ТЕОРИЯ МЕТАЛЛОВ

УДК 536.421.4

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ПРОЦЕССОВ ЗАРОДЫШЕОБРАЗОВАНИЯ И КРИСТАЛЛИЗАЦИИ В МОДИФИЦИРОВАННОМ РАСПЛАВЕ

© 2022 г. В. Н. Попов*

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, ул. Институтская, 4/1, Новосибирск, 630090 Россия *e-mail: popov@itam.nsc.ru Поступила в редакцию 02.12.2020 г. После доработки 21.01.2021 г. Принята к публикации 24.01.2022 г.

Проведено численное моделирование затвердевания модифицированного расплава алюминия (Al–Cu) в цилиндрическом тигле. Используемая модель описывает термодинамические процессы, гетерогенное зародышеобразование и кристаллизацию α - и β -компонент расплава. Зарождение кристаллической фазы происходит на поверхности сферических частиц при охлаждении расплава ниже температуры ликвидуса, которая меняется в зависимости от концентрации растворенного легирующего материала. Показана связь между величиной переохлаждения и размером зародышей, образующихся на поверхности наноразмерных частиц. При охлаждении расплава от температуры ликвидуса до температуры эвтектики происходит кристаллизация α -компоненты сплава, а при дальнейшем охлаждении – эвтектическая кристаллизация β -компоненты. Определено, что условия зародышеобразования, темп кристаллизации и время затвердевания существенно различаются внутри расплава. Объем твердой фазы, сформировавшейся вокруг зародыша, характеризует размер зерен в затвердевшем сплаве. Достоверность предложенной модели подтверждена сравнением результатов численного расчета с данными физического эксперимента.

Ключевые слова: численное моделирование, бинарный сплав, модифицирование, наноразмерные сферические частицы, гетерогенное зародышеобразование, кристаллизация **DOI:** 10.31857/S0015323022050126

введение

Сплавы алюминия, обладая отличными физическими и механическими свойствами, широко применяются в различных отраслях промышленности. Однако при получении отливок алюминия актуальны проблемы уменьшения дефектности и повышения прочности материала. Одним из способов решения этих проблем является измельчение структуры затвердевшего металла при добавлении в расплав наноразмерных тугоплавких частиц. На частицах, в зависимости от их размеров, формы и смачиваемости поверхности, возможно гетерогенное зародышеобразование. В качестве модификаторов используются предварительно подготовленные частицы TiN, TiC и др., которые при массовой доле в расплаве не более 0.1%, способствуют увеличению количества центров кристаллизации [1-4].

В настоящее время существует значительное количество публикаций, посвященных исследованиям влияния модифицирования тугоплавкими частицами расплавов алюминия. Экспериментально подтверждено уменьшение среднего размера зерна в слитках и улучшение прочностных свойств затвердевшего металла [1—4]. Попытки математического описания процессов гетерогенного зародышеобразования осуществляются уже длительное время [5—16], однако широкого распространения эти модели при исследовании кристаллизации пока не получили.

Вместе с тем в [17] предложена модель, сочетающая подход популяционной динамики с методом клеточных автоматов для исследования формирования микроструктуры в модифицированных алюминиевых сплавах. Модель описывает кинетику растворения инокулированных частиц, зародышеобразование и последующий рост кристаллов. Результаты численного моделирования сравниваются с данными, полученными в ходе экспериментальных исследований затвердевания сплава Al–Cu, модифицированного наноразмерными частицами TiC. Однако не все результаты согласуются с общепринятой теорией и практикой. Авторы исследовали кристал-

Рис. 1. Схема сечения цилиндрического тигля (*1*) с расплавом (*2*), *3* – точки контроля температуры.

лизацию при массовой доле частиц в расплаве от 0.05 до 1.2%. Тогда как как результаты исследований свидетельствуют, что при массовой доле частиц в расплаве более 0.1% происходит их коагуляция и желаемый результат модифицирования не достигается [18].

В работах [19, 20] рассмотрена математическая модель затвердевания металла, модифицированного тугоплавкими наноразмерными частицами, и описаны процессы гетерогенного зародышеобразования и кристаллизации бинарных сплавов на основе алюминия с диаграммами состояний эвтектического типа. По результатам численного моделирования описаны особенности кинетики гетерогенного зародышеобразования и кристаллизации расплава в цилиндрическом тигле. Получено удовлетворительное совпадение результатов численных расчетов с данными экспериментальных исследований. Процесс зародышеобразования рассматривался в предположении, что наноразмерные частицы имеют форму куба с плоскими поверхностями. Однако, очевидно, что частицы после предварительной обработки имеют сложную форму, а их поверхность может быть плоской только частично. Поэтому полезно рассмотреть возможность гетерогенного зародышеобразования на частицах сферической формы, часто используемых в моделях различных авторов [8, 11-16]. Это позволит уточнить наше представление о процессах гетерогенного зародышеобразования особенно при использовании новой информации, полученной в ходе экспериментов.

В настоящей работе рассматриваются процессы при затвердевании двухкомпонентного сплава алюминия Al–1% Си в чугунном тигле. Расплавленный металл модифицирован плакированными алюминием тугоплавкими наноразмерными сферическими частицами. Исходные параметры задачи определены из имеющихся в литературе условий экспериментов и полученных результатов [17]. Сформулирована математическая модель, описывающая термодинамические явления в расплавленном металле и тигле, а также гетерогенное зародышеобразование и кристаллизацию α-компоненты и В-компоненты бинарного расплава. Определена связь между величиной переохлаждения и размером зародышей, образующихся на поверхности наноразмерных частиц. В ходе численного моделирования определена кинетика роста твердой фазы в затвердевающем расплаве. Адекватность модели кристаллизации при наличии ультрадисперсных сферических частиц в сплаве алюминия подтверждается удовлетворительным совпадением результатов расчетов и имеющихся экспериментальных данных.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ И АЛГОРИТМ РЕАЛИЗАЦИИ

Используя данные об эксперименте, описанном в [17], рассматривается затвердевание алюминиевого сплава Al-Cu в чугунном цилиндрическом тигле. Высота отливки H, радиус – R_{in} , толщина донной части тигля — $h_{\rm b}$, а боковой стенки – *h*_w (схема на рис. 1). Расплав модифицирован тугоплавкими наноразмерными сферическими частицами радиусом R_p много меньше H и R_{in} , а их массовое содержание $m_{\rm p}$ составляет 0.05%. Между внешними поверхностями тигля, свободной поверхностью расплава и окружающей средой происходит теплообмен. На поверхностях контакта расплав-тигель учитывается термическое сопротивление $R_{\rm h}$, определенное по результатам экспериментов [21]. Температуры расплава и тигля в начальный момент одинаковые и выше температуры кристаллизации металла. В центральной части расплава размещена термопара, фиксирующая температуру. Теплофизические параметры металла в жидком и твердом состояниях постоянные и равны средним значениям в рассматриваемых интервалах температур.

С учетом принятых допущений теплоперенос в сплаве описывается уравнением в цилиндрической системе координат (r, z):

$$c_{e}\rho_{e}\frac{\partial T}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}r\lambda_{e}\frac{\partial T}{\partial r} + \frac{\partial}{\partial z}\lambda_{e}\frac{\partial T}{\partial z} + \rho_{2}\kappa_{0}\frac{\partial f_{s}}{\partial t}; \qquad (1)$$
$$0 \le r \le R_{in}, \ h_{b} \le z \le h_{b} + H,$$

где локальное значение коэффициентов $c_e = c_1$, $\rho_e = \rho_1, \lambda_e = \lambda_1 \operatorname{при} f_{\mathrm{s}} = 0, c_e = c_2, \rho_e = \rho_2, \lambda_e = \lambda_2 \operatorname{прu}$ $f_{\mathrm{s}} = 1$ и $c_e = c_1(1 - f_{\mathrm{s}}) + c_2 f_{\mathrm{s}}, \rho_e = \rho_1(1 - f_{\mathrm{s}}) + \rho_2 f_{\mathrm{s}}, \lambda_e =$ $= \lambda_1(1 - f_{\mathrm{s}}) + \lambda_2 f_{\mathrm{s}}$ в случае $0 < f_{\mathrm{s}} < 1$. Здесь $f_{\mathrm{s}} -$ объемная доля твердой фазы в расплаве, λ, c, ρ – теп-

Рис. 2. Схемы образования зародышей кристаллов на поверхности частицы при $R_p > R_s$ (а) и $R_p < R_s$ (б) 1 – жидкая фаза, 2 – зародыш, 3 – частица.

лопроводность, теплоемкость и плотность соответственно, κ_0 – удельная теплота плавления, индексы физических параметров для жидкой (i = 1) и твердой (i = 2) фаз материала сплава. Для материала тигля i = 3.

Изменение температуры в тигле описывается уравнением:

$$c_{3}\rho_{3}\frac{\partial T}{\partial t} = \lambda_{3}\left(\frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial T}{\partial r} + \frac{\partial^{2}T}{\partial z^{2}}\right).$$
 (2)

Условия симметрии в расплаве и тигле:

 $r(\partial T/\partial r) = 0, \quad r = 0, \quad 0 \le z \le h_{\rm b} + H.$

Условие теплообмена между свободной поверхностью расплава и окружающей средой:

$$\lambda_e(\partial T/\partial z) = \alpha_1(T_c - T), \ 0 \le r \le R_{\rm in}, \ z = h_{\rm b} + H;$$

граничные условия на боковой поверхности тигля:

$$\lambda_{3}(\partial T/\partial r) = \alpha_{2}(T_{c} - T),$$

$$r = R_{in} + h_{w}, \ 0 \le z \le h_{b} + H$$

на его дне:

$$\begin{split} \lambda_3(\partial T/\partial z) &= \alpha_2(T-T_{\rm c}), \\ 0 &\leq r \leq R_{\rm in} + h_{\rm w}, \ z = 0, \end{split}$$

на верхней поверхности боковой стенки:

$$\lambda_{3}(\partial T/\partial z) = \alpha_{2}(T_{c} - T),$$

$$R_{in} \leq r \leq R_{in} + h_{w}, \quad z = h_{b} + H$$

α₁, α₂ – коэффициенты теплоотдачи, *T*_c – температура окружающей среды.

Условия на поверхностях соприкосновения металла с тиглем:

$$\begin{split} \lambda_{e} \left(\partial T / \partial r \right) |_{R_{\text{in}^{-}}} &= \lambda_{3} \left(\partial T / \partial r \right) |_{R_{\text{in}^{+}}} = \\ &= \left(T |_{R_{\text{in}^{+}}} - T |_{R_{\text{in}^{-}}} \right) / R_{h} \,, \\ r &= R_{\text{in}}, \quad h_{\text{b}} \leq z \leq h_{\text{b}} + H, \\ \lambda_{e} \left(\partial T / \partial z \right) |_{h_{\text{b}^{+}}} &= \lambda_{3} \left(\partial T / \partial z \right) |_{h_{\text{b}^{-}}} = \\ &= \left(T |_{h_{\text{b}^{+}}} - T |_{h_{\text{b}^{-}}} \right) / R_{h} \,, \\ 0 \leq r \leq R_{\text{in}}, \quad z = h_{\text{b}}. \end{split}$$

Начальное значение (t = 0) температуры в расплаве и тигле

$$T = T_0$$
.

Рассматриваемый расплав содержит плакированные алюминием тугоплавкие наноразмерные частицы. В процессе затвердевания такого расплава зарождение кристаллов происходит на поверхности частиц, так как при этом затрачивается меньше энергии, чем при гомогенном зародышеобразовании [11, 15]. Считаем, что на смачиваемой поверхности наноразмерной сферической частицы возможно образование зародыша. Поверхность зародыша, граничащую с расплавом, также полагаем поверхностью части сферы. Зародыш может быть как меньше, так и больше частицы. Рисунок 2 иллюстрирует расположение зародышей кристалла на поверхности сферической подложки.

Рассмотрим образование зародыша кристаллической фазы на твердой сферической частице, находящейся в переохлажденном расплаве. Пусть $R_{\rm p}$ – радиус частицы с центром в точке 0, $R_{\rm s}$ – радиус зародыша с центром в точке 0' на поверхности частицы, θ — краевой угол смачивания на сферической подложке (частице) в точке *B*, σ_{12} , σ_{13} , σ_{23} — поверхностные натяжения границ раздела жидкость—зародыш, жидкость подложка, зародыш—подложка. Тогда изменение свободной энергии системы при образовании равновесного зародыша в соответствии с уравнением Гиббса согласно [12, 13] будет определяться соотношением:

$$\Delta G = -\frac{\kappa_0 \rho_1 \Delta T}{T_{l0}} V_2 + \sigma_{12} S_{12} + (\sigma_{23} - \sigma_{13}) S_{23} + \tau (2\pi R_p \sin \gamma),$$

где V_2 — объем зародыша, S_{12} — площадь поверхности раздела жидкость—зародыш, S_{23} — площадь поверхности раздела зародыш—подложка. $2\pi R_{\rm p} \sin \gamma$ — длина линии контакта и τ — линейная энергия поверхностного натяжения на границе между жидкой фазой, зародышем и частицей. Радиус *AB* линии контакта определяется соотношением $R_{\rm p} \sin \gamma$, где значение γ следует из:

$$tg\gamma = R_s \sin\theta / (R_p - R_s \cos\theta), \quad R_p > R_s,$$

$$tg\gamma = -R_s \sin\theta / (R_p - R_s \cos\theta), \quad R_p < R_s,$$

 T_{l0} — исходная температура ликвидуса сплава, $\Delta T = T_l - T$ — переохлаждение, T_l — текущая температура ликвидуса.

Условие равновесия вдоль касательной в точке *В* к поверхности частицы с учетом влияния линейного натяжения периметра смачивания [11, 13]

$$\sigma_{13} - \sigma_{23} = \sigma_{12}\cos\theta + \sigma_{\tau}\cos\gamma, \qquad (3)$$

где $\sigma_{\tau} = \tau / (R_p \sin \gamma)$ — линейное натяжение линии трехфазного контакта. В результате уравнение (3) приводится к

$$\sigma_{13} - \sigma_{23} = \sigma_{12} \cos \theta + \tau / (R_p \mathrm{tg} \gamma).$$

Линейная энергия поверхностного натяжения описывается соотношением

$$\tau = \frac{a_0}{\sin\theta} \sigma_{12} (1 + \cos\theta) [2\cos\theta - \sqrt{2(1 + \cos\theta)}], \quad (4)$$

где a_0 — радиус сферы молекулярного действия. Из (4) следует, что $\tau < 0$ при $0^\circ < \theta < 180^\circ$.

Примем во внимание, что $\sigma_{12} = \sigma_{12}^{\infty} (1 - 2\delta/R_s)$,

 δ — параметр Толмена [22], σ_{12}^{∞} — поверхностное натяжение на плоской поверхности раздела зародыш—расплав для алюминия. Тогда используя выражение

$$\Delta G = -\frac{\kappa_0 \rho_1 \Delta T}{T_{l0}} V_2 + \sigma_{12} (S_{12} - S_{23} \cos \theta) + \tau \left(2\pi R_p \sin \gamma - \frac{S_{23} \cos \gamma}{R_p \sin \gamma} \right),$$
(5)

описывающее изменение свободной энергии системы при образовании зародыша, можно вычислить критический размер зародыша R^* и критическую энергию Гиббса ΔG^* при различных значениях переохлаждения ΔT . При выполнении условия $\tau[2\pi R_p \sin \gamma - S_{23} \cos \gamma/(R_p \sin \gamma)] < 0$ для появления зародыша критического размера затрачивается меньше энергии.

Скорость образования зародышей кристаллов α-компоненты сплава (Al) согласно [7] определяется соотношением:

$$I = K \exp\left\{-\frac{\Delta G^*}{k_{\rm B}T}\right\},\tag{6}$$

где $k_{\rm B}$ — константа Больцмана, K — кинетический параметр, зависящий в общем случае от поверхностного натяжения, размеров модифицирующих частиц и числа атомов на их поверхности, T — температура (K).

Выражение для кинетического параметра K в формуле (6), согласно [7] представим в виде:

$$K = n_s \frac{k_{\rm B}T}{h} \exp\{-E/(k_{\rm B}T)\},\$$

где $n_s = n_p \left(4\pi R_p^2 / l_a^2\right) -$ число атомов металла соприкасающихся с поверхностью наноразмерных частиц, $n_p = m_p \rho_1 / \left[100 \rho_p \left(4\pi R_p^3 / 3\right)\right] -$ число наноразмерных частиц в единице объема расплава, ρ_p плотность вещества частицы, l_a , – межатомное расстояние в расплаве, h – постоянная Планка, E – энергия активации процесса диффузии в расплаве.

Число кристаллов α -компоненты сплава, образовавшихся при переохлаждении жидкого металла после времени t_{l0} , когда температура достигла значения T_{l0} :

$$N(r, z, t) = \int_{t_{10}}^{t} I(r, z, \zeta) [1 - f_{s}(r, z, \zeta)] d\zeta,$$

где $f_{\rm s}$ — объемная доля растущей твердой фазы, описываемая подобно [23]:

$$f_{s}(r, z, t) = 1 - \exp\{-NV_{s}\},\$$

$$V_{s}(r, z, t) = (4\pi/3)(R^{3} - R_{p}^{3}),\$$

 $V_{\rm s}$ — объем твердой фазы, образовавшейся на наноразмерной частице. Предполагается, что рост кристаллической фазы подчиняется нормальному механизму, а радиус ее границы *R* определяется линейной зависимостью скорости роста от переохлаждения $\partial R / \partial t = K_{\alpha} \Delta T$ [6],

$$R(r, z, t) = R_p + \int_{t_{10}}^{t} K_{\alpha} \Delta T d\zeta$$
, где K_{α} — физическая константа.

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 123 № 5 2022

Для оценки кинетической константы K_{α} возможно использовать формулу:

$$K_{\alpha} = (D\Delta H_a) / \left(l_a k_{\rm B} T_A^2 \right),$$

где ΔH_a — энтальпия плавления в расчете на один атом, коэффициент диффузии в жидкости *D* определяется уравнением Аррениуса *D* = $D_0 \exp\{-E/(k_{\rm B}T)\}$ [24].

Формулу для определения переохлаждение $\Delta T = T_l - T$ представим в виде:

$$\Delta T = T_A - \beta C_0 / (1 - f_s)^{1-k} - T.$$

Здесь температура ликвидуса T_l связана с концентрацией C растворенного компонента (Cu), T_A – температура плавления чистого металла-растворителя (Al), β – модуль коэффициента наклона линии ликвидуса на диаграмме состояния Al–Cu. Концентрация легирующего компонента определяется из уравнения неравновесного рычага (уравнение Шейла) $C = C_0/(1-f_s)^{1-k}$ [6, 25], где C_0 – исходная концентрация, k – коэффициент распределения растворенного компонента. Рост твердой фазы α -компоненты (алюминия) сплава происходит в температурном интервале $T_{l0} \geq T \geq T_E$, где $T_{l0} = T_A - \beta C_0$, T_E – температура эвтектики.

При расчетах кристаллизации α -компоненты сплава в уравнении (1) для параметра κ_0 используется значение удельной теплоты плавления алюминия κ_{Al} . Полагаем, что при $T = T_E$ доля твердой фазы равна $f_{s\alpha}$.

После охлаждения металла до температуры эвтектики происходит затвердевание β -компоненты сплава. Образования зародышей кристаллов α -компоненты сплава не происходит и $N = N(r, z, t_E)$. Ввиду малой взаимной растворимости алюминия и меди, предполагается, что при дальнейшем охлаждении расплава рост твердой фазы подчиняется нормальному механизму, характеризуемого константой роста K_{β} . Радиус границы твердой фазы R, растущей вокруг частицы после момента времени $t = t_E$, когда температура расплава достигла температуры T_E ,

$$R(r, z, t) = R_{\alpha} + \int_{t_{\rm E}}^{t} K_{\beta}(T_{\rm E} - T) d\zeta,$$
$$R_{\alpha}(r, z, t_{\rm E}) = R_{p} + \int_{t_{0}}^{t_{E}} K_{\alpha} \Delta T d\zeta,$$

а объем твердой фазы β -компоненты сплава $V_{s\beta}$, образовавшейся к моменту времени *t*:

$$V_{s\beta}(r,z,t) = (4\pi/3) \left(R^3 - R_{\alpha}^3 \right).$$

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 123 № 5 2022

Доля твердой фазы $f_{s\beta}$ в затвердевающем эвтектическом расплаве определяется соотношением:

$$f_{\rm s\beta} = 1 - \exp\{-NV_{\rm s\beta}\}.$$

При расчетах кристаллизации эвтектики в уравнении (1) вместо параметра κ_0 используется κ_{Cu} – удельная теплота плавления для меди. Эвтектическая кристаллизация проходит в диапазоне температур $T_E > T \ge T_{end}$, где T_{end} – температура полного затвердевания расплава. Доля твердой фазы f_s в процессе затвердевания сплава определяется согласно

$$f_{\rm s} = f_{\rm s\alpha} + f_{\rm s\beta}.$$

Для реализации модели применялся конечноразностный алгоритм. Расчетная область была разбита на $I \times J$ ячеек. Шаги пространственной сетки (Δ_r , Δ_z) выбирали таким образом, чтобы границы расплав—тигель располагались посередине расстояния между соседними узлами, расположенными в расплаве и тигле. Вдоль временной переменной использовали равномерную сетку с шагом Δ_r . Разностные уравнения строили посредством аппроксимации балансных соотношений, получаемых интегрированием уравнений (1), (2) с использованием соответствующих граничных

условий. Порядок аппроксимации $O(\Delta_t, \Delta_r^2, \Delta_z^2)$. Распределение температуры описывалось значениями в узлах сетки. Решение алгебраической системы, полученной при неявной аппроксимации уравнений теплопереноса, осуществляли итерационным методом [26]. Расчеты продолжали до момента полного затвердевания расплава. Адекватность модели и алгоритма ее реализации подтверждаются качественным и количественным совпадением результатов расчетов с данными физических экспериментов [17].

РЕЗУЛЬТАТЫ РАСЧЕТОВ

Численное исследование динамики кристаллизации модифицированного расплава проводили при параметрах для тигля и сплава Al–1% Cu [17, 19, 21, 27]: $R_{in} = 0.01$ м, H = 0.04 м, $h_b = 0.01$ м, $h_w = 0.01$ м, $c_1 = 1050$ Дж/(кг K), $\lambda_1 = 100$ BT/(м K), $\rho_1 = 2.35 \times 10^3$ кг/м³, $c_2 = 1150$ Дж/(кг K), $\lambda_2 =$ = 220 BT/м K, $\rho_2 = 2.57 \times 10^3$ кг/м³, $\kappa_{Al} = 3.89 \times$ $\times 10^5$ Дж/кг, $\kappa_{Cu} = 2.1 \times 10^5$ Дж/кг, $T_0 = 993$ K, $T_A = 933$ K, $T_{l0} = 929.15$ K, $T_E = 821$ K, $\beta = 3.85$ K/%, $C_0 = 1$ мас. %, k = 0.14, $a_0 = 0.143 \times 10^{-9}$ м, $K_{\alpha} = 7 \times$ $\times 10^{-5}$ м/(с K), $K_{\beta} = 7 \times 10^{-5}$ м/(с K), модифицирующие наночастицы TiC – $\rho_p = 4930$ кг/м³, $m_p =$ = 0.05 мас. %, $R_p = 91 \times 10^{-9}$ м; $l_a = 2.86 \times 10^{-10}$ м, $l_c = 4.33 \times 10^{-10}$ м, $D_0 = 10^{-7}$ м²/с, $\Delta H_a = 1.75 \times$ $\times 10^{-20}$ Дж, $E = 4.2 \times 10^{-20}$ Дж, $\sigma_{12}^{\infty} = 0.093$ Дж/м², ПОПОВ

Рис. 3. Изменение ΔG при зародышеобразовании для ΔT (K): (1) 0.5, (2) 1, (3) 1.5, (4) 2.5, (5) 3, (6) 3.5; a) $R_{\rm s} > R_{\rm p}$, б) $R_{\rm s} < R_{\rm p}$.

 $k_{\rm B} = 1.38 \times 10^{-23}$ Дж/К, $\theta = 5^{\circ}$, $\delta = 2.98 \times 10^{-10}$ м, $c_3 = 540$ Дж/(кг K), $\lambda_3 = 45$ Вт/(м K), $\rho_3 = 7.3 \times 10^3$ кг/м³; $R_{\rm h} = 10^{-4}$ м² K/Вт, $\alpha_1 = 150$ Вт/(м² K); $\alpha_2 = 150$ Вт/(м² K), $T_{\rm c} = 293$ К. Во время экспериментов термопара, фиксирующая изменение температуры, расположена в центре слитка ($r = 0, z = h_{\rm b} + H/2$) [17].

Рисунок За иллюстрирует изменение величины ΔG , описываемой уравнением (5), при различных величинах переохлаждения расплавленного металла. Из результатов, полученных в ходе расчетов, следует, что при переохлаждении 0.5 К отсутствуют условия возникновения устойчивого зародыша размером, сопоставимым с размером частицы. При переохлаждении 1 К радиус сферического зародыша, образующегося на поверхности частицы, может достигнуть критического размера R^* , чему будет соответствовать максимальная величина свободной энергии (энергия Гиббса) ΔG^* . Величинам критических радиусов соответствуют точки на оси $R_{
m s}$, в которых фукция ΔG принимает макимальные значения. Так при $\Delta T = 1 \text{ K} - R^* =$ = 189 нм, ΔG^* = 7.4 × 10⁻¹⁵ Дж, при ΔT = 1.5 К – R^* = = 126 нм, $\Delta G^* = 1.2 \times 10^{-15}$ Дж. Таким образом при малых величинах переохлаждения критические радиусы образующихся зародышей больше радиуса модифицирующих наноразмерных частиц $R_{\rm p} = 91$ нм (рис. 3а).

Так как используется фиксированный краевой угол смачивания на сферической частице $\theta = 5^{\circ}$, то зародыши, имеющие критический размер $R^* \approx R_p$, не появляются. При переохлаждении больше 2.3 К возникают условия для образования зародышей с критическими радиусами меньше радиуса модифицирующих частиц R_p (рис. 36). Так при $\Delta T = 2.5 \text{ K} - R^* = 75 \text{ нм}, \Delta G^* = 5.6 \times 10^{-19} \text{ Дж}, при <math>\Delta T = 3 \text{ K} - R^* = 61 \text{ нм}, \Delta G^* = 8.2 \times 10^{-20} \text{ Дж}, при <math>\Delta T = 3.5 \text{ K} - R^* = 50 \text{ нм}, \Delta G^* = 1.6 \times 10^{-20} \text{ Дж}.$

Необходимо отметить, что при увеличении переохлаждения для появление зародышей, имеющих критический размер, затрачивается гораздо меньше энергии. А именно величина энергии ΔG^* , согласно уравнения (6), имеет решающее влияние на возможность образования зародышей.

Для проверки модели кристаллизации было рассмотрено объемное затвердевание алюминиевого сплава Al-1% Си в цилиндрическом тигле с инокулированными тугоплавкими частицами TiC. При расчетах для определения начальных и граничных условий использовали условия эксперимента, в котором фиксировали изменение температуры в металле при кристаллизации цилиндрической отливки диаметром 0.02 м и высотой 40 мм [17]. Рисунок 4 иллюстрирует изменение температуры и долю твердой фазы в затвердевающем металле в центре формирующейся отливки (r = 0, $z = h_{\rm b} + H/2$) и в точке соприкосновения с боковой поверхностью тигля (r = R, $z = h_{\rm b} + H/2$). На рис. 4а представлены результаты расчетов, которые качественно и количественно совпадают с данными физического эксперимента и свидетельствуют о том, что предложенная модель удовлетворительно описывает изменение температуры в центре отливки при кристаллизации модифицированного сплава.

В точке контакта металла с боковой стенкой тигля перегрев снимается за 1.09 с, и далее происходит переохлаждение расплава ниже температуры ликвидуса на 2.52 К (рис. 4а, 5а). При $\Delta T \le 2.3$ К зародышеобразование отсутствовало. При $\Delta T >$ > 2.43 К в продолжение 0.01 с происходит интенсивное образование зародышей кристаллов α -компоненты металла (рис. 5а). С появлением и ростом кристаллической фазы переохлаждение быстро снижается ниже величины 2.43 К и зародышеобразование прекращается. С учетом того, что зародыши возникали при переохлаждении выше 2.3 К, их размер меньше размера модифи-

Рис. 4. Изменение температуры (а) и доли твердой фазы (б) в расплаве у боковой поверхности тигля (*1*) и в центре отливки (*2*). Точки – эксперимент, сплошная линия – расчет.

Рис. 5. Величина переохлаждения (1) и скорость зародышеобразования (2) в расплаве у боковой поверхности тигля (а) и в центре отливки (б). Штриховая линия соответствует $\Delta T = 2.43$ К.

цирующих частиц. Кристаллизация α -компоненты сплава Al–Cu вблизи стенки продолжается 12.65 с, доля твердой фазы в расплаве растет, переохлаждение снижается (рис. 46, 5а). После достижения расплавом температуры эвтектики T_E и $f_{s\alpha} = 0.98$, происходит эвтектическая кристаллизация β -компоненты сплава. Полное затвердевание завершается на 14-ой секунде.

В центре отливки перегрев полностью снимается за 2.2 с и начинается переохлаждение расплава (рис. 56). Однако через 1 с величина переохлаждения перестает увеличиваться и несколько секунд сохраняется на уровне 2.43 К. Это происходит из-за выравнивания интенсивности выделения скрытой теплоты кристаллизации и интенсивности отвода тепла в окружающую среду. Далее с увеличением переохлаждения начинается образование зародышей кристаллов α-компоненты металла. С учетом того, что переохлаждение в расплаве в центре отливки превышает 2.3 К, размер зародышей меньше размера модифицирующих частиц. При $\Delta T \le 2.3$ К зародышеобразование отсутствовало. Интенсивная кристаллизация α -компоненты (Al) сплава начинается с 9-ой секунды и длится 1.5–2 с. Эвтектическая кристаллизация β -компоненты (Cu) и полное затвердевание сплава завершается к 17-ой секунде. (рис. 46).

Время затвердевания, переохлаждение и темп кристаллизации существенно меняются с удалением от боковой стенки тигля (рис. 4, 5). Следствием этого является различие условий зародышеобразования и начала кристаллизации в расплавленном металле. Рис. 6а иллюстрирует изменение количества возникших зародышей от точки в центре отливки до точки соприкосновения с тиглем при $z = h_b + H/2$. Область с наиболее мелкой структу-

Рис. 6. Изменение количества зародышей (а) и размера зерна (б) в поперечном сечении отливки. Точки – средний размер зерна, определенный по результатам эксперимента.

рой металла находится вблизи боковой стенки тигля, что качественно совпадает с имеющимися экспериментальными данными [3]. В центральной части отливки при r < 0.007 м после снятия перегрева условия зародышеобразования почти не различаются и, как следствие, кристаллы имеют одинаковый размер. На рис. 66 представлены средние размеры зерен в структуре металла, рассчитанные по формуле $d_0 = 1/N^{1/3}$, которые согласуются с результатами экспериментов [17].

ЗАКЛЮЧЕНИЕ

Предложена математическая модель кристаллизации бинарного сплава (Al-Cu) с модифицирующими тугоплавкими наноразмерными сферическими частицами. Проведено численное моделирование затвердевания расплава в цилиндрическом тигле и рассмотрены особенности кристаллизации. Исходные параметры задачи определены из описанных в литературном источнике условий эксперимента и полученных результатов. Рассмотрена кинетика гетерогенного зародышеобразования и кристаллизации в процессе охлаждения расплава. Определено, что условия зародышеобразования и кристаллизации существенно различаются внутри отливки. Установлено, что критические радиусы образующихся зародышей меньше радиуса модифицирующих наноразмерных частиц, а зародыши больше модифицирующих частиц не возникают. Рассчитанные температурные режимы кристаллизации сплава и размеры зерен затвердевшего металла удовлетворительно согласуются с известными опытными данными.

Работа выполнена в рамках государственного задания (№ госрегистрации 121030500137-5).

СПИСОК ЛИТЕРАТУРЫ

- 1. *El-Mahallawi I.S., Shash A.Y., Amer A.E.* Nanoreinforced Cast Al–Si Alloys with Al₂O₃, TiO₂ and ZrO₂ // Nanoparticles Metals. 2015. V. 5. № 2. P. 802–821.
- Borodianskiy K., Kossenko A., Zinigrad M. Improvement of the Mechanical Properties of Al–Si Alloys by TiC Nanoparticles // Metal. Mater. Trans. A. 2013. V. 44. P. 4948–4953.
- Lazarova R., Bojanova N., Dimitrova R., Manolov V., Panov I. Influence of Nanoparticles Introducing in the Melt of Aluminum Alloys on Castings Microstructure and Properties. // Intern. J. Metalcasting. 2016. V. 10. Iss. 4. P. 466–476.
- Kuzmanov P.M., Popov S.I., Yovkov L.V., Dimitrova R.N., Cherepanov A.N., Manolov V.K. Investigation the effect of modification with nanopowders on crystallization process and microstructure of some alloys // AIP Conference Proceedings. 2017. V. 1893. P. 030104(1–8).
- 5. Chalmers B. Principles of Solidification. N.Y.: Wiley, 1964. 288 p.
- 6. *Flemings M.C.* Solidification Processing. N.Y.: Mc-Graw-Hill, 1974. 424 p.
- Turnbull D. Formation of Crystal Nuclei in Liquid Metals // J. App. Phys. 1950. V. 21. P. 1022–1028.
- Fletcher N.H. Size Effect in Heterogeneous Nucleation // J. Chem. Phys. 1958. V. 29. № 3. P. 572–576.
- 9. *Maxwell I., Hellawell A.* A Simple Model for Grain Refinement during Solidification // Acta Metal. 1975. V. 23. № 2. P. 229–237.
- 10. Popov S., Manolov V., Kuzmanov P., Cherepanov A. Mathematical Model of Crystallization of Multicomponent Alloy at Presence of Nanoparticles // J. Mater. Sci. Techn. 2014. V. 22. № 3. P. 167–174.
- Алчагиров Б.Б., Хоконов Х.Б. Смачиваемость поверхностей твердых тел расплавами щелочных металлов и сплавов с их участием. Теория и методы исследований // ТВТ. 1994. Т. 32. № 4. С. 590–626.
- 12. Калинина А.П., Черепанов А.Н., Полубояров В.А., Коротаева З.А. Математическая модель нуклеации в

жидких металлах на ультрадисперсных керамических частицах // Журн. физ. химии. 2001. Т. 75. № 2. С. 283–289.

- 13. *Hienola A.I., Winkler P.M., Wagne P.E., Vehkamäki H., Lauri A., Napari I., Kulmala M.* Estimation of line tension and contact angle from heterogeneous nucleation experimental data. // J. Chem. Phys. 2007. V. 126. № 9. P. 094705.
- Qian M., Ma J. Heterogeneous nucleation on convex spherical substrate surfaces: A rigorous thermodynamic formulation of Fletcher's classical model and the new perspectives derived // J. Chem. Phys. 2009. V. 130. P. 214709(1-7).
- 15. *Кац А.М.* Совершенствование теории гетерогенной кристаллизации металлов и выбор размеров частиц наномодификаторов // Кристаллография. 2011. Т. 56. № 2. С. 373–382.
- Iwamatsu M. Line-tension-induced scenario of heterogeneous nucleation on a spherical substrate and in a spherical cavity // J. Chem. Phys. 2015. V. 143. P. 014701(1–12).
- Song Y., Jiang H., Zhang L., Li S., Zhao J., He J. A Model Describing Solidification Microstructure Evolution in an Inoculated Aluminum Alloys // Acta Metall. Sin. (Engl. Lett.). 2021. V. 34. P. 861–871.
- 18. Троцан А.И., Бродецкий И.Л., Каверинский В.В. Модифицирование железоуглеродистых расплавов

дисперсными порошками. Saarbrücken: LAP Lambert Academic Publishing, 2012. 188 с.

- Popov V.N., Cherepanov A.N. Modeling of the alloy solidification modified by refractory nano-size particles // Eur. Phys. J. Special Topics. 2020. V. 229. № 2–3. P. 467– 474.
- 20. Попов В.Н., Черепанов А.Н. Моделирование процессов кристаллизации наномодифицированного бинарного сплава // Математическое моделирование. 2019. Т. 31. № 11. С. 89–101.
- Xue M., Heichal Y., Chandra S., Mostaghimi J. Modeling the impact of a molten metal droplet on a solid surface using variable interfacial thermal contact resistance // Mater Sci. 2007. V. 42. P. 9–18.
- 22. *Tolman R.C.* The effect of droplet size on surface tension // J. Chem. Phys. 1949. V. 17. P. 333–337.
- Колмогоров А.Н. К статистической теории кристаллизации металлов // Изв. АН СССР. Сер. матем. 1937. Т. 1. № 3. С. 355–359.
- 24. *Christian J.W.* The Theory of Transformations in Metals and Alloys. Publisher: Pergamon, 2002. 1200 p.
- 25. *Scheil E.* Bemerkungen zur schichtkristallbildung // Zeitschrift für Metallkunde. 1942. V. 34. P. 70–72.
- 26. Самарский А.А., Николаев Е.С. Методы решений сеточных уравнений. М.: Наука, 1978. 592 с.
- 27. Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах М.: Металлургия, 1989. 384 с.