_ СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ ____ И ДИФФУЗИЯ

УДК 669.1'74:536.6

КАЛОРИМЕТРИЧЕСКИЕ ИССЛЕДОВАНИЯ ФАЗОВЫХ ПРЕВРАЩЕНИЙ В СПЛАВАХ Fe–Ni

© 2022 г. Л. А. Сташкова^{*a*, *}, Н. В. Мушников^{*a*, *b*}, В. С. Гавико^{*a*, *b*}, А. В. Протасов^{*a*, *b*}

^аИнститут физики металлов им. М.Н. Михеева УрО РАН, ул. С. Ковалевской, 18, Екатеринбург, 620108 Россия ^bУральский Федеральный Университет им. Б.Н. Ельцина, ул. Мира, 19, Екатеринбург, 620002 Россия

> *e-mail: lshreder@imp.uran.ru Поступила в редакцию 16.06.2022 г. После доработки 05.08.2022 г. Принята к публикации 07.08.2022 г.

Методом дифференциальной сканирующей калориметрии (ДСК) проведено исследование мартенситного превращения в сплавах $Fe_{100-x}Ni_x$ с содержанием Ni от 3 до 25 ат. %. На температурной зависимости ДСК-сигнала наблюдаются δ -образные пики, связанные с α – γ -превращением, и для сплавов с $x \le 10$ дополнительная λ -образная аномалия, связанная с магнитным фазовым переходом. Построена концентрационная зависимость температуры мартенситного превращения, определены тепловые эффекты и рассчитана энергия активации перехода. Показано, что при концентрациях Ni больше 15 ат. % происходит концентрационное расслоение сплавов.

Ключевые слова: сплавы Fe–Ni, полиморфные превращения, дифференциальная сканирующая калориметрия, энергия активации

DOI: 10.31857/S001532302260068X

введение

История исследования сплавов системы Fe-Ni насчитывает уже более ста лет. Интерес к исследованиям этой системы, прежде всего, связан с широким техническим применением. Это инварные сплавы и сплавы с высокой магнитной проницаемостью, компоненты аустенитных конструкционных и мартенситностареющих сталей. Поэтому и на сеголняшний день материалы на основе Fe-Ni являются объектами изучения во многих работах [1–9]. Значительная часть работ последнего времени посвящена теоретическому анализу диаграммы фазовых равновесий системы Fe-Ni [10-13]. Границы существования ОЦК-а и ГЦК у-фаз, представленные в одном из ранних справочников [14], впоследствии были дополнены линией эвтектоидного распада при температуре около 400°С и существованием при низкой температуре соединений Fe₃Ni и FeNi₃ с ГЦКструктурой, упорядоченной по типу $L1_2$ [15, 16]. В последующих теоретических работах по диаграммам фазовых равновесий [17, 18] в низкотемпературной области присутствуют только конечные равновесные составы эвтектоидного распада: α-(Fe–Ni) с концентрацией Ni от 3 до 5% и FeNi₃.

В 1927 г. была опубликована экспериментальная фазовая диаграмма Fe—Ni, которая при концентрациях Ni до 25% отделяет от областей существования α-и γ-фаз область составов, возникающую в результате гистерезиса мартенситного превращения [19]. При этом в мартенситной фазе сохраняется состав высокотемпературной аустенитной у-фазы. Наличие мартенситного превращения позднее было подтверждено на основе данных рентгеноструктурного анализа [20, 21], дилатометрии [22], измерений электросопротивления [23], электронного зондового микроанализа [12]. Температуры начала прямого M_s и обратного A_s мартенситного превращения по данным разных авторов существенно различаются. Исследование γ → αпревращения при различных скоростях охлаждения от 5°С/мин [23] до 3.5 × 10⁵°С/с [24, 25] показало, что температура начала мартенситного превращения M_s понижается с увеличением скорости закалки. При этом при различных скоростях закалки формируется мартенсит, по крайней мере, двух различных типов: реечный с большим количеством лислокаший и пластинчатый с двойниковой структурой. Поскольку α-мартенсит наблюдается в широком интервале скоростей охлаждения и обнаружен даже в метеоритах [26], диаграмма мартенситных превращений более важна для практики, чем диаграмма фазовых равновесий.

Мартенситные превращения сопровождаются выделением или поглощением тепла. Тепловой эффект $\gamma \leftrightarrow \alpha$ -превращения был рассчитан в [23] на основе выражений для свободной энергии α - и γ -фаз для твердых растворов Fe–Ni и величин

Рис. 1. Кривые ДСК $Fe_{95}Ni_5$ в режиме термоциклирования при скорости сканирования $10^{\circ}C$ /мин. Заштрихованные области и численные значения теплот показывают тепловые эффекты $\gamma \leftrightarrow \alpha$ -превращения.

температур превращений A_s и M_s , определенных из измерений электросопротивления. Позднее тепловой эффект был теоретически определен с использованием базы данных SSOL, представленной Scientific Group Thermodata Europe [27] и многокомпонентной базы данных kMART (kinetic of MARtensitic Transformation) [28]. Результаты расчетов энтальпии превращения по данным разных авторов сильно различаются. Вместе с тем имеется всего лишь одна публикация 1959 г., где тепловые эффекты α – γ -превращения в Fe–Ni определены экспериментально [29].

Появление в последнее время аппаратуры дифференциальной сканирующей калориметрии (ДСК) высокого разрешения позволило in situ изучать механизмы фазовой трансформации при полиморфных превращениях в металлических сплавах в широком интервале температур (от -100 до 1600°С) и с достаточно высокой точностью рассчитывать тепловые эффекты при фазовых превращениях [30].

Цель настоящей работы — на основе калориметрических исследований сплавов $Fe_{100-x}Ni_x$ с содержанием Ni от 3 до 25 ат. % определить критические температуры и тепловой эффект полиморфного $\alpha \rightarrow \gamma u \gamma \rightarrow \alpha$ -превращения и температуру магнитного упорядочения, оценить энергию активации перехода и уточнить диаграмму мартенситного превращения Fe—Ni в области малых концентраций никеля.

МЕТОДИКА ЭКСПЕРИМЕНТА

Сплавы Fe_{100 – x}Ni_x (где x = 3, 5, 7, 10, 15, 20, 25 ат. %) были выплавлены из металлов чистотой не хуже 99.99% в алундовых тиглях методом индукционной плавки в атмосфере аргона. Для получения гомогенного состояния образцы отжигали в течение 50 ч при T = 1100°C в вакууме с последующей закалкой в воду. Для измерений были подготовлены образцы в виде дисков диаметром 5 мм и толщиной 1.2–1.5 мм, масса образцов с различным содержанием Ni составляла 120–150 мг.

Тепловые свойства исследуемых образцов определяли по кривым ДСК, полученным на калориметре STA 449 F3 Jupiter (Netzsch) в атмосфере аргона при нагреве и охлаждении в интервале температур 30-900°С со скоростями 5, 10 и 20°С/мин. Обработку кривых ДСК и определение величин тепловых эффектов проводили с использованием программного обеспечения NETZSCH Proteus[®] для термического анализа. Температурную шкалу калибровали по точкам плавления индия (156.5°С), висмута (271.3°С), цинка (419.4°С) и серебра (660.2°С). ДСК-эксперименты в режиме термоциклирования выполнены для образцов с содержанием Ni 5 и 15 ат. % в диапазоне температур от 30 до 900°C со скоростью сканирования 10°С/мин.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Как показали рентгеновские исследования, исходное состояние всех образов, закаленных от температуры 1100°С из области существования у-фазы, представляет собой ОЦК-фазу с уширенными линиями, что соответствует α-фазе мартенсита. Для того чтобы убедиться, что полученное состояние является равновесным, была проведена серия повторяющихся экспериментов при нагреве до 860°С и последующем охлаждении до 100°С. Кривые ДСК (поток тепла W в зависимости от температуры Т) для полиморфных переходов $\gamma \leftrightarrow \alpha$ в образце Fe₉₅Ni₅ в режиме термоциклирования при скорости нагрева и охлаждения образца 10°С/мин приведены на рис. 1. В ходе повторяющихся циклов нагрев — охлаждение форма кривых ДСК, положение пиков и величины тепловых

Рис. 2. Разложение эндотермического пика при нагреве образца Fe₉₅Ni₅ со скоростью 5°С/мин. Красная линия – эксперимент, черная линия – результат аппроксимации, штриховые линии – подпики. (а) Изменение сигнала ДСК при нагреве и охлаждении образца Fe₉₇Ni₃ со скоростью 10°С/мин (б).

эффектов практически не изменяются. Измеряемая абсолютная величина экзотермического эффекта при прямом $\gamma \rightarrow \alpha$ -переходе в 1.5 раза больше величины эндотермического эффекта при обратном $\alpha \rightarrow \gamma$ -превращении.

На рис. 2а показан эндотермический пик образца $Fe_{95}Ni_5$ при скорости нагрева 5°С/мин в увеличенном масштабе. Видно, что его можно представить, как суперпозицию двух пиков с минимумами при температурах 753 и 763°С. Соотношение парциальных площадей этих пиков равно ~0.1. Первый пик соответствует переходу α -фазы в парамагнитное состояние при температуре Кюри $T_C = 753°$ С, второй пик соответствует структурному $\alpha \rightarrow \gamma$ -превращению. При нагреве образца $Fe_{97}Ni_3$ (рис. 26) магнитный и структурный переходы протекают независимо друг от друга. Переход α -фазы в парамагнитное состояние наблюдается при $T_C = 760°$ С. При этой температуре на кривой DSC появляется λ -образный эндотер-

мический пик, характерный для фазовых переходов 2-рода. При дальнейшем повышении температуры в сплаве происходит $\alpha \rightarrow \gamma$ -превращение, о чем свидетельствует более интенсивный δ-образный эндотермический пик при 810°С. Из соотношения заштрихованных площадей пиков, соответствующих этим переходам видно, что тепловой эффект при магнитном фазовом переходе почти в 4 раза меньше по абсолютной величине теплового эффекта при $\alpha \rightarrow \gamma$ -превращении. При охлаждении образца Fe₉₇Ni₃ ферромагнитное упорядочение происходит в у-фазе при той же $T_{\rm C} = 760^{\circ}{\rm C}$. Оно не сопровождается аномалией на кривой ДСК, но отчетливо наблюдается при измерении магнитной восприимчивости [31]. Превращение $\gamma \to \alpha$ наблюдается при более низкой температуре, ему соответствует экзотермический максимум на кривой ДСК при 719°С. При охлаждении в интервале температур от 760 до 721°С уфаза оказывается ферромагнитной. Подробный

Рис. 3. Изменение сигнала ДСК при нагреве и охлаждении образца $Fe_{90}Ni_{10}$ с разными скоростями сканирования: 5, 10 и $20^{\circ}C/мин$.

анализ кривых ДСК образцов $Fe_{93}Ni_7$ и $Fe_{90}Ni_{10}$, снятых при скорости сканирования $10^{\circ}C/мин$, также позволяет выделить два подпика с температурами 728 и 700°С для магнитного перехода и 731 и 695°С для структурного перехода, для сплава с x = 7 и x = 10 соответственно. Следовательно, при концентрациях никеля до 10 ат. % магнитное разупорядочение и структурное $\alpha \rightarrow \gamma$ превращение протекают независимо друг от друга.

В реальных условиях нагрева и охлаждения превращение совершается не при постоянной температуре, а в некотором интервале температур, который оказывается тем шире, чем больше скорость сканирования. Для всех составов были проведены измерения ДСК-сигнала при трех скоростях сканирования: 5, 10 и 20°С/мин. На рис. З приведены такие кривые для образца Fe₉₀Ni₁₀. С увеличением скорости нагрева наблюдается небольшое смещение эндотермического δ -пика в область более высоких температур, а экзотермического – в область более низких температур. Для фазовых переходов 1-рода, в частности для полиморфного превращения, характерно наличие теплового гистерезиса. Из рис. 3 видно, что существует значительная разница между температурами экстремумов при нагреве и охлаждении, причем эта разница увеличивается с увеличением скорости сканирования. Наблюдаемый гистерезис может быть связан с гистерезисом фазового перехода T_{tr} и с тепловой инерционностью прибора, т.е. методической ошибкой ΔT , поскольку температура экстремума T_{extr} на кривых ДСК всегда отличается от температуры перехода. Обусловлено это наличием термического сопротивления R_{t} , которое приводит к термическому запаздыванию – отставанию температуры образца от температуры нагревателя на величину $\Delta T =$

= $T_{\text{extr}} - T_{\text{tr}}$. Чтобы устранить эту методическую ошибку и выделить гистерезис фазового перехода, необходимо воспользоваться следующей процедурой экстраполяции. Из работы [32] следует, что ошибка ΔT пропорциональна скорости сканирования V, удельной теплоте перехода ΔH , массе образца m и термическому сопротивлению R_i :

$$\Delta T = (2m\Delta HR_V)^{1/2}.$$
 (1)

Из этого соотношения видно, что при постоянном *R*, для образцов одинаковой массы ожидается линейная зависимость $\Delta T(V^{1/2})$. При $V \rightarrow 0$ разность $\Delta T \rightarrow 0$ и $T_{\text{extr}} \rightarrow T_{\text{tr}}$. Следовательно, экстраполяция линейной зависимости T_{extr} ($V^{1/2}$) к бесконечно малой скорости нагревания дает значение $T_{\rm tr}$, а различие между истинными температурами, полученными при нагреве и охлаждении, дает $\Delta T_{\rm tr}$ – истинный гистерезис перехода. Для всех составов и скоростей сканирования были построены зависимости $T_{\text{extr}}(V^{1/2})$. На рис. 4 для примера приведены такие зависимости для образцов Fe₉₃Ni₇ и Fe₉₀Ni₁₀. Экспериментальные температуры экстремумов в координатах $T - V^{1/2}$ ложатся на прямые, а экстраполяция их к нулевой скорости нагрева позволяет определить истинные температуры экстремумов.

Критические температуры полиморфного превращения, т.е. температуры начала и конца $\gamma \rightarrow \alpha$ и $\alpha \rightarrow \gamma$ -превращений, определенные по методу двух касательных, приведены в табл. 1.

Результаты измерений и расчетов обобщены на диаграмме полиморфного превращения (рис. 5). На вставке к рис. 5 показана зависимость истинного гистерезиса перехода ΔT_{tr} от содержания Ni в образце. Величина гистерезиса увеличивается от 75°C в образце Fe₉₇Ni₃ до 310°C в образце Fe₈₅Ni₁₅.

Рис. 4. Зависимости T_{extr} для образцов $\text{Fe}_{93}\text{Ni}_7$ (*1* и *3*) и $\text{Fe}_{90}\text{Ni}_{10}$ (*2* и *4*) от скорости сканирования ($V^{1/2}$).

Такой значительный гистерезис характерен для фазовых переходов 1-рода. При нагреве α-фаза теряет устойчивость и переходит в аустенитную γ-фазу на линии, обозначенной А, точки которой соот-

Таблица 1. Температуры начала M_s и конца M_f прямого мартенситного превращения, начала A_s и конца A_f обратного мартенситного превращения, а также величины $\Delta M = M_s - M_f$ и $\Delta A = A_f - A_s$

<i>х</i> , ат. %	Температура, °С					
	M _s	$M_{ m f}$	ΔM	$A_{\rm s}$	$A_{ m f}$	ΔA
3	734	702	32	798	818	20
5	673	615	58	748	771	23
7	621	558	63	713	745	32
10	536	453	83	673	708	35
15	349	251	98	615	653	38
20	202	116	86	557	602	45
25				469	535	66

ветствуют экстремумам эндотермических пиков на кривых ДСК. При охлаждении у-фаза переходит в α-фазу на линии, обозначенной М, точки которой соответствуют максимумам экзотермических пиков. Данные по температуре превращения для чистого железа взяты из [33]. Черными ромбами на рис. 5 обозначена температура Кюри, определенная из кривых ДСК для образцов с x == 3, 5, 7 и 10 ат. %. Эти значения T_C хорошо согласуются с данными, полученными нами ранее [31] из измерений магнитной восприимчивости. Температуры $\alpha \rightarrow \gamma$ и $\gamma \rightarrow \alpha$ -превращений линейно уменьшаются с увеличением концентрации Ni в образцах с концентрацией никеля от 3 до 15 ат. %, при больших концентрациях зависимость перестает быть линейной, что может быть связано с концентрационным расслоением в образцах с x = 20 и 25 на области, обогащенные железом или никелем [31].

Следует отметить, что данная диаграмма полиморфного превращения является метастабильной.

Равновесное фазовое состояние сплавов $Fe_{100-x}Ni_x$ (x < 25), соответствующее расчетным диаграммам фазовых равновесий, представленным, например, в [12] и [13], как правило, не реализуется в экспериментальных условиях быстрого охлаждения, поскольку диффузионные процессы в сплавах Fe–Ni при температурах ниже 500°C крайне замедлены. Поэтому, по нашему мнению, в справочниках по фазовым диаграммам, наряду с равновесной диаграммой сплавов Fe–Ni, должна присутствовать диаграмма мартенситного превращения, приведенная на рис. 5.

На рис. 6 приведена зависимость величины теплового эффекта ΔH фазового перехода $\alpha \leftrightarrow \gamma$, полученная путем вычитания базовой линии из площади под пиком на кривой ДСК, от концентрации Ni в образце. Для удобства сравнения на графике приведена обратная величина эндотермического теплового эффекта при нагревании. Оценка величины теплового эффекта полиморфного превращения для образцов с x = 3, 5, 7, 10проводилась с учетом вклада от магнитного перехода в площадь под экстремумом. В интервале концентраций никеля от 5 до 15 ат. % тепловой эффект $\gamma \rightarrow \alpha$ -перехода в 1.5 раза больше теплоты $\alpha \rightarrow \gamma$ -перехода. Определяемый методом ДСК тепловой эффект полиморфного превращения увеличивается при увеличении скорости сканирования по температуре. Для расчета движущей силы мартенситного преврашения Ghosh и Olson разработали многокомпонентную базу данных kMART (kinetics of MARtensitic Transformation) [28]. Данная база позволяет рассчитывать температуру начала и тепловой эффект $\gamma \leftrightarrow \alpha$ -полиморфного превращения. Расчетные данные для сплавов Fe-Ni хорошо согласуются с полученными нами экспериментальными значениями.

Рис. 5. Диаграмма полиморфного превращения сплавов Fe–Ni по данным калориметрических измерений с различными скоростями сканирования, а также рассчитанные истинные температуры переходов. На вставке показана зависимость истинного гистерезиса перехода $\Delta T_{\rm tr}$ от содержания Ni.

По данным изменения температуры экстремумов при изменении скорости нагревания (см. рис. 3) можно оценить энергию активации *E*_a полиморфного превращения по методу Киссинджера [34]:

1

$$n\left(V/T_{\max}^2\right) = -E_a/RT_{\max} + \text{const},$$
 (2)

где V – скорость нагревания, R – газовая постоянная, *T*_{max} – температура пика на кривой ДСК. Зависимость Киссинджера $\ln \left(V / T_{\text{max}}^2 \right)$ от $1 / T_{\text{max}}$ представляет собой прямую линию (рис. 7), а энергия активации вычисляется исходя из тангенса угла наклона этой прямой (рис. 8). Такая оценка возможна для программ линейного нагрева в сплавах с концентрацией никеля от 3 до 15 ат. %, в которых при увеличении скорости сканирования наблюдается смещение температуры эндотермического минимума в область более высоких температур. При концентрациях Ni больше 15 ат. % зависимость перестает быть линейной, по-видимому, вследствие расслоения твердого раствора на области, обогащенные железом и/или никелем, и энергия активации по методу Киссинджера не может быть определена.

Эффекты концентрационного расслоения в сплавах Fe–Ni наблюдались нами ранее при исследовании температурных зависимостей намагниченности [31]. Высокие значения E_a являются следствием того, что скорость нагрева слабо влияет на температуру экстремума при полиморфном превращении, что характерно для процессов, в которых преобладают бездиффузионные механизмы фазовой трансформации.

На рис. 8 можно выделить три концентрационные области в Fe–Ni сплавах. В области малых (3 ат. %) и больших (15 ат. %) концентраций *х* энергия активации достигает значений

Рис. 6. Зависимость абсолютной величины теплового эффекта фазового перехода от концентрации Ni в образцах, сканированных со скоростями 5 и 10°С/мин.

Рис. 7. Зависимость Киссинджера для сплавов с содержанием Ni – 3, 7 и 15 ат. %.

Рис. 8. Энергия активации фазового $\alpha \rightarrow \gamma$ перехода в сплавах Fe_{100 - x}Ni_x (x ≤ 15).

3650 кДж/моль. При промежуточных концентрациях от 5 до 10 ат. % энергия активации имеет относительно низкие значения, 1500–2000 кДж/моль, а при больших концентрациях снова возрастает. Согласно существующим представлениям, по мере увеличения содержания никеля механизм реализации полиморфного превращения изменяется от нормального (до 3–5 ат. % Ni), затем массивного (или бейнитного, до 10 ат. %), затем бездиффузионного мартенситного. По-видимому, при бейнитном превращении диффузионные процессы начинают более активно участвовать в фазовой трансформации, что соответствует наиболее низким значениям энергии активации.

ЗАКЛЮЧЕНИЕ

Методом дифференциальной сканирующей калориметрии исследованы тепловые эффекты в сплавах $Fe_{100 - x}Ni_x$ ($x \le 25$). Показано, что структурное $\gamma \rightarrow \alpha$ -превращение при охлаждении и об-

ратное $\alpha \rightarrow \gamma$ -превращение при нагреве сопровождаются δ -образными пиками тепловыделения, характерными для фазовых переходов первого рода. Определены тепловые эффекты и температуры мартенситных превращений. С ростом содержания Ni гистерезис мартенситного превращения увеличивается.

В сплавах с $x \leq 10$ обнаружены дополнительные λ -образные аномалии, температуры которых совпадают с температурами Кюри, определенными при исследовании магнитной восприимчивости сплавов. Превращение $\alpha \rightarrow \gamma$ при нагреве этих сплавов, как и в чистом Fe, происходит в парамагнитной фазе. В сплаве Fe₉₇Ni₃ магнитный и структурный переходы происходят независимо друг от друга, мартенситное $\gamma \rightarrow \alpha$ -превращение при охлаждении происходит в ферромагнитной фазе.

Рассчитана величина энергии активации методом Киссинджера. Высокие значения энергии активации свидетельствуют о протекании в системе $Fe_{100-x}Ni_x$ ($x \le 15$) процессов, в которых преобладают бездиффузионные механизмы фазовой трансформации.

При концентрациях Ni больше 15 ат. % зависимость перестает быть линейной, по-видимому, вследствие расслоения твердого раствора на зоны, обогащенные железом и/или никелем.

Работа выполнена в рамках государственного задания Минобрнауки России (Шифр "Магнит", № 122021000034-9).

СПИСОК ЛИТЕРАТУРЫ

- Tian L.Y., Eriksson O., Vitos L. Pressure effect on the order-disorder transformation in L1₀ FeNi // Sci. Rep. 2020. V. 10. P. 1–7.
- Chen J., Li P., Lin E.E. A molecular dynamics study on the mechanical properties of Fe-Ni alloy nanowires and their temperature dependence // RSC Adv. 2020. V. 10. P. 40084–40091.

КАЛОРИМЕТРИЧЕСКИЕ ИССЛЕДОВАНИЯ ФАЗОВЫХ ПРЕВРАЩЕНИЙ

originated from Bain strain and its effect on hardness in Fe–Ni martensite // Acta Mater. 2020. V. 196. P. 660–668.

3. Srakaew N., Jantaratana P., Nipakul P., Sirisathitkul C.

2017. V. 435. P. 201-205.

Structural and magnetic properties of $Fe_x Ni_{100-x}$ alloys

synthesized using Al as a reducing metal // JMMM.

- Poteryaev A.I., Skorikov N.A., Anisimov V.I., Korotin M.A. Magnetic properties of Fe_{1-x}Ni_x alloy from CPA + DMFT perspectives // Phys. Rev. B. 2016. V. 93. P. 1–7.
- Tian L.Y., Gutfleisch O., Eriksson O., Vitos L. Alloying effect on the order–disorder transformation in tetragonal FeNi // Sci. Rep. 2021. V. 11. P. 1–9.
- Сагарадзе В.В., Катаева Н.В., Завалишин В.А., Шабашов В.А., Козлов К.А., Клюкина М.Ф. Условия нарушения концентрационной однородности Fe–Niинваров // ФММ. 2021. Т. 122. № 10. С. 1042–1048.
- Кащенко М.П., Кащенко Н.М., Чащина В.Г. Динамическая теория влияния сильного магнитного поля на мартенситное превращение в сталях при размерах зерна аустенита вблизи критического значения // ФММ. 2021. Т. 122. № 1. С. 53–60.
- Золотаревский И.В., Щетинина М.О., Золотаревский А.И. Мартенситное превращение в сильных магнитных полях в сплавах Fe–Ni, легированных хромом, марганцем и углеродом // ФММ. 2021. Т. 122. № 2. С. 138–144.
- Cacciamani G., Dinsdale A., Palumbo M., Pasturel A. The Fe–Ni system: Thermodynamic modelling assisted by atomistic calculations // Intermetallics. 2010. V. 18. P. 1148–1162.
- Wang Y., Li K., Soisson F., Becquart C.S. Combining DFT and CALPHAD for the development of on-lattice interaction models: The case of Fe–Ni system // Phys. Rev. Mater. 2020. V. 4. P. 113801-1–13.
- Ohnuma I., Shimenouchi S., Omori T., Ishida K., Kainuma R. Experimental determination and thermodynamic evaluation of low-temperature phase equilibria in the Fe–Ni binary system // Calphad. 2019. V. 67. P. 101677-1-9.
- Okamoto H. Supplemental Literature Review of Binary Phase Diagrams: Au–La, Ce–Pt, Co–Pt, Cr–S, Cu– Sb, Fe–Ni, Lu–Pd, Si–Te, Ta–V, and V–Zn // J. Phase Equilibria Diffus. 2019. V. 40. P. 743–756.
- Hansen M., Anderko K. Constitution of Binary Alloys // McGraw-Hill. 1958. 1305 p.
- Chamberod A., Laugier J., Penisson J.M. Electron irradiation effects on iron-nickel invar alloys // J. Magn. Magn. Mater. 1979. V. 10. P. 139–144.
- Kubaschewski O. Iron binary phase diagram // Springer. N.Y. 1982. P. 73–78.
- Massalski T.B., Okamoto H., Subramanian P.R., Kacprzak L. Binary Alloy Phase Diagrams, 2 Edition // ASM International. Materials Park, OH. 1990.

- Swartzendruber L.J., Itkin V.P., Alcock C.B. The Fe-Ni (Iron-Nickel) system // J. Phase Equilibria. 1991. V. 12. № 3. P. 288–312.
- Honda K., Miura S. On the determination of the heterogeneous field in the system Fe–Ni // Sci. Rep. Tohoku Imp. Univ. 1927. V. 16. P. 745–753.
- Owen E.A., Sully A.H. The Equilibrium Diagram of Iron–Nickel Alloys // Philosophical Magazine. 1939. V. 27. P. 634–636.
- Owen E.A., Liu Y.H. Further X-Ray Study of the Equilibrium Diagram of the Iron-Nickel Alloy // J. Iron Steel Inst. 1949. V. 123. P. 132–136.
- Jones F.N., Pumphrey W.I. Free energy and metastable states in the iron-nickel and iron-manganese systems // J. Iron Steel Inst. 1949. V. 163. P. 121–131.
- Kaufman L., Morris C. The Martensitic Transformation in the Iron-Nickel System // JOM. 1956. V. 8. № 10. P. 1393–1401.
- Wilson E.A. Gamma alpha Transformation in Fe, Fe-Ni and Fe-Cr Alloys // Metal Sci. 1984. V. 18. № 10. P. 471–484.
- Mirzayev D.A., Morozov O.P., Shteynberg M.M. The γ→α transformation in iron and its alloys // Phys. Met. Metallogr. 1973. V. 6. P. 99–105.
- Reuter K.B., Williams D.B., Goldstein J.I. Determination of the Fe-Ni Phase Diagram below 400°C // Metall. Trans. A, 1989. V. 20. № 4. P. 719–725.
- 27. *Dinsdale A.T.* SGTE data for pure elements // Calphad. 1991. V. 15. № 4. P. 317–425.
- Ghosh G., Olson G.B. Computational Thermodynamics and the Kinetics of Martensitic Transformation // J. Phase Equilibria. 2001. V. 22. № 3. P. 199–207.
- Scheil E., Normann W. Investigation of the thermodynamics of the α-γ transformation in iron–nickel alloy // Arch. Eisenhuttenwes. 1959. V. 30. № 12. P. 751–754.
- Спивак Л.В., Щепина Н.Е. Калориметрические эффекты при структурно-фазовых превращениях в металлах и сплавах // ФММ. 2020. Т. 121. № 10. С. 1059–1087.
- Mushnikov N.V., Popov A.G., Gaviko V.S., Protasov, Kleinerman N.M., Golovnya O.A., Naumov S.P. Peculiarities of phase diagram of Fe–Ni system at Ni concentrations 0–20 at % // Acta materialia (принята в печать).
- Illers K.H. Die Ermittlung Des Schmelzpunktes von Kristallinen Polymeren Mittels Wärmeflusskalorimetrie (DSC) // Europ. Polymer J. 1974. V. 10. P. 911– 916.
- 33. Спивак Л.В., Щепина Н.Е. Особенности полиморфных превращений в железе и цирконии // ЖТФ. 2020. Т. 90. № 7. С. 1145–1150.
- Kissinger H.E. Reaction Kinetics in Differential Thermal Analysis // Analytical Chemistry. 1957. V. 29. № 11. P. 1702–1706.