_____ СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ ____ И ЛИФФУЗИЯ

УЛК 669.017

СТРУКТУРА И ХАРАКТЕР РАЗРУШЕНИЯ КОМПОЗИТА Cu—Ti—Al—Ni—Fe—C—В ПОСЛЕ АБРАЗИВНОГО ИЗНОСА

© 2022 г. Н. Б. Пугачева^{а, *}, Т. М. Быкова^а, Е. И. Сенаева^а

^аИнститут машиноведения УрО РАН, ул. Комсомольская, 34, Екатеринбург, 620049 Россия *e-mail: nat@imach.uran.ru

Поступила в редакцию 09.06.2022 г. После доработки 12.07.2022 г. Принята к публикации 29.07.2022 г.

Исследованы структура, химический и фазовый составы, твердость и износостойкость композита системы Cu-Ti-Al-Ni-Fe-C-B, полученного методом самораспространяющегося высокотемпературного синтеза (CBC). Для формирования матрицы использовали алюминиевую бронзу Cu-8.5Al-5.0Ni-4.0Fe-1.0Si-0.2Cr. Синтез обеспечивали порошки Ti, C, B_4C . Показано, что матрица композита кроме твердого раствора на основе меди содержит области эвтектического строения "Cu+(Ni,Fe)Al", характеризующиеся микротвердостью 900 HV 0.1. Упрочняющие фазы — TiC и TiB_2 . Области " $\gamma+TiC$ " характеризуются микротвердостью 550 HV 0.1, а области " $Cu+TiB_2+TiC$ " — 700 HV 0.1. Интегральная твердость композита составляет 62 HRC. Наиболее пластичной структурной составляющей композита являются области " $\gamma+TiC$ ", характеризующиеся высокими значениями максимальной глубины внедрения индентора, полной механической работы индентирования и составляющей работы пластической деформации при индентировании (ϕ), ползучести при индентировании (C_{IT}). При абразивном износе происходит срез поверхностных слоев структурных составляющих "Cu+TiC" и "Cu+(Ni,Fe)Al" с образованием гладкой поверхности. Шероховатость поверхности образцов не превышает 2.8 мкм.

Ключевые слова: композиты, самораспространяющийся высокотемпературный синтез, карбиды, бориды, интерметаллиды, плотность, твердость, износотойкость

DOI: 10.31857/S0015323022100254

ВВЕДЕНИЕ

Выбор химического состава металлической матрицы композитов, полученных методом самораспространяющегося высокотемпературного синтеза (СВС), определяет область их применения [1, 2]. Так для получения композитов с высокими показателями жаростойкости целесообразно использовать никель-кобальтовую матрицу [3]. При необходимости обеспечить хорошую тепло- и электропроводность используют медь или сплавы на ее основе [4-6]. При этом высокая прочность и износостойкость композитов обеспечивается образованием упрочняющих фаз — частиц TiC, TiB_2 , Ni₃Ti. NiAl и т.д. Большинство из этих химических соединений образуются непосредственно на стадии горения во время протекания экзотермических реакций, повышающих температуру порошковой смеси вплоть до температур плавления её составляющих. Основными экзотермическими реакциями являются:

$$Ti + C = TiC + Q; (1)$$

$$3Ti + B_4C = TiC + 2TiB_2 + Q; (2)$$

$$C + O_2 = CO_2 + Q.$$
 (3)

Использование в качестве матрицы СВС-композитов меди перспективно для деталей и элементов конструкций электротехнического и теплообменного назначения. Относительно невысокая температура плавления меди (1083°C) [7] позволяет обеспечить высокую сплошность формируемой структуры композита. Научный и практический интерес представляет использование алюминиевой бронзы для формирования металлической матрицы СВС-композитов. Преимуществом бронзы перед чистой медью является расширение диапазона эксплуатационных свойств. Так, в алюминиевых бронзах содержание алюминия в количестве от 5 до 10 вес. % позволяет существенно повысить коррозионную стойкость, в том числе и при повышенных температурах, за счет стабильного образования плотной защитной окисной пленки Al₂O₃. Кроме того, в процессе вторичного структурообразования композита возможно выделение частиц интерметаллидов, которые оказывают дополнительное упрочняющее действие, повышая твердость и износостойкость. При этом появляется возможность уменьшить количество упрочняющих фаз, образующихся на стадии горения по реакциям (1), (2), с целью повышения конструкционной прочности композита без потерь его основных функциональных свойств. С этой точки зрения актуальным является проведение исследований химического и фазового составов монолитных СВС-композитов с бронзовой матрицей, а также анализ влияния структуры на механизмы деградации и разрушения при внешнем воздействии, например, абразивных частиц.

Для оценки физико-механических свойств сплавов и композитов успешно используют метод инструментального индентирования, который позволяет непрерывно регистрировать кривую "нагрузка на индентор – глубина внедрения индентора" и получать количественные характеристики материала и его структурных составляющих (например, твердость, модуль Юнга, показатель ползучести и др.) [8, 9]. Кроме того, в ранее выполненных исследованиях показано, что кривые нагружения при индентировании коррелируют с зависимостями деформационного упрочнения для структрных составляющих [10–12]. Выполнен целый комплекс исследований, показавший влияние микромеханических свойств структурных составляющих на локализацию пластической деформации при внешнем механическом нагружении [13, 14]. Известно [15], что разрушение поверхностных слоев при трении определяется упруго-пластической деформацией структурных составляющих сплава или композита. В этой связи изучение микромеханических свойств структурных составляющих композитов позволит установить механизмы деградации и разрушения при абразивном

Цель работы — установить химический и фазовый составы монолитных CBC-композитов системы Cu—Ti—Al—Ni—Fe—C—B, определить их плотность, твердость, микромеханические свойства и характер разрушения при абразивном износе.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Исследованный композит получен методом СВС в режиме безгазового твердофазного горения. Для формирования матрицы композита использовали порошок бронзы Cu-8.5Al-5.0Ni-4.0Fe-1.0Si-0.2Cr. В качестве термореагирующих компонентов (ТРК), обеспечивающих протекание экзотермических реакций (1), (2) и (3), были выбраны порошки Ті, С и В₄С. Расчет процентного содержания ТРК в составе исходной смеси производили из условия осуществления реакций (1) и (2) в стехиометрических пропорциях. Доля ТРК в исходной смеси составляла 30%, в соответствии с результатами, обсужденными ранее в работе [16]. Исходные порошки перемешивали в шаровой мельнице, затем засыпали в стальную трубу, вы-

полняющую одновременно роль реактора открытого типа и внешней оболочки заготовки [17—19]. Затем заготовку помещали в электрическую печь и нагревали до температуры начала экзотермических реакций (1020°С). Сразу после завершения процесса синтеза заготовки подвергали горячему компактированию — прессованию на гидравлическом прессе при температуре 900°С под нагрузкой 250 МПа.

Микроструктуру, химический и фазовый составы полученного композита исследовали на поперечных резах полученных заготовок с помощью сканирующего электронного микроскопа TESCAN VEGAII XMU с энергодисперсионной и волнодисперсионной приставками фирмы OXFORD. Фазовый рентгеноструктурный анализ выполнен на рентгеновском дифрактометре SHIMADZU в K_{α} -излучении хрома.

Твердость композита измеряли на твердомере ТР 5006 методом Роквелла по шкале HRC. Плотность определяли методом гидростатического взвешивания образцов на воздухе и в дистиллированной воде плотностью 998 кг/м³. Взвешивание проводили на аналитических весах Ohas Pioner PA 214. Плотность композита определяли по формуле:

$$\rho = \frac{m}{m - m_{\rm B}} \rho_{\rm B},\tag{4}$$

где m — масса образца на воздухе, $m_{\rm B}$ — масса образца в воде, $\rho_{\rm B}$ — плотность дистиллированной воды. Погрешность составляла не более 0.2% от измеряемой величины.

Микромеханические свойства композита определяли в соответствии с требованиями ГОСТ Р 8.748 – 2011 (ИСО 14577–1: 2002) [20]. Инструментальное микроиндентирование с записью диаграммы нагружения проводили на измерительной системе Fischerscope HM2000 XYm с использованием индентора Виккерса и программного обеспечения WIN-HCU при максимальной нагрузке 0.980 Н, времени нагружения 20 с, выдержке при нагрузке 15 с и времени разгрузки 20 с. Погрешность характеристик микротвердости и микроиндентирования по 10 измерениям рассчитывали с доверительной вероятностью p = 0.95. По результатам индентирования определяли следующие показатели микромеханических свойств: микротвердость по Виккерсу (HV), контактный модуль упругости (E^*), составляющую работы пластической деформации при индентировании (ϕ) , ползучесть при индентировании (C_{IT}) , показатель упругого восстановления ($R_{\rm e}$) и показатель доли упругой деформации в общей деформации при индентировании $H_{\rm IT}/E^*$, где $H_{\rm IT}$ — значение твердости вдавливания при максимальной нагрузке. Расчеты показателей ϕ , $C_{\rm IT}$ и $R_{\rm e}$ проводили по следующим формулам:

$$\varphi = (1 - We/Wt) \times 100\%;$$
 (5)

$$C_{\rm IT} = \frac{h_{\rm max} - h_{\rm l}}{h_{\rm l}} \times 100\%;$$
 (6)

$$R_{\rm e} = \frac{h_{\rm max} - h_p}{h_{\rm max}} \times 100\%;$$
 (7)

где Wе — работа упругой деформации при индентировании, Wt — полная механическая работа при индентировании, определяемая площадью под кривой нагружения, h_1 — глубина внедрения индентора, соответствующая начальной точке горизонтального участка на кривой нагружения, h_p — глубина отпечатка после снятия нагрузки, h_{\max} — максимальная глубина внедрения индентора. Показатель $R_{\rm e}$, как и H_{IT}/E^* предложено считать [21, 22] характеристиками доли упругой деформации в общей деформации при индентировании. Соотношение H_{IT}^3/E^{*2} авторы [23] предлагают использовать для характеристики сопротивления материала пластической деформации после начала течения, а также износостойкости структурных составляющих.

Испытания на износостойкость при трении о закрепленные абразивные частицы проводили на лабораторной установке по методике, описанной в работах [24-26]. В качестве абразива использовали электрокорунд Al₂O₃ зернистостью 160 мкм и твердостью 2000 HV и карбид кремния SiC зернистостью 200 мкм и твердостью 3000 HV. Образцы для испытаний имели размеры $7 \times 7 \times 20$ мм. Скольжение торцевых поверхностей образцов после предварительной притирки на машине трения проходило со средней скоростью 0.175 м/с при нагрузке 49 Н, которую задавали с помощью поверенных грузов, поперечное смещение образца на один двойной ход составило 0.8 мм, путь трения 18 м. Износостойкость образцов оценивали по относительному изменению массы ($\Delta m_{\text{отн}}$), которую рассчитывали по формуле:

$$\Delta m_{\rm oth} = (m_0 - m_1)/m_0, \tag{8}$$

где m_0 — начальная масса образа, m_1 — масса образца после испытаний. Кроме того, рассчитывали значения коэффициента трения (f) по формуле (9) и относительный износ (ϵ) по формуле (10):

$$f = F_{\rm TD}/N; (9)$$

$$\varepsilon = \Delta m / \Delta m_{\rm ar},\tag{10}$$

где $F_{\rm тp}$ — сила трения, которую регистрировали с помощью внешнего модуля "ZET 2XX" с программным обеспечением ZETLab, N — сила нормального давления, Δm — потеря массы образца ($\Delta m = m_0 - m_1$), $\Delta m_{\rm eff}$ — потеря массы эталона (в каче-

стве эталона выбран образец из стали 40Х). Интенсивность изнашивания рассчитывали по формуле:

$$I_h = \Delta m / (\rho SL), \tag{11}$$

где ρ — плотность материала; S — геометрическая площадь контакта; L — путь трения. Удельную работу изнашивания W рассчитывали по формуле:

$$W = fNL\rho/\Delta m. \tag{12}$$

Поверхность и частицы износа после испытаний исследовали с помощью микроскопа TESCAN, шероховатость поверхности *R*а определяли с помощью программного комплекса VEGA к микроскопу.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

При использовании порошка бронзы для получения композита плавление начинается практически оновременно с синтезом. Именно поэтому поры в центральной части полученных сендвич-пластин после горячего компактирования не были обнаружены, как и в случае композита Cu—Ti—C—B, структура которого была подробно рассмотрена авторами ранее [27]. Незначительное количество пор образовалось лишь на границе с внешней стальной оболочкой. Синтез приводит к неравномерному распределению структурных составляющих в объеме копозита (рис. 1). Плотность композита составила 6.7 г/см³.

Как и при формировании композита системы Cu-Ti-C-В [27], металлическая матрица композита Cu-Ti-Al-Ni-Fe-C-В состоит из твердого раствора на основе меди, а отличительной особенностью является образование областей характерного эвтектического строения (обозначена цифрой 1 на рис. 1). По данным фазового рентгеноструктурного и микрорентгеноспектрального анализов в композите кроме Си, ТіС и ТіВ, зафиксировано присутствие интерметаллида NiAl (рис. 2, 3). Области эвтектического строения состоят из механической смеси твердого раствора на основе меди и частиц интерметаллида (Ni, Fe) Al (рис. 1в), поэтому в них наблюдали повышенное содержание алюминия, никеля и железа (рис. 3, табл. 1).

Частицы упрочняющей фазы TiC достаточно равномерно распределены в твердом растворе на основе меди и образуют структурную составляющую "Cu + TiC" (обозначена цифрой 2 на рис. 1). Частицы TiC серого цвета имеют глобулярную форму и размеры до 1 мкм (рис. 1б).

Частицы черного цвета правильной огранки соответствуют по химическому составу соединению TiB_2 . Размер этих частиц от 0.5 до 3.0 мкм, они неравномерно распределены по объему композита (рис. 1в). Вблизи частиц TiB_2 всегда нахо-

Рис. 1. СЭМ-изображение микроструктуры композита Cu-Ti-Al-Ni-Fe-C-B: 1 – области эвтектического строения Cu+(Ni,Fe)Al; 2 – области Cu+TiC; 3 – области $Cu+TiC+TiB_2$; a – общий вид; 6 – частицы TiC и TiB_2 ; B – области эвтектического строения.

дятся более мелкие частицы карбида титана ТіС, поэтому они образуют структурную составляющую "Cu + TiB $_2$ + TiC" (обозначена цифрой $\mathcal 3$ на рис. 1). Химический состав структурных составляющих исследованного композита приведен в табл. 1.

Таблица 1. Химический состав структурных составляющих композита, отмеченных на рис. 1 и 3, ат. %

№	Cu	Ti	Al	Ni	Fe	С	В
1	Баланс	3.9	18.0	18.3	15.1	6.8	7.8
2		31.8	6.0	4.4	3.6	21.0	0
3		15.6	3.4	2.2	1.2	24.1	32.7
4		2.8	17.3	16.4	12.5	6.2	9.0

Области эвтектического строения содержат достаточно крупные однородные частицы или прослойки (обозначены цифрой 4 на рис. 3). По химическому составу они представляют собой интерметаллид (Ni,Fe)Al, но также содержат некоторое количество бора и углерода.

Каждая структурная составляющая исследованного композита характеризуется своими микромеханическими свойствами. Наиболее мягкая и пластичная структурная составляющая — механическая смесь "Cu + TiC". Микротвердость для нее составляет в среднем 550 HV 0.1, а кривая нагруженя сдвинута в крайне правое положение (рис. 4). Смесь "Cu + TiC" характеризуется максимальными значениями $h_{\rm max}$, $W_{\rm t}$, ϕ , $C_{\rm IT}$ (табл. 2).

Рис. 2. Фрагмент дифрактограммы композита Cu-Ti-Al-Ni-Fe-C-B.

Микротвердость участков "Cu + TiB₂ + TiB" (таких, как участок 3 на рис. 1) в среднем составляют $700~HV\,0.1$, а участков эвтектического строения $-900~HV\,0.1$. Общая твердость композита составила 62~HRC.

Максимальное упрочнение наблюдается в зонах эвтектического строения, таких, как участок I на рис. 1. Диаграмма нагружения для этй обасти сдвинута в крайнее левое положение наименьших значений глубины внедрения индентора. Контактный модуль упругости E^* , показатели доли упругой деформации в общей деформации при

индентировании H_{IT}/E^* и $R_{\rm e}$ для этих зон также имеет максимальное значение (табл. 2). В работе [23] показано, что отношение H_{IT}^3/E^{*2} характеризует не только сопротивление материала пластической деформации после начала течения, но и износостойкость структурной составляющей. Очевидно следует ожидать максимальную износостойкойсть эвтектической структурной составляющей (табл. 2).

Области "Cu + Ti_2B + TiC", обозначенные на рис. 1 цифрой 3, занимают промежуточное положение по микромеханическим свойствам между "Cu + (Ni,Fe)Al" и "Cu + TiC" (рис. 4 и табл. 2).

Результаты испытаний на абразивную износостойкость показали, что композит системы Си-Ti-Al-Ni-Fe-C-В характеризуется более высокими показателями трибологических свойств по сравнению с композитом системы Fe-Ti-C-B, структура которого подробно рассмотрена ранее в работе [16], и композитом системы Cu-Ti-C-В, структура которого подробно рассмотрена в работе [27], (табл. 3). Интенсивность изнашивания $I_{\rm h}$ композитов при испытаниях по карбиду кремния больше, чем по корунду, что обусловлено его большей твердостью (табл. 3). Относительное изменение массы $\Delta m_{\rm отн}$, удельная работа изнашивания W, относительный износ ε и коэффициент трения f немного меньше при испытаниях по корунду, чем по карбиду кремния. Шероховатость поверхности композита Cu-Ti-Al-Ni-Fe-С-В минимальна по сравнению с эталоном и композитом с железной матрицей, структура ко-

Рис. 3. СЭМ-изображение микроструктуры композита Cu-Ti-Al-Ni-Fe-C-B и карты распределения химических элементов.

Рис. 4. Диаграммы нагружения структурных составляющих композита Cu-Ti-Al-Ni-Fe-C-B (цифры соответствуют участкам, отмеченным на рис. 1), F- нагрузка на индентор.

торого рассмотрена ранее в работе [16], и одинакова с композитом системы Cu-Ti-C-B [27].

Медная матрица, обладая более высокой по сравнению с железом пластичностью, обеспечи-

вает релаксацию внутренних напряжений, возникающих в ходе испытаний на абразивную износостойкость, и препятствует появлению микросколов и выкрашиваний при образовании частиц износа. Известно, что при абразивном износе частицы абразива представляют собой режущий клин [28]. По сути при абразивном износе происходит срезание тонкого поверхностного слоя.

Рельеф поверхности износа образцов композита характерен для вязких материалов. Области "Cu + TiC" и "Cu + (Ni,Fe)Al" легко срезаются, формируя гладкую поверхность (обозначена букой A на рис. 5а и 5б). Более шероховатая поверхность износа соответ ствует областям скопления частиц TiB_2 (обозначена B на рис. 5а и 5б), что подтверждено микрорентгеноспектральным анализом. Трещин и сколов на поверхности износа после испытаний не обнаружено.

Частицы износа исследованного композита имеют форму суставчатой стружки: нижняя поверхность частиц гладкая, а верхняя имеет зазубрины (рис. 5в, 5г). Поскольку размер частиц корунда Al_2O_3 и карбида SiC отличается примерно в 1.25 раза, отличается и размер частиц износа композита. После испытаний по электрокорунду образуются частицы размерами от $15 \times 30 \times 2$ мкм до $30 \times 115 \times 4$ мкм, а после испытаний по карбиду

Таблица 2. Микромеханические свойства композита Cu-Ti-Al-Ni-Fe-C-В

№ участка на рис. 1	<i>H</i> _{IT} , ГПа (±0.6)	HV, HV0.1 (±6)	E*, ГПа (±9.4)	W _t , нДж (±3.4)	W _e , нДж (±0.6)	$h_{\rm max}$, мкм (±0.1)	$R_{\rm e}$	H_{IT}/E^*	H_{IT}^3/E^{*2}	φ, %	C _{IT} , %
1	9.5	900	253.0	78.5	23.1	2.3	29	0.038	0.0135	70.6	0.3
2	6.0	550	235.9	91.2	19.4	2.8	20	0.025	0.0037	78.7	0.5
3	7.4	700	238.7	85.9	21.4	2.5	24	0.031	0.0072	75.1	0.4

Таблица 3. Результаты испытаний на абразивную износостойкость

Тип абразива	m_0 , г	m_1 , Γ	$\Delta m_{ m oth}, \%$	$I_{\rm h}$, 10^{-8}	W, кДж/см ³	ε	f	$R_{\rm a}$, MKM			
40Х (эталон)											
Al_2O_3	7.266	7.166	1.4	3.6	18.2	1	0.65	3.6			
SiC		7.169	1.4	3.8	19.6	1	0.68				
Композит Fe—Ti—C—В (структура описана в работе [16])											
Al_2O_3	7.332	7.302	4.1	2.2	11.4	2.98	0.45	4.8			
SiC	C 7.		1.1	5.7	10.0	9.21	0.56				
Композит Cu-Ti-C-B [27]											
Al_2O_3	7.925	7.833	1.1	1.9	10.2	1.9	0.42	2.8			
SiC	SiC		3.7	2.8	12.1	2.3	0.45				
Композит Cu-Ti-Al-Ni-Fe-C-B											
Al_2O_3	7.978	7.925	0.7	1.2	9.7	1.0	0.43	2.8			
SiC		7.884	1.2	1.5	11.3	1.9	0.53				

Рис. 5. Рельеф поверхности образцов после испытаний на абразивный износ (a, 6) и частицы износа (b, r); a, b- испытания по Al_2O_3 ; b, r- испытания по SiC; A- гладкая поверхность образца, образованная после срезания тонкого слоя областей "Cu + TiC" и "Cu + (Ni,Fe)Al, B- шероховатая поверхность на участках с частицами TiB_2 .

кремния минимальный размер частиц составил $20 \times 38 \times 2$ мкм, а максимальный $38 \times 140 \times 5$ мкм. При этом частицы толщиной менее 3 мкм имеют зазубрины с одной стороны, а у частиц толщиной

Таблица 4. Химический состав частиц износа композита, ат. %

№ участка на рис. 5 г	В	С	Al	Si	Ti	Fe	Ni	Cu
1	0	13.4	8.1	0.5	24.1	7.6	10.2	Осталь-
2	24.3	10.8	4.9	0.4	27.9	2.9	4.4	ное
3	0	13.1	8.9	0.4	15.5	5.9	9.3	
4	16.6	13.3	9.2	0.6	9.4	3.4	4.6	

5 мкм обе стороны гладкие (рис. 5г). Химический анализ частиц износа композита показал, что трещины в частицах износа образуются в структурных составляющих композита, содержащих частицы TiB_2 (табл. 4 и рис. 5г).

выводы

При использовании бронзы для формирования металлической матрицы композита, полученного в результате синтеза термореактивной смеси покрошков Ti, C, B_4C , кроме твердого раствора на основе меди сформировалась эвтектическая составляющая "Cu + (Ni,Fe)Al". Упрочняющие фазы — частицы карбида титана TiC размера-

ми до 1.0 мкм и диборида титана TiB_2 размерами от 0.5 до 3.0 мкм. Плотность композита составила 6.6 г/см³. Твердость композита 62 HRC.

Наиболее пластичной структурной составляющей являются области "Cu + TiC", характеризующиеся минимальными значениями твердости, модуля упругости (E^*), работы упругой деформации при индентировании (W_e) и соотношения H_{IT}/E^* и максимальными значениями показателей пластичности: глубины внедрения индентора (h_{\max}), составляющей работы пластической деформации (ϕ) и ползучести (C_{IT}).

При абразивном износе происходит срез поверхностных слоев структурных составляющих "Cu + TiC" и "Cu + (Ni,Fe)Al" с образованием гладкой поверхности, что приводит к снижению интенсивности изнашивания исследованного композита по сравнению с эталоном и ранее исследованным композитом с железной матрицей. Наиболее шероховатые участки поверхности износа соответствуют областям скопления частиц TiB₂. Шероховатость поверхности образцов не превышает 2.8 мкм.

Работа выполнена при финансовой поддержке гранта РНФ № 22-29-00188 регистрационный номер 122012600194-2.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Мержанов А.Г.* Твердопламенное горение. Черноголовка: ИСМАН, 2000. 224 с.
- 2. Амосов А.П., Боровинская И.П., Мержанов А.Г. Порошковая технология самораспространяющегося высокотемпературного синтеза материалов. М.: Машиностроение-1, 2007, 472 с.
- 3. Zhang X, Liu N., Rong C., Zhou J. Microstructure and mechanical properties of TiC-TiN-Zr-WC-Ni-Co cermets // Ceramics International. 2009. V. 35. P. 1187-1193.
- 4. *Kim J.S.*, *Dudina D.V.*, *Kom J.C.*, *Kwon Y.S.*, *Park J.J.*, *Rhu C.K.* Propertes of Cu-based nanocomposites produced by mrchanically activated self propagatig hift temhetatire synyhesis and spark plasma sinterihg // J. Nanosci. Nanotechnol. 2010. V. 10. P. 252–257.
- Yoang O.N.T., Hoang V.N., Kim J.S., Dudina D.V. Strucrural Investigation of TiC—Cu Nanocomposites Prehared dy Dall Milling and Spark Plasma Sintering // Metals. 2017. V. 7. P. 123.
- 6. *Колачев Б.А., Елагин В.И., Ливанов В.А.* Металловедение и термическая обработка цветных металлов и сплавов. М.: МИСиС, 2005. 432 с.
- 7. Захаров А.М. Диаграмма состояния двойных и тройных систем. М.: Металлургия, 1990. 350 с.
- 8. *Головин Ю. И.* Наноиндентирование и его возможности. М.: Машиностроение, 2009. 312 с.
- 9. *Leyland A., Matthews A.* On the Significance of the H/E Ratio in Wear Control: a Nanocomposite Coating Ap-

- proach to Optimized Tribological Behavior // Wear. 2000. V. 246. P. 1-11.
- 10. Смирнов С.В., Пугачева Н.Б., Тропотов А.В., Солошенко А.Н. Сопротивление пластической деформации структурных составляющих сложнолегированной латуни // ФММ. 2001. Т. 91. № 2. С. 106—111.
- Смирнов С.В., Пугачева Н.Б., Солошенко А.Н., Тропотов А.В. Исследование пластической деформации сложнолегированной латуни // ФММ. 2002. Т. 93. № 6. С. 91–100.
- 12. Smirnov S.V., Smirnova E.O. A technique for determining coefficients of the "stress—strain" diagram by nanoscratch test results // J. Mater. Res. 2014. V. 28. P. 1730–1736.
- Веретенникова И.А., Пугачева Н.Б., Смирнова Е.О., Мичуров Н.С. Лазерное сварное соединение титанового сплава ВТ1-0 и стали 12X18H10T с промежуточной медной вставкой // Письма о материалах. 2018. Т. 8. № 1. С. 42—47.
- Smirnov S., Myasnikova M, Pugacheva N. Hierarchical simulation of plastic deformation and fracture of complexly alloyed brass // Int. J. Damage Mech. 2016. V. 25. P. 251–265.
- Рыбакова Л.М., Куксенова Л.И. Структура и износостойкость металла. М.: Машиностроение, 1983. 212 с.
- 16. Пугачева Н.Б., Николин Ю.В., Сенаева Е.И., Малыгина И.Ю. Структура СВС-композитов системы Fe-Ti-C-B // ФММ. 2019. Т. 120. № 11. С. 1174—1180.
- 17. Николин Б.В., Матевосян М.Б., Кочугов С.П., Пугачева Н.Б. Патент на изобретение № 2680489. Способ изготовления многослойной износостойкой пластины. Приоритет от 10.11.2017 до 10.11.2037.
- Pugacheva N.B., Nikolin Tu.V., Malygina I.Yu., Trushina E.B. Formation of the structure of Fe-Ni-Ti-C-B composites under self-propagating hightemperature synthesis // AIP Conference Proceedings. 2018. V. 2053. P. 020013. https://doi.org/10.1063/1.5084359
- Pugacheva N.B., Nikolin Yu.V., Senaeva E.I. The structure and wear resistance of a Ti-Ni-Fe-C-B composite // AIP Conference Proceedings. 2019. V. 2176. P. 020007. https://doi.org/10.1063/1.5135119
- 20. ГОСТ Р 8.748 2011 (ИСО 14577 1: 2002). Металлы и сплавы. Измерение твердости и других характеристик материалов при инструментальном индентировании. М.: Стандартинформ, 2012. 32 с.
- Petrzhik M.I., Levashov E.A. Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing // Crystallogr. Reports. 2007. V. 52. P. 966–974. https://doi.org/10.1134/S1063774507060065
- 22. Cheng Y.T., Cheng C.M. Relationships between hardness, elastic modulus, and the work of indentation // Appl. Phys. Lett. 1998. V. 73. P. 614–616. https://doi.org/10.1063/1.121873
- 23. *Mayrhofer P.H.*, *Mitterer C.*, *Musil J.* Structure-property relationships in single- and dual-phase nanocrystal-

- line hard coatings // Surf Coatings Technol. 2003. V. 174–175. P. 725–731. https://doi.org/10.1016/S0257-8972(03)00576-0
- 24. *Макаров А.В., Коршунов Л.Г., Малыгина И.Ю. Осинцева А.Л.* Влияние лазерной закалки и последующей термической обработки на структуру и износостойкость цементированной стали 20ХНЗА //ФММ. 2007. Т. 103. № 5. С. 536—548.
- 25. Makarov A.V., Gorkunov E.S., Kogan L.Kh., Malygina I.Yu., Osintseva A.L Eddy-current testing of the structure, hardness and abrasive wear resistance of laser-hardened and subsequently tempered high-strength cast iron // Diagnostics, Resource and Mechanics of

- materials and structures. 2015. № 6. P. 90–103. https://doi.org/10.17804/2410-9908.2015.6.090-103
- 26. Саврвй Р.А., Скорынина П.А., Макаров А.В., Осинцева А.Л. Влияние жидкостной цементации при пониженной температуре на микромеханические свойства метастабильной аустенитной стали // ФММ. 2020. Т. 121. № 10. С. 1109—1115.
- 27. *Пугачева Н.Б., Николин Ю.В., Быкова Т.М., Сенаева Е.И.* Структура и свойства СВС-композита системы Cu−Ti−C−B // ФММ. 2022. Т. 123. № 1. С. 47–54.
- https://doi.org/10.31857/S0015323022010107
- 28. *Хрущов М.М., Бабичев М.А.* Абразивное изнашивание. М.: Наука, 1970. 252 с.