ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ, 2022, том 123, № 6, с. 637-642

ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ

УДК 669.715:539.4

ВЛИЯНИЕ ИТТРИЯ И ЦИРКОНИЯ НА СТРУКТУРУ И СВОЙСТВА СПЛАВА AI–5Si–1.3Cu–0.5Mg

© 2022 г. Р. Ю. Барков^{а, *}, М. Г. Хомутов^а, М. В. Главатских^а, А. В. Поздняков^а

^аНИТУ "МИСиС", Ленинский просп., 4, Москва, 119049 Россия *e-mail: barkov@misis.ru

> Поступила в редакцию 30.09.2021 г. После доработки 05.03.2022 г. Принята к публикации 10.03.2022 г.

Исследованы структура и свойства сплава Al–5Si–1.3Cu–0.5Mg–0.15Zr–0.15Y в литом состоянии, после закалки и старения слитка и деформированного листа. Установлено, что введение добавок циркония и иттрия приводит к небольшому модифицированию и повышению однородности зеренной структуры литого сплава. В процессе кристаллизации образуются частицы фаз Al₈Cu₄Y и Al₁₁Cu₂Y₂Si₂, которые не изменяют морфологии и не растворяются в процессе гомогенизации. За счет меньшего размера зерна и наличия фаз кристаллизационного происхождения исследованный сплав имеет предел текучести на 30–40 МПа выше, чем сплав без добавок, как при комнатной температуре, так и при 200°C. В закаленном после прокатки и состаренном состоянии предел текучести составляет 289–296 МПа, предел прочности 374–387 МПа и относительное удлинение 13.5–15.5%. Легирование силуминов дешевым иттрием совместно с цирконием является более предпочтительным, чем эрбием для повышения эксплуатационных характеристик, особенно при повышенных температурах.

Ключевые слова: алюминиевые сплавы, цирконий, иттрий, микроструктура, фазовый состав, старение, механические свойства

DOI: 10.31857/S001532302206002X

ВВЕДЕНИЕ

Выделение циркония в виде дисперсных частиц из пересыщенного при кристаллизации твердого раствора алюминия приводит к упрочнению и повышению порога рекристаллизации как в алюминии [1-4], так и в магналиях [5-7]. Дополнительное легирование скандием резко повышает упрочняющий эффект [8-11]. Однако высокая стоимость скандия направляет на поиск более дешевых альтернативных легирующих добавок, в том числе и для литейных сплавов на основе системы Al-Si [12-15]. Наряду с весьма эффективным эрбием, повышающим упрочняющий эффект при отжиге слитков и являющимся модификатором зеренной структуры [12–16], добавка иттрия представляет большой научный интерес [17-28]. Иттрий совместно с цирконием и/или скандием повышает плотность выделения L12 дисперсоидов в процессе отжига слитков, приводя к росту прочности и температуры начала рекристаллизации алюминия [17-23], магналиев [24, 25] и сплавов на основе системы Al-Cu [26-31], повышая при этом уровень литейных свойств алюминиевомедных сплавов. Добавка иттрия является эффективным модификатором структуры сплава Al-Si-Mg (А357) [32, 33], при этом не влияя на процесс старения [32]. Силумины, содержащие около 4% кремния, отличаются хорошей технологичностью при обработке давлением [14, 15] и при литье [34–37], а цирконий и иттрий снижают склонность этих сплавов к разупрочнению в процессе отжига после деформации.

Настоящее исследование направлено на определение влияния совместного легирования иттрием и цирконием на структуру и механические свойства сплава Al—5Si—1.3Cu—0.5Mg.

МЕТОДИКА ЭКСПЕРИМЕНТОВ

Сплав состава (мас. %) Al-5Si-1.3Cu-0.5Mg-0.15Zr-0.15Y (AlSiYZr015) выплавлен в печи сопротивления из Al (99.99%), магния (99.9%) лигатур Al-53.5Cu, Al-12Si, Al-5Zr и Al-10Y. Для сравнения использовали базовый сплав Al-5Si-1.3Cu-0.5Mg (AlSi) и сплав Al-5Si-1.3Cu-0.5Mg-0.15Zr-0.15Er (AlSiErZr015) [14, 15]. Разливку проводили в графитовую изложницу с внутренней полостью 15 × 30 × 150 мм при скорости охлаждения примерно 15 K/c.

Термическую обработку проводили в печах "Nabertherm" и "SNOL" с вентилятором и точностью поддержания температуры 1°С. Слитки

Рис. 1. Зеренная структура исследованных сплавов в литом состоянии: а – базовый сплав AlSi [15], б – сплав AlSiYZr015.

после гомогенизации при 495°С в течение 3 ч и последующей закалки прокатаны с 15 мм до толщины 8 мм при температуре 460–480°С и до 1 мм при комнатной температуре. Старение в течение разного времени при температурах 150, 180 и 210°С проводили после закалки как литого, так и деформированного сплава.

Подготовку шлифов для микроструктурных исследований производили на шлифовально-полировальной установке Struers Labopol-5. Микроструктурные исследования и идентификацию фаз проводили на световом микроскопе (СМ) Neophot 30 и на сканирующем электронном микроскопе (СЭМ) TESCAN VEGA 3LMH с использованием энерго-дисперсионного детектора X-Max 80.

Твердость измеряли стандартным методом Виккерса, ошибка в определении не превышала 3 HV. Испытания на растяжение образцов, отобранных из 1 мм листов, проводили на универсальной испытательной машине Zwick/Roell Z250 серии Allround в комплексе с автоматическим датчиком продольной деформации. Испытания на сжатие образцов литого сплава, предварительно гомогенизированных в течение 3 ч при температуре 495°C с последующей закалкой и старением при температуре 180°C в течение 3 ч, проводили при комнатной и повышенной температурах на комплексе Gleeble-3800.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ И ОБСУЖДЕНИЕ

Легирование малыми добавками циркония и иттрия не оказывает существенного модифицирующего влияния на зеренную структуру (рис. 1). Однако, в базовом сплаве AlSi (рис. 1а) зерно сильно неоднородно — 150—750 мкм, в то время как в сплаве AlSiYZr015 зерно имеет размер в интервале 100— 400 мкм. Иттрий оказывает несколько меньшее модифицирующее влияние, чем эрбий, при наличии 0.15% которого в сплаве AlSiErZr размер зерна составляет в среднем 200 мкм [15]. Интерметаллиды типа Al₃Zr, Al₃Y и Al₃(Zr,Y) имеют параметр решет-ки близкий к параметру решетки алюминия, ввиду чего являются весьма эффективными модификато-рами зерна как подложки при кристаллизации.

Микроструктура литого сплава AlSiYZr015 и распределение легирующих элементов между фазами в выделенной области представлены на рис. 2. В микроструктуре отмечено наличие алюминиевого твердого раствора (Al), эвтектики ((Al) + Si) и светлых включений избыточных фаз $\theta(Al_2Cu)$, Q(Al₅Cu₂Mg₈Si₆) и (Al,Cu,Y,Si) и (Al,Cu,Y). Аналогичная структура сформирована в сплавах с добавками эрбия и циркония [14, 15]. Фазы $\theta(Al_2Cu)$, $Q(Al_5Cu_2Mg_8Si_6)$, образованные основными легирующими элементами: кремнием, медью и магнием, отмечены в структуре белыми прямоугольником и овалом (рис. 2). Частица, выделенная прямоугольником, обогащена только медью и соответствует фазе $\theta(Al_2Cu)$. В овале находится частица, обогащенная медью, магнием и кремнием, которая соответствует фазе $Q(Al_5Cu_2Mg_8Si_6)$. В выделенном белом круге присутствуют две яркие частицы, обогащенные иттрием и медью – одна продолговатая более светлая и вторая компактная темнее.

Продолговатая частица богатая медью и иттрием, скорее всего, соответствует фазе Al_8Cu_4Y , которая кристаллизуется в тройных и многокомпонентных сплавах системы Al-Cu-Y [26–30]. Компактная частица содержит в дополнение кремний и может соответствовать фазе $Al_{11}Cu_2Y_2Si_2$, которая была выявлена в сплаве Al-Cu-Y с примесями кремния и железа [29].

Гомогенизация перед закалкой при 495°С приводит к фрагментации и сфероидизации кремния и растворению неравновесного избытка фаз кристаллизационного происхождения θ и Q (рис. 3),

Рис. 2. Микроструктура (СЭМ) литого сплава AlSiYZr015 и распределение легирующих элементов между фазами в выделенной области (черный прямоугольник).

в результате чего концентрация легирующих элементов в твердом растворе увеличивается (табл. 1). Полное растворение неравновесного избытка фаз происходит после 3 ч отжига, когда концентрация меди и магния в твердом растворе достигает максимума (табл. 1). Частицы фаз Al_8Cu_4Y и $Al_{11}Cu_2Y_2Si_2$ не изменяют морфологии и не растворяются в процессе гомогенизации (рис. 3). Концентрация Y и Zr в твердом растворе находится в интервале 0.1–0.2%. В результате структура сплава после закалки представлена пересыщенным твердым раствором на основе алюминия, эвтектическим кремнием размером 1–2 мкм, более мелкими частицами иттрий-содержащих фаз.

После закалки с 495°С с выдержкой 3 ч сплав состарен в течение разного времени при температурах 150, 180 и 210°С. Наличие иттрия и циркония не оказывает существенного влияния на кинетику старения и твердость сплава [14]. С увеличением температуры уменьшается время достижения пи-ковой твердости, максимальная твердость достигнута после старения при 150°С в течение 5 ч и 180°С в течение 1 ч (рис. 4).

В табл. 2 представлены результаты испытаний на сжатие при комнатной и повышенной температурах исследованного сплава в сравнении со сплавами AlSi и AlSiErZr015. Предел текучести сплавов с добавками циркония и эрбия или иттрия при комнатной температуре существенно выше, чем в базовом сплаве AlSi. Больший предел текучести объясняется меньшим размером зерна и наличием в структуре дисперсных фаз кристаллизационного происхождения с иттрием или эрбием. При этом сплав AlSiYZr015, имея большее

Рис. 3. Микроструктура (СЭМ) сплава AlSiYZr015 после гомогенизации при 495°С в течение 3 ч перед закалкой.

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 123 № 6

Рис. 4. Зависимости твердости от времени старения закаленного литого сплава AlSiYZr015.

2022

Элемент	AlSi [15]			AlSiErZr015 [15]			AlSiYZr015		
	литой	1 час	3 часа	литой	1 час	3 часа	литой	1 час	3 часа
Cu	0.5	1.3	1.5	0.5	1.3	1.4	0.6	1.4	1.5
Si	0.6	0.6	0.6	0.6	0.9	0.9	0.6	1.1	1.1
Mg	0.2	0.3	0.4	0.2	0.3	0.4	0.2	0.4	0.4
Y (Er)	_	_	_	0.1-0.2					
Zr	—	—	_	0.1–0.2					

Таблица 1. Изменение концентрации легирующих элементов в алюминиевом твердом растворе в зависимости от времени гомогенизации перед закалкой литых сплавов (мас. %)

Таблица 2. Предел текучести на сжатие (МПа) при комнатной и повышенной температурах

Сплав	20°C	200°C
AlSi [15]	240 ± 1	178 ± 1
AlSiErZr015 [15]	290 ± 6	230 ± 8
AlSiYZr015	282 ± 8	202 ± 6

зерно, чем сплав AlSiErZr015, уступает последнему по величине предела текучести, что особенно заметно при повышенной температуре 200°С. Однако исследуемый сплав обладает большим, чем базовый AlSi пределом текучести.

После прокатки сплав отжигали при 495°C с выдержкой 10 мин, закаливали и старили при температурах 150, 180 и 210°C.

В закалённом с 495°С после прокатки состоянии сплав имеет размер зерна около 10–15 мкм, что соответствует структуре сплава AlSiErZr015 в том же состоянии [15]. Старение после закалки

Рис. 5. Зависимости твердости от времени старения сплава AlSiYZr015 после прокатки и закалки с 495°С с выдержкой 10 мин (вставка — зеренная структура сплава после закалки).

деформированных листов (рис. 5) проходит примерно так же, как и старение после закалки слитков (рис. 4). При этом несколько больший прирост твердости достигнут после старения при 150°С за счет того, что деформация, накопленная при прокатке, активирует низкотемпературное старение. Аналогичные результаты получены на сплаве AlSiErZr015 [15].

Рекристаллизация в сплаве AlSiYZr015 происходит в интервале 300—350°С (рис. 6) так же, как и в сплаве без добавок [14] и с добавками эрбия и циркония [14, 15]. Исследуемый сплав так же, как и AlSiErZr015 после часового отжига при 350°С имеют частично рекристаллизованную структуру (вставки микроструктур на рисунке 6 и [15]).

Листы сплава AlSiYZr015 в закаленном после прокатки и состаренном состоянии имеют предел текучести 289–296 МПа, предел прочности 374– 387 МПа и относительное удлинение 13.5–15.5%. Исследуемый сплав несколько превосходит сплав AlSiErZr015 по показателям, как прочности, так и

Рис. 6. Зависимости твердости от температуры отжига в течение 1 часа деформированного сплава AlSiYZr015 и зеренная структура после отжига при 300 и 350° C.

Состояние	σ _{0.2} , МПа	$\sigma_{\rm\scriptscriptstyle B}$, МПа	δ, %	σ _{0.2} , МПа	$\sigma_{\rm\scriptscriptstyle B},$ МПа	δ, %
		AlSiErZr015 [15]		AlSiYZr015		
150°С, 8 часов	276 ± 1	378 ± 1	14.5 ± 2.5	289 ± 1	387 ± 1	15.5 ± 2.2
180°С, 4 часа	283 ± 1	362 ± 1	12.8 ± 1.2	296 ± 1	374 ± 1	13.5 ± 1.6

Таблица 3. Механические свойства сплавов AlSiYZr015 и AlSiErZr015 по результатам испытаний на растяжение в деформированном и отожженном состояниях

пластичности после старения по одинаковым режимам (табл. 3).

В данном случае, ввиду меньшей стоимости иттрия, легирование силуминов им представляется более перспективным. Легирование иттрием совместно с цирконием повышает эксплуатационные характеристики, как при комнатной температуре, так и при повышенных, в том числе и после термомеханической обработки.

выводы

Исследовано влияние добавок иттрия и циркония по 0.15% каждого на структуру и механические свойства сплава Al—5Si—1.3Cu—0.5Mg в литом состоянии, после закалки и старения слитка и деформированного листа:

 введение добавок циркония и иттрия приводит к небольшому модифицированию и повышению однородности зеренной структуры литого сплава;

— частицы фаз Al_8Cu_4Y и $Al_{11}Cu_2Y_2Si_2$, выявленные в литой структуре, не изменяют морфологии и не растворяются в процессе гомогенизации;

 исследованный сплав за счет меньшего размера зерна и наличия фаз кристаллизационного происхождения имеет предел текучести на сжатие 282 МПа при комнатной температуре и 202 МПа при 200°С, что на 30–40 МПа выше, чем сплав без добавок;

– в закаленном после прокатки и состаренном состоянии сплав AlSiYZr015 имеет предел текучести 289–296 МПа, предел прочности 374–387 МПа и относительное удлинение 13.5–15.5%, превосходя сплав AlSiErZr015 как по прочности, так и по пластичности после старения по одинаковым режимам;

 ввиду меньшей стоимости иттрия, легирование силуминов им представляется более перспективным, чем эрбием.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Nes E.* Precipitation of the metastable cubic Al3Zrphase in subperitectic Al–Zr alloys // Acta Metall. 1972. V. 20. P. 499–506.
- 2. Xin-yu Ü, Er-jun G., Rometsch P., Li-juan W. Effect of one-step and two-step homogenization treatments on

distribution of Al₃Zr dispersoids in commercial AA7150 aluminium alloy // Trans. Nonferrous Metals Soc. China. 2012. V. 22 P. 2645–2651.

- Knipling K.E., Dunand D.C., Seidman D.N. Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600°C // Acta Mater. 2008. V. 56. P. 1182– 1195.
- Knipling K.E., Dunand D.C., Seidman D.N. Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425°C // Acta Mater. 2008. V. 56. P. 114–127.
- Mikhaylovskaya A.V., Portnoy V.K., Mochugovskiy A.G., Zadorozhnyy M.Yu., Tabachkova N.Yu., Golovin I.S. Effect of homogenisation treatment on precipitation, recrystallisation and properties of Al–3% Mg–TM alloys (TM = Mn, Cr, Zr) // Mater. Des. 2016. V. 109. P. 197–208.
- Mikhaylovskaya A.V., Mochugovskiy A.G., Levchenko V.S., Tabachkova N.Yu., Mufalo W., Portnoy V.K. Precipitation behavior of L12 Al₃Zr phase in Al–Mg–Zr alloy // Mat. Char. 2018. V. 139. P. 30–37.
- 7. *Ma Y., Mishra R.S.* Development of ultrafine-grained microstructure and low temperature (0.48 Tm) superplasticity in friction stir processed Al–Mg–Zr // Scr. Mater. 2005. V. 53. P. 75–80.
- 8. *Fuller C.B., Seidman D.N.* Temporal evolution of the nanostructure of Al₃(Sc,Zr) alloys: Part II-coarsening of Al₃(Sc₁ _ _xZr_x) precipitates // Acta Mater. 2005. V. 53. № 20. P. 5415–5428.
- 9. *Knipling K.E., Karnesky R.A., Lee C.P., Seidman D.N.* Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al– 0.1Sc–0.1Zr (at. %) alloys during isochronal aging // Acta Mater. 2010. V. 58. № 15. P. 5184–5195.
- Zolotorevskiy V.S., Dobrojinskaja R.I., Cheverikin V.V., Khamnagdaeva E.A., Pozdniakov A.V., Levchenko V.S., Besogonova E.S. Evolution of structure and mechanical properties of Al-4.7Mg-0.32Mn-0.21Sc-0.09Zr alloy sheets after accumulated deformation during rolling // Phys. Met Metall. 2016. V. 117. № 11. P. 1163–1169.
- Zolotorevskiy V.S., Dobrojinskaja R.I., Cheverikin V.V., Khamnagdaeva E.A., Pozdniakov A.V., Levchenko V.S., Besogonova E.S. Strength and Substructure of Al– 4.7Mg-0.32Mn-0.21Sc-0.09Zr Alloy Sheets // Phys. Met Metall. 2017. V. 118. № 4. P. 407-414.
- Colombo M., Gariboldi E., Morri A. Er addition to Al– Si–Mg-based casting alloy: effects on microstructure, room and high temperature mechanical properties // J. Alloys. Compd. 2017. V. 708. P. 1234–1244.
- 13. *Colombo M., Gariboldi E., Morri A.* Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al–7Si–

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 123 № 6 2022

0.4Mg alloy modified with 0.25% Er // Mater. Sci. Eng. A. 2018. V. 713. P. 151–160.

- Barkov R.Yu., Mochugovskiy A.G., Khomutov M.G., Pozdniakov A.V. Effect of Zr and Er Small Additives on Phase Composition and Mechanical Properties of Al– 5Si–1.3Cu–0.5Mg Alloy // Phys Met Metall. 2021. V. 122. № 2. P. 161–168.
- Barkov R.Yu., Prosviryakov A.S., Khomutov M.G., Pozdniakov A.V. Effect of the Zr and Er Content on the Structure and Properties of the Al–5Si–1.3Cu–0.5Mg Alloy // Phys. Met Metall. 2021. V. 122. P. 614–620.
- Pozdniakov A.V., Yarasu V., Barkov R.Yu., Yakovtseva O.A., Makhov S.V., Napalkov V.I. Microstructure and mechanical properties of novel Al-Mg-Mn-Zr-Sc-Er alloy // Mat. Letters. 2017. V. 202. P. 116–119.
- Pozdnyakov A.V., Osipenkova A.A., Popov D.A., Makhov S.V., Napalkov V.I. Effect of Low Additions of Y, Sm, Gd, Hf and Er on the Structure and Hardness of Alloy Al–0.2% Zr–0.1% Sc // Met. Sci. Heat Treat. 2017. V. 58. № 9–10. P. 537–542.
- Pozdnyakov A.V., Barkov R.Yu. Effect of impurities on the phase composition and properties of a new alloy of the Al-Y-Er-Zr-Sc system // Metallurgist. 2019. V. 63. № 1-2. P. 79-86.
- Pozdniakov A.V., Barkov R.Yu., Prosviryakov A.S., Churyumov A.Yu., Golovin I.S., Zolotorevskiy V.S. Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy // J. Alloys Compd. 2018. V. 765. P. 1–6.
- Pozdniakov A.V., Barkov R.Yu. Microstructure and mechanical properties of novel Al–Y–Sc alloys with high thermal stability and electrical conductivity // J. Mater. Sci. Technol. 2020. V. 36. P. 1–6.
- Barkov R.Yu., Yakovtseva O.A., Mamzurina O.I., Loginova I.S., Medvedeva S.V., Proviryakov A.S., Mikhailovskaya A.V., Pozdniakov A.V. Effect of Yb on the Structure and Properties of an Electroconductive Al–Y–Sc Alloy // Phys. Met Metall. 2020. V. 121. № 6. P. 604–609.
- Rokhlin L.L., Dobatkina T.V., Bochvar N.R., Lysova E.V., Tarytina I.E. Effect of yttrium and chromium on the recrystallization of Al–Sc alloys // Russian Metallurgy (Metally). 2007. V. 2007. P. 335–339.
- Gao H., Feng W., Wang Y., Gu J., Zhang Y., Wang J., Sun B. Structural and compositional evolution of Al3(Zr,Y) precipitates in Al–Zr–Y alloy // Mater. Charact. 2016. V. 121. P. 195–198.
- Cao F, Zhu X., Wang S., Shi L., Xu G., Wen J. Quasi-superplasticity of a banded-grained Al–Mg–Y alloy processed by continuous casting-extrusion // Mater. Sci. Eng. A. 2017. V. 690. P. 433–445.

- 25. Barkov R.Yu., Pozdniakov A.V., Tkachuk E., Zolotorevskiy V.S. Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content // Mater. Lett. 2018. V. 217. P. 135–138.
- 26. *Pozdniakov A.V., Barkov R.Y.* Microstructure and materials characterisation of the novel Al–Cu–Y alloy // Mater. Sci. Technol. 2018. V. 34. № 12. P. 1489–1496.
- Pozdniakov A.V., Barkov R.Yu, Amer S.M., Levchenko V.S., Kotov A.D., Mikhaylovskaya A.V. Microstructure, mechanical properties and superplasticity of the Al–Cu– Y–Zr alloy // Mater. Sci. Eng. A. 2019. V. 758. P. 28–35.
- Amer S.M., Barkov R.Y., Yakovtseva O.A., Pozdniakov A.V. Comparative Analysis of Structure and Properties of Quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er Alloys // Phys of Met and Metall. 2020. V. 121. № 5. P. 476–482.
- 29. Amer S.M., Barkov R.Y., Pozdniakov A.V. Effect of Iron and Silicon Impurities on Phase Composition and Mechanical Properties of Al–6.3Cu–3.2Y Alloy // Phys. Met. Metall. 2020. V. 121. № 10. P. 1002–1007.
- Amer S.M., Barkov R.Y., Pozdniakov A.V. Effect of Mn on the Phase Composition and Properties of Al–Cu– Y–Zr Alloy // Phys. Met. Metall. 2020. V. 121. № 12. P. 1227–1232.
- Min Li, Hongwei Wang, Zunjie Wei, Zhaojun Zhu The effect of Y on the hot-tearing resistance of Al-5 wt. % Cu based alloy // Mat. and Des. 2010. V. 31. P. 2483– 2487
- Guoling Mao, Shanguang Liu, Zhen Wu, Congcong Zhu, Wenli Gao. The effects of Y on primary a-Al and precipitation of hypoeutectic Al–Si alloy // Mater. Lett. 2020. V. 271. P. 127795.
- 33. Guoling Mao, Han Yan, Congcong Zhu, Zhen Wu, Wenli Gao. The varied mechanisms of yttrium (Y) modifying a hypoeutectic AleSi alloy under conditions of different cooling rates // J. Alloys Compd. 2019. V. 806. P. 909–916.
- 34. *Новиков И.И.* Горячеломкость цветных металлов и сплавов. М.: Наука, 1966. 299 с.
- Eskin D.G, Suyitno, Katgerman L. Mechanical properties in the semi-solid state and hot tearing of aluminium alloys // Prog. in Mat. Sci. 2004. V. 49. P. 629–711.
- Zolotorevskiy V.S., Pozdniakov A.V. Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range // Int. J. Cast Met. Res. 2014. V. 27. № 4. P. 193–198.
- 37. Zolotorevskiy V.S., Pozdniakov A.V., Churyumov A.Yu. Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation // Phys. Met. Metall. 2012. V. 113. № 11. P. 1052–1060.