СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ

УДК 669.24'74'871:548.73

КРИСТАЛЛОГРАФИЧЕСКИЙ АНАЛИЗ И МЕХАНИЗМ ТЕРМОУПРУГОГО МАРТЕНСИТНОГО ПРЕВРАЩЕНИЯ В СПЛАВАХ ГЕЙСЛЕРА С СЕМИСЛОЙНОЙ СТРУКТУРОЙ МАРТЕНСИТА

© 2022 г. В. М. Гундырев^{*a*, *}, В. И. Зельдович^{*a*, **}

^аИнститут физики металлов УрО РАН, ул. С. Ковалевской, 18, Екатеринбург, 620108 Россия

*e-mail: gundyrev@imp.uran.ru **e-mail: zeldovich@imp.uran.ru Поступила в редакцию 15.01.2021 г. После доработки 04.09.2021 г. Принята к публикации 13.09.2021 г.

Выполнен расчет параметров решетки матрицы модулированного 14М-мартенсита в сплавах $Ni_{51}Mn_{24}Ga_{25}$ и $Ni_{63}Al_{37}$. Определен механизм мартенситного превращения в сплавах с семислойной структурой мартенсита, который состоит из деформации решетки аустенита путем сдвига по плоскости (112) в направлении [-1-11] в исходной $L2_1$ -фазе и дополнительного сжатия-растяжения в трех взаимно перпендикулярных направлениях. Деформация мартенсита при инвариантной решетке осуществляется путем образования двухслойных двойников, создающих семислойную модуляцию кристаллической структуры мартенсита. Рассчитаны кристаллографические характеристики мартенситного превращения.

Ключевые слова: мартенситное превращение, кристаллографический анализ, семислойная структура мартенсита, деформация решетки, деформация при инвариантной решетке, двойники

DOI: 10.31857/S0015323022010065

введение

В ферромагнитных сплавах Гейслера системы Ni-Mn-Ga было установлено, что действие магнитного поля оказывает сильное влияние на мартенситную структуру вследствие взаимодействия магнитных доменов со структурными [1–4]. По этой причине приложение магнитного поля к монокристаллическим образцам сплавов определенного состава вызывает гигантские обратимые деформации, до 10% [1, 4]. Данный эффект превышает значения магнитострикционной деформашии на порядок величины и поэтому может найти широкое применение в различных областях техники. Мартенситное превращение в таких ферромагнитных сплавах Гейслера является термоупругим. Одновременно оно является магнитоупругим, так как изменение направления напряженности магнитного поля изменяет величину деформации [1-4].

Термоупругие и магнитоупругие мартенситные превращения были обнаружены во многих сплавах Гейслера систем Ni–Mn–X (X = Ga, Sn, In, Al). Интерес к исследованию мартенситных превращений в этих сплавах связан с необычностью их поведения [1]. Небольшие изменения химического состава сплавов сильно влияют на температуру мартенситных и магнитных превращений [1]. Практический интерес представляют сплавы, у которых температурный интервал превращений расположен вблизи комнатной температуры. В первую очередь, это сплавы системы Ni-Mn-Ga.

Мартенсит во многих сплавах Гейслера, в том числе в сплавах системы Ni-Mn-Ga с мартенситной точкой выше 270 К [1], имеет семислойную кристаллическую структуру, которую обозначают либо 7R, либо 14М в зависимости от выбора элементарной ячейки (рис. 1). В направлении оси с элементарная моноклинная ячейка 14М в 2 раза больше, чем элементарная моноклинная ячейка 7R, тем не менее использование ячейки 14М предпочтительнее при кристаллографическом анализе мартенситного превращения. Ячейке 14М соответствует высоко-симметричный тетрагональный прообраз в исходной решетке, что упрощает анализ, в то время как ячейке 7R соответствует низко-симметричный прообраз (моноклинный). Семислойная структура состоит из пяти слоев "основной" решетки (матрицы), которые чередуются с двумя слоями, находящимися в двойниковом положении (двойник).

Рис. 1. Структурный переход при мартенситном превращении $B2 \rightarrow 14M$ или по другой терминологии $B2 \rightarrow 7R$. ABCD – тетрагональный прообраз ячейки 14M (A'B'C'D'), AEKD – моноклинный прообраз ячейки 7R (A'E'K'D').

В работе [5] был выполнен кристаллографический анализ мартенситного превращения в сплаве Ni₄₇Mn₄₂In₁₁ с шестислойной укладкой атомов в мартенсите. Был установлен механизм мартенситного превращения. Он состоял из сдвига по плоскости (112) в направлении [11] на 0.185 в исходной $L2_1$ фазе, а также дополнительного растяжения на 5.3% в направлении нормали к плоскости сдвига, растяжения на 0.5% в направлении сдвига и сжатия на 6.4% в поперечном направлении. В качестве деформации при инвариантной решетке выступили двухслойные двойники. Расчёты показали, что двухслойные двойники обеспечивают 97% деформации инвариантной решетки, необходимой для получения инвариантной (неискаженной) плоскости.

В работе [5] было показано, что если при расчетах по феноменологической теории мартенситного превращения (ФТМП) брать в качестве конечных параметров решетки параметры элементарной ячейки модулированной структуры, то нельзя найти реальный механизм деформации решетки при мартенситном превращении. Однако этот механизм можно найти, если в качестве конечных параметров взять параметры решетки матрицы мартенсита. В то же время оба варианта расчетов позволяют найти кристаллографические параметры мартенситного превращения: инвариантную плоскость, деформацию формы, направление и величину сдвига и т.д.

При кристаллографическом анализе мартенситного превращения с образованием семислойного мартенсита в качестве конечных параметров мартенсита обычно использовали параметры элементарной ячейки модулированной структуры [6]. Целью настоящей работы является нахождение реальных механизмов мартенситного превращения в сплавах $Ni_{51}Mn_{24}Ga_{25}$ и $Ni_{63}Al_{37}$, имеющих мартенсит со структурой 14М. Для этого использовали кристаллографический анализ, в котором в качестве конечных параметров мартенсита были взяты параметры решетки матрицы мартенсита. Результаты анализа сравнили с ранее полученными результатами на сплаве $Ni_{47}Mn_{42}In_{11}$ [5].

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ЭЛЕМЕНТАРНОЙ ЯЧЕЙКИ МАТРИЦЫ МАРТЕНСИТА

В работе [5] также был выполнен расчет параметров элементарной ячейки матрицы мартенсита для модулированной структуры 6М сплава Ni₄₇Mn₄₂In₁₁. Напишем формулы в общем виде для нахождения параметров решетки матрицы мартенсита модулированного сплава. На рис. 2 представлена схема половины ячейки 14М. Пусть дано *a*, *b*, *c*, β и *n*, где *n* – число слоев в ячейке из матрицы и двойника. Найдем параметры моноклинной ячейки матрицы мартенсита *a*₁, *b*₁, *c*₁, β_1 : *a*₁ = *a*, *b*₁ = *b*,

$$c_{1} = c_{\sqrt{\left[\frac{\sin(\delta)}{(n-4)/2}\right]^{2} + \left[\frac{\cos(\delta)}{n/2}\right]^{2}}, \qquad (1)$$

$$\beta_{1} = \operatorname{arctg}\left[\frac{n}{n-4}\operatorname{tg}(\delta)\right] + \frac{\pi}{2}, \quad \delta = (\beta - \pi/2).$$

Учитывая, что $a_1 = c_1$ с отклонением не более чем 0.2%, переходим от параметров моноклинной ячейки матрицы мартенсита к орторомбической:

$$c_{2} = 2\sqrt{c_{1}a_{1}}\sin(\beta_{1}/2),$$

$$b_{2} = 2\sqrt{c_{1}a_{1}}\cos(\beta_{1}/2), \quad a_{2} = b.$$
(2)

Параметры a, b, c, β половины ячейки мартенсита 14М сплава Ni₅₁Mn₂₄Ga₂₅ найдем из параметров a_5, b_5, c_5, γ_5 базисной ячейки модулированной структуры, прообразом которой в исходной фазе является элементарная кубическая ячейка $L2_1$. Параметры такой базисной ячейки получены в работе [7] и равны $a_5 = 0.612$ нм, $b_5 = 0.578$ нм, $c_5 = 0.554$ нм, $\gamma_5 = 90.5^\circ$. Из этих данных по формулам:

$$a = \frac{\sqrt{a_5^2 + b_5^2 - 2a_5b_5\cos\gamma_5}}{2}, \quad b = c_5,$$
$$c = \frac{3.5\sqrt{a_5^2 + b_5^2 + 2a_5b_5\cos\gamma_5}}{2},$$
$$\beta = \arccos\left[\frac{a^2 + (c/3.5)^2 - a_5^2}{2a(c/3.5)}\right]$$

находим a = 0.423 нм, b = 0.554 нм, c = 1.467 нм, $\beta = 93.3^{\circ}$.

В работе [8] получены параметры модулированной структуры 7*R*-мартенсита сплава Ni₆₃Al₃₇, а именно: $a_6 = 0.418$ нм, $b_6 = 0.271$ нм, $c_6 = 1.448$ нм, $\beta_6 = 94.3^\circ$. Из этих данных по формулам:

$$a = a_{6}, b = 2b_{6},$$

$$c = \sqrt{\left(\frac{a_{6}}{2}\right)^{2} + a_{6}c_{6}\cos(\beta_{6}) + c_{6}^{2}},$$

$$\beta = 90 + \operatorname{arctg}\left(\frac{a_{6}}{2} + c_{6}\cos(\beta_{6})}{c_{6}\sin\beta_{6}}\right)$$

находим параметры половины ячейки 14М: a = 0.418 нм, b = 0.542 нм, c = 1.447 нм, $\beta = 94.0^{\circ}$.

Далее по формулам (1), (2) находим параметры решетки матрицы мартенсита сплавов $Ni_{51}Mn_{24}Ga_{25}$ и $Ni_{63}Al_{37}$. Полученные результаты представлены в табл. 1, в которой также приведены параметры решетки мартенсита 6M сплава $Ni_{47}Mn_{42}In_{11}$ из работы [5].

Из табл. 1 видно, что в сплаве Ni₆₃Al₃₇ решетка матрицы мартенсита тетрагональная, ее параметры совпадают с параметрами немодулированного мартенсита из [8]. В трехкомпонентных сплавах решетка матрицы мартенсита также получается тетрагональной с небольшими орторомбическими искажениями.

РАСЧЕТ КРИСТАЛЛОГРАФИЧЕСКИХ ПАРАМЕТРОВ МАРТЕНСИТА В СПЛАВАХ Ni₆₃Al₃₇ И Ni₅₁Mn₂₄Ga₂₅

В работах [10–14] ФТМП успешно использована не только для определения кристаллографических параметров мартенсита, но и для нахождения механизма деформации решетки аустенита в решетку мартенсита. Была обнаружена общая закономерность для всех трех мартенситных превращений ГЦК \rightarrow ОЦК, ГЦК \rightarrow ОЦТ и *B*2 \rightarrow *В*19'. Данная закономерность состоит в том, что плоскость и направление сдвига при деформации решетки в процессе мартенситного превращения точно такие же, как при двойниковании в

Рис. 2. Схема для нахождения параметров решетки матрицы мартенсита. Схема дана в плоскости, перпендикулярной единичному вектору \overline{b} ; \overline{a} , \overline{b} , \overline{c} , $\beta = (90^{\circ} + \delta) -$ параметры половины элементарной ячейки модулированной структуры мартенсита 14М; $\overline{a_1}$, $\overline{b_1}$, $\overline{c_1}$, $\beta_1 = (90^{\circ} + \delta_1) -$ параметры моноклинной ячейки матрицы мартенсита; $\overline{a_2}$, $\overline{b_2}$, $\overline{c_2}$ – параметры орторомбической ячейки матрицы мартенсита, $\overline{b} = \overline{b_1} = -\overline{a_2}$, $\overline{a} = \overline{a_1}$. Угол АОМ равен β_1 , угол ВОМ равен β_1 , од вор мартенсита, ОВНМ – элементарная ячейка средней структуры мартенсита (базисная ячейка), OLDM – половина элементарной ячейки модулированной структуры мартенсита 14М.

разупорядоченном аустените. В этом случае деформацию решетки можно описать следующим образом, пригодном для всех трех превращений: вначале происходит сдвиг по плоскости, совпадающей с плоскостью двойникования в решетке аустенита, в направлении, параллельном направлению двойникования; затем происходит чистая деформация, главные оси которой совпадают с направлением сдвига, с нормалью к плоскости сдвига и с поперечным направлением. Величина сдвига и дополнительная чистая деформация определяются из параметров ячеек аустенита и мартенсита. Таким образом, зная систему двойникования в разупорядоченном аустените, параметры ячеек мартенси-

	Ni ₅₁ Mn ₂₄ Ga ₂₅ [7]	Ni ₆₃ Al ₃₇ [6, 8]	$Ni_{47}Mn_{42}In_{11}$ [5, 9]
Структура	$14M(5\overline{2})_2$	$14M(5\overline{2})_2$	6M(42) ₁
Параметры решетки мартенсита, нм	a = 0.423 b = 0.554 2c = 2.934 $\beta = 93.3^{\circ}$	a = 0.418 2b = 0.542 2c = 2.895 $\beta = 94.0^{\circ}$	a = 0.4406 b = 0.5601 c = 1.3024 $\beta = 93.51^{\circ}$
Моноклинные параметры матрицы мартенсита, нм	$a_1 = 0.423$ $b_1 = 0.554$ $c_1 = 0.422$ $\beta_1 = 97.6^\circ$	$a_{1} = 0.418$ $b_{1} = 0.542$ $c_{1} = 0.418$ $\beta_{1} = 99.2^{\circ}$	$a_1 = 0.4405$ $b_1 = 0.5601$ $c_1 = 0.4406$ $\beta_1 = 100.43^{\circ}$
Орторомбические параметры матрицы мартенсита, нм	$a_2 = 0.554$ $b_2 = 0.556$ $c_2 = 0.636$	$a_2 = 0.542$ $b_2 = 0.542$ $c_2 = 0.637$	$a_2 = 0.5601$ $b_2 = 0.5639$ $c_2 = 0.6771$
Тетрагональные параметры нм	$a_3 = 0.555$ $c_3 = 0.636$	$a_3 = 0.542$ $c_3 = 0.637$	$a_3 = 0.5620$ $c_3 = 0.6771$
<i>c</i> ₃ / <i>a</i> ₃	1.145	1.175	1.205

Таблица 1. Параметры решеток модулированного мартенсита и матрицы мартенсита в разных сингониях

та и аустенита, можно рассчитать реальную деформацию решетки для подобного типа мартенситных превращений. В работе [5] для сплава Гейслера $Ni_{47}Mn_{42}In_{11}$ с исходной структурой $L2_1$ (в неупорядоченном состоянии ОШК) показано. что механизм деформации решетки при мартенситном превращении в фазу 6М оказался тот же самый, что и при превращении $B2 \to B19'$, т.е. сдвиг по плоскости (112) в направлении $[\overline{11}]$ плюс дополнительная чистая деформация. Очевидно, в исследуемых сплавах Ni₅₁Mn₂₄Ga₂₅ и $Ni_{63}Al_{37}$, со структурой $L2_1$ и B2, имеющих в неvпорядоченном состоянии структуру ОШК, механизм деформации решетки при мартенситном превращении будет тот же, что и в сплаве Ni₄₇Mn₄₂In₁₁. Вариант расчета по ФТМП с использованием реального механизма деформации решетки аустенита мы называем кристаллографической теорией мартенситного превращения (КТМП) [14].

Для расчетов по КТМП характеристик мартенситного превращения в сплаве Ni₆₃Al₃₇ берем параметр решетки исходной кубической фазы $a_0 = 0.572$ нм, параметры решетки конечной тетрагональной фазы: $a_3 = 0.542$ нм, $c_3 = 0.637$ нм (табл. 1). Чистую деформацию кубической решетки для получения данной тетрагональной решетки выберем из эквивалентных вариантов следующим образом:

$$B_0 = \begin{pmatrix} \frac{0.542}{0.572} & 0 & 0\\ 0 & \frac{0.542}{0.572} & 0\\ 0 & 0 & \frac{0.637}{0.572} \end{pmatrix}$$

Такая чистая деформация решетки может быть получена сдвигом по плоскости (112) в направлении [$\overline{111}$] на величину 0.159 и последующей деформации B₁, включающей растяжение вдоль направления [$\overline{111}$] на 0.56%, сжатие вдоль [$1\overline{10}$] на 5.3% и растяжение вдоль [112] на 4.85%. Расчет деформации решетки мартенсита при мартенситном превращении (B) делается так же, как это описано в работе [5] для сплава Ni₄₇Mn₄₂In₁₁.

Для получения неискаженной в макромасштабе плоскости вводим в дальнейшие расчеты деформацию P, осуществляемую путем двойникования по системе (011)[01 $\overline{1}$] тетрагональной решетки матрицы мартенсита, соответствующей системе (011)[01 $\overline{1}$] в исходной фазе так, как это сделано в работе [5].

Рентгеноструктурные исследования позволяют напрямую найти в модулированном кристалле

мартенсита базисную ячейку. Из рис. 2 видно, что базисная ячейка не совпадает с элементарной ячейкой матрицы мартенсита. Из-за этого получается два ориентационных соотношения относительно исходной фазы: одно для решетки матрицы мартенсита, второе для решетки средней структуры модулированного кристалла мартенсита. Первая матрица (θ_1) для определения индексов направления в $L2_1$ -решетке, совпадающего с направлением в тетрагональной решетке матрицы мартенсита вычисляется следующим образом: $\theta_1 = RB$. Другая матрица (θ_2) для определения индексов направления в $L2_1$ -решетке, совпадающего с направления в $L2_1$ -решетке, совпадающего с на-

$$\Theta_2 = RDBm, \text{ где } m = \begin{pmatrix} 0 & -1 & 0 \\ 0.5 & 0 & 0.5 \\ -0.5 & 0 & 0.5 \end{pmatrix}.$$

Результаты расчетов представлены в табл. 2.

Помимо расчетов, выполненных по КТМП с использованием параметров решетки матрицы мартенсита, в табл. 2 также представлены результаты расчетов, выполненных по КТМП с использованием параметров элементарной ячейки 14М модулированной структуры мартенсита. Деформация решетки при мартенситном превращении в этом варианте рассчитывается следующим образом:

$$B = N^{-1} \begin{pmatrix} 1 & 0 & \operatorname{ctg}(\beta) \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{a\sqrt{2}}{a_0} & 0 & 0 \\ 0 & \frac{b}{a_0} & 0 \\ 0 & 0 & \frac{c\sin(\beta)\sqrt{2}}{3.5a_0} \end{pmatrix} N,$$
где $N = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ -1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ – матрица поворота коорди

натных осей, N^{-1} — обратная матрица. Полученное значение В оказалось точно такое же, как в работе [6], в которой использованы параметры другой элементарной ячейки (7R) данной модулированной структуры мартенсита.

Если сопоставить полученные результаты с кристаллографическими параметрами мартенситного превращения, рассчитанными в работе [6], то можно увидеть их полное совпадение. Последние, как известно из [6, 17], хорошо совпадают с экспериментальными результатами. Следовательно, с экспериментом также хорошо будут совпадать оба наших варианта расчета. Далее аналогичные расчеты проводим для сплава Ni₅₁Mn₂₄Ga₂₅. Для этого берем параметр исходной кубической фазы $a_0 = 0.5824$ нм [7] и вычисленные параметры конечной тетрагональной фазы матрицы мартенсита: a = 0.555 нм, b = 0.555 нм, c = 0.636 нм из табл. 1. Результаты расчетов также представлены в табл. 2. Как видно из табл. 2, при деформации сдвигом по (112)[-1-11] получаются углы релаксационного поворота $\varphi = 0.28^{\circ}$ и $\varphi = 0.19^{\circ}$. При деформации сдвигом по (011)[01-1] углы φ получаются на порядок больше: $\varphi = 3.38^{\circ}$ и $\varphi = 2.86^{\circ}$.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Как известно [15, 16], ФТМП описывает образование кристалла мартенсита произведением трех матриц: деформации Бейна (*B*), деформации (двойникованием или скольжением) при инвариантной решетке (*P*) и поворота (*R*). Деформация Бейна, являющаяся чистой деформацией, преобразует кристаллическую решетку аустенита в решетку мартенсита и поэтому называется деформацией решетки. Деформация при инвариантной решетке и поворот *R* необходимы для получения инвариантной плоскости кристалла мартенсита.

Если в КТМП в качестве деформации B используется реальная сдвиговая деформация, то в этом случае матрица R будет описывать лишь небольшой остаточный поворот, который мы называем релаксационным, так как считаем, что он связан с остаточными напряжениями в мартенсите. Очевидно, что в этом случае угол ϕ будет существенно менее 1 градуса. Если в расчеты по КТМП будет заложена система сдвига, не соответствующая реальной, то получим кратное увеличение угла ϕ .

Применительно к сплавам с многослойной мартенситной структурой условием реальности механизма деформации решетки аустенита в решетку мартенсита принимаем условие $\phi < 1^\circ$. Это условие является необходимым.

Принято считать [1, 6], что мартенсит с модулированной структурой возникает в результате неоднородной сдвиговой деформации исходной решетки по системе (110)[$\overline{1}$ 10]. При таком сдвиге плоскость (110) и направление [$\overline{1}$ 10] сохраняют свою ориентацию. В этом случае должны выполняться ориентационные соотношения (110)_{B2} || (001)_{14M} и [$\overline{1}$ 10]_{B2} || [100]_{14M} с точностью не хуже 1°. Однако отклонение (001)_{14M} от (110)_{B2}, рассчитанное с помощью матрицы θ_2 из табл. 2, равно 2.37° для сплава Ni₆₃Al₃₇ и 1.98° для сплава Ni₅₁Mn₂₄Ga₂₅. Отклонение [100]_{14M} от [$\overline{1}$ 10]_{B2} равно 2.82° для сплава Ni₆₃Al₃₇ и 2.37° для сплава Ni₅₁Mn₂₄Ga₂₅. Значит, ориентационные соотношения (110)_{B2} || (001)_{14M} и [$\overline{1}$ 10]_{B2} || [100]_{14M} не выполняются. Следовательно,

Таблица i	2. Расчетные кристаллографически	е параметры мартенситного превра	ащения в сплавах $\mathrm{Ni}_{63}\mathrm{Al}_{37}$ и $\mathrm{Ni}_{51}\mathrm{Mn}_{2}$	4Ga ₂₅
Пара-	Ni ₆₃ Al ₃₇ Расчет по КТМП	Ni ₆₃ Al ₃₇ Расчет по КТМП	$Ni_{51}Mn_{24}Ga_{25}$ Расчет по КТМП	$\rm Ni_{5l}Mn_{24}Ga_{25}$ Расчет по КТМП
метры	сдвиг по (112)[-1-11]	сдвиг по (011)[01–1]	сдвиг по (112)[-1-11]	сдвиг по (011)[01—1]
В	(0.9458 - 0.0014 - 0.0612)	$\begin{pmatrix} 0.9475 & 0 & 0 \end{pmatrix}$	(0.9502 - 0.0010 - 0.0502)	$(0.9511 \ 0 \ 0)$
	-0.0014 0.9458 -0.0612	0 0.9912 -0.0422	-0.0010 0.9545 -0.0502	0 0.9920 -0.0342
	0.0521 0.0521 1.1097	$\left(\begin{array}{ccc} 0 & 0.0287 & 1.0622 \end{array} \right)$	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0.0238 1.0501
Ρ	(0.9998 0.0033 0.0032)		(0.9999 0.0022 0.0022	
	-0.0028 1.0554 0.0525	0 1.0091 0.0018	-0.0020 1.0461 0.0442	0 1.0083 0.0083
	$\left(\begin{array}{cccc} 0.0025 & -0.0582 & 0.9445 \end{array}\right)$	(6060000000000000000000000000000000000	$\left(\begin{array}{ccc} 0.0021 & -0.0479 & 0.9540 \end{array} \right)$	$\left(0 \ -0.0083 \ 0.9917 \right)$
R	(1.0000 0.0044 0.0021)	(0.9986 0.0073 -0.0527)	$\begin{pmatrix} 1.0000 & 0.0033 & 0.0004 \end{pmatrix}$	(0.9990 0.0061 - 0.0453)
	-0.0044 1.0000 -0.0029	-0.0060 0.9996 0.0257	-0.0033 1.0000 0.0000	-0.0052 0.9998 0.020
	-0.0021 - 0.0000 1	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	(-0.0004 - 0.0001 1)	$\left(\begin{array}{cccc} 0.0454 & -0.0200 & 0.9988 \end{array}\right)$
g	0.1109	0.0182	0.0922	0.0166
$P_1^{}$	(0.9462 0.0063 -0.0558)	(0.9462 0.0063 -0.0558)	$\int 0.9502 0.0046 -0.0475$	(0.9501 0.0054 -0.0473)
	-0.0056 1.0007 -0.0058	-0.0057 1.0007 -0.0060	-0.0042 1.0004 -0.0040	-0.0049 1.0005 -0.0047
	0.0501 - 0.0058 1.0520	$\left(\begin{array}{cccc} 0.0501 & -0.0059 & 1.0520 \end{array}\right)$	$\left(\begin{array}{cccc} 0.0433 & -0.0040 & 1.0414 \end{array}\right)$	$\left(\begin{array}{cccc} 0.0431 & -0.0047 & 1.0409 \end{array}\right)$
ρ	(0.6920; -0.0806; 0.7174)	(0.6920; -0.0814; 0.7173)	(0.7217; -0.0662; 0.6890)	(0.7237; -0.0781; 0.6857)
S	[-0.7294; -0.0763; 0.6798]	[-0.7294; -0.0772; 0.6797]	[-0.7526; -0.0629; 0.6554]	[-0.7544; -0.0743; 0.6522]
g_1	0.1066	0.1066	0.0916	0.0914
θ_1	$(0.9462 \ 0.0029 \ -0.0592)$		$(0.9502 \ 0.0022 \ -0.0499)$	
	-0.0056 0.9456 -0.0609		-0.0042 0.9545 -0.0499	
	0.0501 0.0520 1.1099		$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	
(o.c.) ₁	$(112)_{\mathrm{T}} \parallel (1.009; 0.997; 2)_{\mathrm{K}}$		$(112)_{\mathrm{T}} \parallel (1.007; 0.995; 2)_{\mathrm{K}}$	
	$[-1-11]_{T} \ [-1.074; -1; 1.007]_{K}$		$[-1\!-\!11]_{\rm T}\ [-1.002;-1;1.002]_{\rm K}$	
θ_2	(0.0310 - 0.9462 - 0.0253)	(0.0310 - 0.9462 - 0.0253)	(0.0260 - 0.9502 - 0.0219)	(0.0263 - 0.9501 - 0.0214)
	0.5032 0.0056 0.4884	0.5033 0.0057 0.4884	0.5022 0.0042 0.4902	0.5026 0.0049 0.4897
	(-0.5289 - 0.0501 0.5325)	$(-0.5289 - 0.0501 \ 0.5325)$	(-0.5227 - 0.0433 0.5270)	$\left(-0.5228 - 0.0432 0.5267\right)$
(0.c.) ₂	$(12-1)_{M} \parallel (-1; 0.001; -0.991)_{K}$	$[-111]_{M} \parallel [-1; -0.001; 1.009]_{K}$	$(12-1)_{M} \ (-1; 0.009; -0.991)_{K}$	$[-111]_{M} \parallel [-1; -0.008; 1.009]_{K}$
п	[-0.0003; 0.4218; -0.9067]	[-0.4320; -0.8947; -0.1132]	[-0.0300; 0.1218; -0.9921]	[-0.4040; -0.9078; -0.1127]
Φ	0.280°	3.384°	0.192°	2.861°
Примечан	ие. <i>g</i> – величина сдвига при инвариантной	йдеформации мартенсита (<i>P</i>); ρ – инвар	иантная плоскость; <i>s</i> и g ₁ – направление и	величина сдвига при деформации формы
$(PI); \theta_1 - I$ динат сред	матрица перехода от тетрагональных коор ней решетки модулированной структуры	лдинат матрицы мартенсита к куоически 114М к координатам исходной фазы L21	им координатам исходной фазы L21;	иатрица перехода от моноклинных коор- между решетками матрицы мартенсита и
исходной (на угол ф в	разы, (о.с.) ₂ – между средней решеткой ми системе координат исходной фазы.	одулированной структуры мартенсита и	решеткой исходной фазы; и – ось релаксаі	ционного поворота пластины мартенсита

. u Ni...Mn. A12превращения в сплавах Ni OTOUTNOTO OV LIGTO Таблина 2. Расчетные кристаллографические парам

> ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 123

2022

32

ГУНДЫРЕВ, ЗЕЛЬДОВИЧ

№ 1

сдвиговая деформация аустенита по системе {110}(110) не является реальным механизмом мартенситного превращения в этих сплавах.

Согласно нашим представлениям, деформация решетки аустенита до параметров тетрагональной решетки матрицы мартенсита происходит путем сдвига по системе $\{112\}\langle\overline{1}\,\overline{1}1\rangle$ и дополнительной деформации, а модулированная структура возникает в результате инвариантной деформации мартенсита двухслойными двойниками по системе $\{110\}\langle \overline{1} 10 \rangle$. При сдвиге по системе $(112)[\overline{1}\overline{1}1]$ должны выполняться ориентационные соотношения (112)_{в2} || (112)_т и $[\overline{1}\overline{1}1]_{B_2} \| [\overline{1}\overline{1}1]_T$ с точностью не хуже 1°. Рассчитанное отклонение $(112)_T$ от $(112)_{B2}$ с помощью матрицы θ_1 из табл.2 равно 0.22° для сплава Ni₆₃Al₃₇ и 0.20° для сплава Ni₅₁Mn₂₄Ga₂₅, а отклонение $[\overline{1}\overline{1}1]_{T}$ от $[\overline{1}\overline{1}1]_{B2}$ равно 0.19° для сплава $Ni_{63}Al_{37}$ и 0.05° для сплава $Ni_{51}Mn_{24}Ga_{25}$. Таким образом ориентационные соотношения (112)_{B2} || (112)_T и $[\overline{1}\overline{1}1]_{B2} \| [\overline{1}\overline{1}1]_{T}$ выполняются с хорошей точностью.

Сравнение значений углов релаксационного поворота показывает, что предложенный в настоящей работе механизм мартенситного превращения в сплавах с семислойной структурой мартенсита в 12–15 раз точнее описывает деформацию решетки аустенита до параметров решетки мартенсита при мартенситном превращении, чем механизм неоднородной сдвиговой деформации по системе $\{110\}\langle 110 \rangle$ аустенита. Таким образом, реальный механизм мартенситного превращения в этих сплавах содержит сдвиг в аустените по системе $\{112\}\langle \overline{111} \rangle$ и двойникование в тетрагональном мартенсите (в решетке матрицы мартенсита) по системе $(110)[\overline{110}]$.

ЗАКЛЮЧЕНИЕ

1. Исходя из экспериментальных данных о средней кристаллической структуре 14М-мартенсита сплавов $Ni_{51}Mn_{24}Ga_{25}$ и $Ni_{63}Al_{37}$, были рассчитаны параметры решеток матрицы мартенсита. На основе полученных параметров был выполнен расчет кристаллографических характеристик мартенситного превращения для данных сплавов: деформации решетки, деформации при инвариантной решетке, деформации формы, инвариантной плоскости, ориентационных соотношений, величины и направления сдвига, а также расчет угла релаксационного поворота мартенситного кристалла.

2. Определен механизм мартенситного превращения $L2_1 \rightarrow 14$ М и $B2 \rightarrow 14$ М в данных сплавах, при котором угол релаксационного поворота мартенситного кристалла минимален и равен 0.192° в сплаве Ni₅₁Mn₂₄Ga₂₅ и 0.280° в сплаве Ni₆₃Al₃₇. Такие малые значения угла поворота мартенситного кристалла характерны лишь для реального механизма мартенситного превращения.

3. Данный механизм мартенситного превращения состоит из деформации решетки аустенита путем сдвига по плоскости (112) в направлении [-1-11] в исходной ОЦК-фазе (без учета сортности атомов), дополнительного растяжения в направлении нормали к плоскости сдвига, растяжения в направлении сдвига и сжатия в поперечном направлении, а также деформации мартенсита при инвариантной решетке, происходящей путем образования двухслойных двойников, создающих семислойную модуляцию кристаллической структуры в этих сплавах.

Работа выполнена в рамках государственного задания МИНОБРНАУКИ РФ по темам "Структура" № АААА-А18-118020190116-6 и "Давление" № АААА-А18-118020190104-3.

СПИСОК ЛИТЕРАТУРЫ

- Васильев А.Н., Бучельников В.Д., Такаги Т., Ховайло В.В., Эстрин Э.И. Ферромагнетики с памятью формы // УФН. 2003. Т. 173. № 6. С. 577–608.
- Chopra H.D., Chunhai Ji, Kokorin V.V. Magnetic-fieldinduced twin boundary motion in magnetic shapememory alloys // Phys. Rev. B. 2000. V. 61. № 22. R14913–14915.
- Ullakko K., Huang J.K., Kantner C., O'handley R.C., Kokorin V.V. Large magnetic-field-induced strains in Ni₂MnGa single crystals // Appl. Physics Letters. 1996. V. 63. № 13. P. 1966–1968.
- Sozinov A., Likhachev A.A, Lanska N., Ullakko K. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase // Appl. Physics Letters. 2002. V. 80. № 10. P. 1746–1748.
- Гундырев В.М., Калетина Ю.В. Кристаллографический анализ и механизм мартенситного превращения в сплаве Гейслера Ni₄₇Mn₄₂In₁₁ // ФММ. 2019. Т. 120. № 11. С. 1193–1199.
- 6. *Murakami Y., Otsuka K., Hanada S., Watanabe S.* Crystallography of stress-induced *B*2 → 7R martensitic transformation in a Ni–37.0 at. % Al alloy //Mater. Trans. JIM. 1992. V. 33. P. 282–288.
- Martynov V.V. X-ray diffraction study of thermally and stress-induced phase transformations in single crystalline Ni–Mn–Ga alloys // J. Phys. IV (Paris). 1995. V. 5. C. 8–91.
- Мартынов В.В., Энами К., Хандрос Л.Г., Ненно С., Ткаченко А.В. Структура мартенситных фаз, образующихся в сплаве 63.1 ат. % Ni–Al при растяжении // ФММ. 1983. Т. 55. № 5. С. 982–989.
- Гундырев В.М., Калетина Ю.В. Рентгеноструктурное исследование структуры мартенсита сплава Ni₄₇Mn₄₂In₁₁ // ФММ. 2018. Т. 119. № 10. С. 1018– 1024.
- 10. *Гундырев В.М., Зельдович В.И.* Кристаллографический анализ мартенситного превращения *B*2 → *B*19'

в никелиде титана // Изв. РАН. Серия физическая. 2012. Т. 76. № 1. С. 24–27.

- 11. *Гундырев В.М., Зельдович В.И.* Кристаллографический анализ мартенситного превращения в железоникелевом сплаве с двойникованным мартенситом // Изв. РАН. Сер. физическая, 2013. Т. 77. № 11. С. 1638–1643.
- Гундырев В.М., Зельдович В.И. Кристаллографический анализ мартенситного ГЦК → ОЦТ превращения в высокоуглеродистой стали // ФММ. 2014. Т. 115. № 10. С. 1035–1042.
- 13. Гундырев В.М., Зельдович В.И., Счастливцев В.М. Кристаллографический анализ мартенситного превращения в среднеуглеродистой стали с пакет-

ным мартенситом // ФММ. 2016. Т. 117. № 10. С. 1052–1062.

- *Гундырев В.М., Зельдович В.И., Счастливцев В.М.* Кристаллографический анализ и механизм мартенситного превращения в сплавах железа // ФММ. 2020. Т. 121. № 11. С. 1142–1161.
- Wechsler M.S., Lieberman D.S., Read T.A. On the Theory of the Formation of Martensite // Trans. AIME. 1953. V. 197. P. 1503–1515.
- 16. *Wayman C.M.* Introduction to the Crystallography of Martensitic Transformations. N.Y.–London. 1964. 193 p.
- Murakami Y., Otsuka K., Hanada S., Watanabe S. Selfaccomodation and morphology of 14M (7R) martensites in a Ni–37.0 at. % Al alloy // Mater. Sci. Eng. A189. 1994. P. 181–199.