimental and Applied Physics. 1974. V. 30. P. 593–602.
- Varin R. A. Spreading of extrinsic grain boundary dislocations in austenitic steel // Phy. Stat. Sol. (a). 1979.
 V. 52. P. 347–356.
- 19. *Чувильдеев В.Н.* Неравновесные границы зерен в металлах. Теория и приложения. М.: Физматлит, 2004. 304 с.
- Горелик С.С., Добаткин С.В., Капуткина Л.М. Рекристаллизация металлов и сплавов. М.: Из-во МИСиС, 2005. 431 с.
- 21. *Хесснер* Ф. Рекристаллизация металлических материалов. М.: Металлургия, 1982. 352 с.
- 22. *Rollett A., Rohrer G., Humphreys J.* Recrystallization and Related Annealing Phenomena. Elsevier, 2017. 734 p.
- Смитлз К. Дж. Металлы. Справочник. М.: Металлургия, 1980. 445 с.