ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА

УДК 537.622

ВЛИЯНИЕ НАНОСТРУКТУРИРОВАНИЯ НА ВОЗБУЖДЕНИЕ РАЗЛИЧНЫХ РЕЗОНАНСНЫХ МОД В МАГНИТОПЛАЗМОННОМ КРИСТАЛЛЕ

© 2022 г. С. В. Томилин^{*a*, *}, А. В. Каравайников^{*a*}, С. Д. Ляшко^{*a*}, Е. Т. Милюкова^{*a*}, О. А. Томилина^{*a*}, В. Н. Бержанский^{*a*}

^аКрымский федеральный университет им. В.И. Вернадского, просп. Вернадского, 4, Симферополь, 295006 Россия

*e-mail: tomilin_znu@mail.ru Поступила в редакцию 02.12.2021 г. После доработки 29.12.2021 г. Принята к публикации 11.01.2022 г.

Приведены описание синтеза магнитоплазмонного кристалла и результаты исследования влияния наноструктурирования плазмонного слоя на возбуждение различных резонансных мод, приводящих к усилению эффекта Фарадея в магнитном слое. Показано, что при нанесении на магнитофотонный кристалл сплошного плазмонного слоя Аu наблюдается возбуждение как микрорезонаторных оптических, так и таммовских плазмонных мод. Наноструктурирование плазмонного слоя приводит к деградации таммовской резонансной моды и размытию пика микрорезонаторной моды, что, в свою очередь приводит, к уменьшению усиления эффекта Фарадея, при этом наблюдается появление моды локализованного плазмонного резонанса.

Ключевые слова: магнитоплазмонный кристалл, наноструктурирование, резонансные моды, эффект Фарадея

DOI: 10.31857/S0015323022070208

введение

Фотонные и магнитофотонные кристаллы ($M\Phi K$) являются перспектривными структурами в современных отраслях науки и техники, таких как фотоника, оптика, сенсорика, спинтроника, магноника, квантовые технологии и т.д. [1-5]. Один из способов модификации свойств магнитофотонных кристаллов заключается в его интегрировании с плазмонной подсистемой [6].

Так, в работах [7–10] представлены результаты исследования особенностей возбуждения моды поверхностного плазмон-поляритонного резонанса (ППР) в магнитоплазмонных кристаллах и ее воздействие на усиление магнитооптических эффектов. В данном случае плазмонная подсистема представляла собой сплошной металлический слой, который встраивали в общую многослойную структуру фотонного кристалла.

В работах [11–14] описаны результаты исследования усиления магнитооптических эффектов за счет возбуждения резонансной моды таммовских плазмон-поляритонов. В данном случае плазмонная подсистема также представляет собой сплошной металлический слой, который наносят на фотонный кристалл поверх согласующего буферного слоя из прозрачного диэлектрика, который, в свою очередь, определяет условие образования стоячей электромагнитной волны и, соответственно, спектральное положение резонансного пика.

В работах [15—17] исследовано усиление магнитооптических эффектов за счет возбуждения моды локализованного плазмонного резонанса (ЛПР). Для возбуждения ЛПР плазмонная подсистема представляет собой слой металлических наночастиц (периодических или самоорганизованных), встроенный в общую многослойную структуру фотонного кристалла.

Настоящая работа посвящена исследованию особенностей возбуждения различных резонансных мод в магнитоплазмонном кристалле при изменении структуры плазмонного слоя со сплошной (таммовские плазмонные моды) на наноструктурированную (ЛПР моды).

ПОЛУЧЕНИЕ И ИССЛЕДОВАНИЕ ОБРАЗЦОВ

Образец магнитоплазмонного кристалла был изготовлен методом послойного осаждения функциональных материалов с помощью вакуумного напыления. На рис. 1 показана общая схема образца.

В качестве подложки использована полированная пластина монокристалла гадолиний-галлиевого граната Ga₃Gd₅O₁₂ (GGG) с ориентацией по-

Рис. 1. Схема образца магнитоплазмонного кристалла: а – до наноструктурирования; б – после.

верхности (111). На подложке методом ионно-реактивного напыления выполнено зеркало Брэгга в виде 4 пар чередующихся слоев SiO_2/TiO_2 (толщина $SiO_2 \sim 94$ нм, толщина $TiO_2 \sim 70$ нм).

На поверхность брэгговского зеркала ионнореактивным распылением нанесен слой висмутзамещенного феррит граната (М) с номинальным составом $Bi_{1.0}Y_{0.5}Gd_{1.5}Fe_{4.2}Al_{0.8}O_{12}$ и толщиной 110 нм. Для кристаллизации граната применяли отжиг на воздухе (нагрев до 700°С со скоростью 4 К/мин, выдержка при 700°С в течение 120 мин, остывание со скоростью 4 К/мин).

На поверхность магнитооптического слоя был нанесен буферный слой SiO_2 также методом ионно-реактивного напыления. Данный слой предназначен для оптического согласования фотонного кристалла и плазмонной подсистемы. Буферный слой выполнен с градиентом толщины вдоль поверхности образца с помощью специальной методики, суть которой изложена в работе [18]. Толщина буферного стоя h_{buffer} варьируется от 50 до 300 нм при среднем градиенте dh/dx = 25 нм/мм.

Таким образом, в различных участках градиента изменяется условие формирования стоячих оптических мод и, соответственно, плазмонных мод, что позволяет на разных участках образца исследовать возбуждение данных резонансных

Рис. 2. РЭМ снимок поперечного среза (скола) зеркала Брэгга (образец-свидетель на плавленом кварце).

мод в различной спектральной области внутри фотонной запрещенной зоны кристалла.

Поверх буферного слоя методом термического испарения нанесен плазмонный слой Au толщиной порядка 3 нм. Для наноструктурирования плазмонного слоя применяли термический отжиг на воздухе (резкое погружение в шахтную печь при температуре 680°C с последующей выдержкой 60 мин, затем резкое извлечение из печи и произвольное остывание).

Таким образом, общая структура магнитоплазмонного кристалла может быть описана как GGG/ $(SiO_2/TiO_2)_4/M/SiO_2$ (grad *h*)/Au.

Контроль толщины функциональных слоев выполнен на образцах-свидетелях с помощью микроинтерферометра МИИ-4 с блоком цифровой обработки и подтвержден данными растровой электронной микроскопии (рис. 2).

Данные о толщине слоев, приведенные на рис. 2, получены с помощью компьютерной обработки РЭМ-снимка как результат нахождения длин соответствующих отрезков в указанном масштабе.

Исследование оптических и магнитооптических (MO) свойств магнитоплазмонного кристалла было выполнено на спектральном магнитополяриметре, изготовленном на базе спектрофотометра КФК-3. Исследования проводили при нормальном падении света на поверхность образца, помещенного во внешнее магнитное поле $H = \pm 2 \text{ к} \Im$ в конфигурации Фарадея. Изображение выходной щели монохроматора (ширина шели d = 0.1 мм) проецировали на поверхность образца длиннофокусной линзой. Таким образом, при градиенте толщины буферного слоя 25 нм/мм в области исследования изменение толщины буферного слоя составляло примерно 2.5 нм. Магнитооптический эффект Фарадея (ЭФ) определяли методом прямого измерения поворота плоскости поляриза-

Рис. 3. Оптические и магнитооптические свойства кристалла со сплошным плазмонным слоем до наноструктурирования при разной толщине буферного слоя: а – спектры пропускания, б – спектры фарадеевского вращения. Для наглядности все кривые смещены по оси ординат на 0.03 (а) и на 0.2 (б).

ции света, прошедшего через кристалл, посредством нахождения условия существования минимума интенсивности детектируемого сигнала за счет вращения быстрой оси анализатора. Спектры МО вращения измеряли при намагничивании образца вдоль волнового вектора k падающего излучения (поле H^+) и против волнового вектора k (поле H^-). Результирующий эффект Фарадея определяли математически как полуразность спектров, измеренных в полях H^+ и H^- .

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Структура GGG/(SiO₂/TiO₂)₄/M/SiO₂(grad *h*)/Au до грануляции представляет собой магнитоплазмонный кристалл со сплошным плазмонным слоем Au (рис. 1а). Металлическая пленка Au в данном случае выполняет сразу две функции. Во-первых, плазмонного элемента для возбуждения резонансных таммовских плазмонных мод. Во-вторых, металлического зеркала, которое в паре с зеркалом Брэгга локализует излучение внутри магнитооптического слоя, что приводит к возбуждению микрорезонаторных оптических мод [19].

На рис. За приведены спектры пропускания для магнитоплазмонного кристалла со сплошным плазмонным слоем до наноструктурирования (рис. 1а) при различной толщине буферного слоя SiO₂.

На спектрах пропускания отчетливо видны пики двух типов резонансных мод. В диапазоне 580–735 нм возбуждается микрорезонаторная мода, в диапазоне 760–950 нм — таммовская плазмонная мода. Обе моды смещаются примерно на 25% вдоль спектра в красную область при увеличении толщины буферного слоя SiO₂ [20].

На рис. Зб показаны спектры фарадеевского вращения при намагничивании магнито-плазмонного кристалла в поле H = 2 кЭ. Видно, что обе резонансные моды приводят к усилению магнитооптического эффекта Фарадея. Незначительные возмущения в области 520–560 нм на рис. Зб обусловлены влиянием края фотонной запрещенной зоны.

Для оценки величины усиления эффекта Фарадея рассчитывали коэффициент усиления:

$$\eta = \theta_{\rm res} / \theta_{\rm M} \,, \tag{1}$$

где θ_{res} — угол фарадеевского вращения в резонансе, θ_{M} — угол фарадеевского вращения чистого магнитооптического слоя феррит-граната.

На рис. 4 показана зависимость коэффициента усиления эффекта Фарадея от толщины буферного слоя SiO_2 для различных резонансных мод, показанных на рис. 3 (до наноструктурирования плазмонного слоя Au).

Как видно из рисунка, с увеличением толщины буферного слоя усиление эффекта Фарадея (ЭФ) за счет микрорезонаторной моды возрастает, а усиление за счет таммовской моды, напротив, падает вплоть до толщины буферного слоя 225 нм. При толщине буферного слоя свыше 225 нм коэффициент усиления ЭФ за счет таммовской моды приближается к 1 (усиление отсутствует).

Это непосредственно связано с условием формирования стоячих волн и изменением коэффициентов отражения и поглощения плазмонного слоя. При эффективном возбуждении таммовской плазмонной моды энергия излучения поглощается, что приводит к снижению эффективности возбуждения микрорезонаторной моды. Напротив, при снижении эффективности возбуждения плазмонной моды, излучение отражается от металли-

2022

Рис. 4. Зависимость коэффициента усиления эффекта Фарадея η от толщины буферного слоя SiO₂ при возбуждении различных резонансных мод в магнитоплазмонном кристалле до наноструктурирования слоя Au.

ческого слоя "внутрь" кристалла, что приводит к эффективному возбуждению микрорезонаторной моды.

После наноструктурирования плазмонного слоя его структура представляет собой ансамбль самоорганизующихся наночастиц (рис. 5).

Как видно из рис. 5, самоорганизующиеся золотые наночастицы Au_(NP) имеют форму, близкую к округлой. Размер наночастиц варьируется от 10 до 70 нм (редко до 100 нм), средний размер 40– 45 нм, среднеквадратичное отклонение 11 нм, распределение по размерам достаточно хорошо аппроксимируется Гауссианом.

На рис. 6 показан спектр пропускания образца-свидетеля GGG/Au_(NP). Данный образец получен в едином цикле с основным магнитоплазмонным кристаллом и представляет собой наночастицы Au на подложке из гадолиний-галлиевого граната.

Как видно из рис. 6, на длине волны $\lambda_{pe3} = 560$ нм наблюдается четко выраженный спектральный провал, связанный с резонансным возбуждением локализованных плазмонных мод в самоорганизующихся наночастицах Au_(NP) [21].

На рис. 7а приведены спектры пропускания для магнитоплазмонного кристалла с наноструктурированным плазмонным слоем (рис. 1б) при различной толщине буферного слоя SiO₂. Как видно из рис. 7а, после наноструктурирования плазмонного слоя эффективность возбуждения резонансной таммовской моды резко падает как по интенсивности, так и по добротности. При этом в области 520–530 нм возникает локальный минимум пропускания, связанный с возбуждением мод локализованного плазмонного резонанса (ЛПР). Незначительное спектральное смещение ЛПР по

Рис. 5. РЭМ-снимок морфологии поверхности наноструктурированного плазмонного слоя Au. На вставке – распределение наночастиц по размерам.

сравнению со свидетелем (рис. 6) связано с изменением диэлектрического окружения плазмонных частиц.

Микрорезонаторная мода также наблюдается после наноструктурирования плазмонного слоя, однако добротность резонанса существенно снижается. Это связано с уменьшением отражательной способности металлического зеркала (слоя Au) и с увеличением диффузного рассеяния света.

На рис. 7б показаны спектры фарадеевского вращения при различной толщине буферного слоя (указана в легенде). Видно, что и микрорезонаторная, и таммовская моды приводят к усилению эффекта Фарадея, однако гораздо менее эффективно по сравнению с аналогичным усилением до наноструктурирования.

Как можно видеть из рисунка, мода ЛПР лежит очень близко к точке экстремума на спектре фара-

Рис. 6. Спектр пропускания образца-свидетеля GGG/Au_(NP).

2022

Рис. 7. Оптические и магнитооптические свойства кристалла с наноструктурированным плазмонным слоем при разной толщине буферного слоя: а – спектры пропускания, б – спектры фарадеевского вращения. Для наглядности все кривые смещены по оси ординат на 0.04 (а) и на 0.1 (б).

деевского вращения, поэтому усиление эффекта Фарадея наблюдается в виде увеличения глубины спектрального "минимума". Следует отметить, что на спектрах пропускания (рис. 7а) моды ЛПР наблюдаются при всех значениях толщины буферного слоя, а изменение эффективности их возбуждения обусловлено условием формирования стоячей волны в периодической структуре образца. При этом на спектрах фарадеевского вращения (рис. 76) усиление за счет ЛПР происходит только при малых толщинах буферного слоя. Это связано с ограниченной глубиной проникновения поля резонирующих плазмонных наночастиц в окружающее пространство (ближнепольное взаимодействие), соответственно увеличение толщины буферного слоя приводит к ослаблению взаимодействия плазмонной и магнитной подсистем.

Рис. 8. Зависимость коэффициента усиления эффекта Фарадея η от толщины буферного слоя SiO₂ при возбуждении различных резонансных мод в магнитоплазмонном кристалле с наноструктурированным слоем Au.

Незначительные возмущения в области 550– 560 нм также вызваны влиянием края фотонной запрещенной зоны и не связаны с ЛПР.

На рис. 8 показана зависимость коэффициента усиления эффекта Фарадея от толщины буферного слоя SiO₂ при возбуждении различных резонансных мод в магнитоплазмонном кристалле с наноструктурированым плазмонным слоем Au. Видно, что эффективность усиления эффекта Фарадея после наноструктурирования плазмонного слоя снизилась примерно в 5 раз для Таммовской и микрорезонаторной мод.

Следует отметить, что максимальное усиление в области микрорезонаторной моды наблюдается при толщине буферного слоя 150–175 нм (до наноструктурирования максимальное усиление было при $h_{6v\phi} = 300$ нм).

Усиление ЭФ за счет резонансной ЛПР-моды не превышает 1.2 раза при минимальной толщине буферного слоя $h_{5y\phi} = 50$ нм и монотонно снижается с увеличением толщины буферного слоя. При толщинах $h_{6y\phi}$ свыше 225 нм усиление ЭФ за счет таммовской и ЛПР-мод стремится к 1.

выводы

Таким образом, в работе показано, что в магнитоплазмонном кристалле с общей структурой GGG/(SiO₂/TiO₂)₄/M/SiO₂(grad h)/Au, где M магнитооптический слой феррит-граната, могут возбуждаться различные типы оптических и плазмонных резонансных мод. В случае сплошного плазмонного слоя Au наблюдается возбуждение микрорезонаторной оптической и таммовской плазмонной мод. После наноструктурирования плазмонного слоя Au наряду с указанными модами возбуждаются также моды локализованного плазмонного резонанса.

Показано, что все резонансные моды приводят к усилению магнитооптического эффекта Фарадея. При этом эффективность возбуждения различных резонансных мод и их влияние на усиление ЭФ сильно зависят как от структуры плазмонного слоя Au, так и от толщины буферного слоя SiO₂.

До наноструктурирования слоя Au максимальный коэффициент усиления ЭФ за счет микрорезонаторной и таммовской мод составляют $\eta = 22.5$ и $\eta = 13.7$, соответственно. При этом с увеличением толщины буферного слоя SiO₂ эффективность возбуждения микрорезонаторной моды увеличивается, а таммовской — уменьшается.

После наноструктурирования слоя Au наибольший коэффициент усиления ЭФ наблюдается для оптической микрорезонаторной моды $\eta = 5$ при оптимальной толщине буферного слоя 150–175 нм. Максимальные значения коэффициента усиления ЭФ за счет плазмонных мод составляют $\eta = 2.5$ и $\eta = 1.2$ для таммовской и ЛПР-мод соответственно. Плазмонное усиление ЭФ наблюдается при минимальных значениях толщины буферного слоя ($h_{6y\phi} = 50$ нм) для обеих мод. При толщине буферного слоя свыше 225 нм плазмонное усиление ЭФ отсутствует, что связано с ближнепольным характером взаимодействия плазмонной подсистемы с магнитоактивным слоем кристалла.

Работа выполнена при финансовой поддержке гранта РНФ № 19-72-20154.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Sharkawy A., Shi Sh., Prather D.W.* Heterostructure photonic crystals: theory and applications // Appl. Opt. 2002. V. 41. P. 7245–7253.
- Ozbay E., Bulu I., Aydin K., Caglayan H., Guven K. Physics and applications of photonic crystals // Photonics and Nanostructures – Fundamentals and Applications. 2004. V. 2. P. 87–95.
- Inoue M., Fujikawa R., Baryshev A., Khanikaev A., Lim P.B., Uchida H., Aktsipetrov O., Fedyanin A., Murzina T., Granovsky A. Magnetophotonic crystals // J. Phys. D: Appl. Phys. 2006. V. 39. P. R151–R161.
- Kharratian S., Urey H., Onbaşlı M.C. RGB Magnetophotonic Crystals for High-contrast Magnetooptical Spatial Light Modulators // Sci. Rep. 2019. V. 9. P. 644.
- Belotelov V.I., Zvezdin A.K. Magneto-optical properties of photonic crystals // J. Optical Society of America B. 2005.V. 22. I. 1. P. 286–292.
- Mikhailova T.V., Shaposhnikov A.N., Tomilin S.V., Alentiev D.V. Nanostructures with magnetooptical and plasmonic response for optical sensors and nanophotonic devices // J. Phys. Conf. Ser. 2019. V. 1410. P. 012163.
- Bremer J. Influence of surface plasmons on the Faraday effect in bismuth-substituted yttrium iron garnet films // J. Appl. Phys. 2011. V. 89. № 11. P. 6177–6181.

- Ignatyeva D.O., Knyazev G.A., Kapralov P.O., Dietler Giovanni, Seatskii S.K., Belotelov V.I. Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications // Sci. Reports. 2016. V. 6. P. 28077.
- 9. *Guo J., Zhu Zh., Deng W.* Small-angle measurement based on surface-plasmon resonance and the use of magneto-optical modulation // Appl. Opt. 1999. V. 38. № 31. P. 6550–6555.
- 10. Baryshev A.V., Merzlikin A.M. Plasmonic Photonic-Crystal Slabs: Visualization of the Bloch Surface Wave Resonance for an Ultrasensitive, Robust and Reusable Optical Biosensor // Crystals. 2014. № 4. P. 498–508.
- Mikhailova T., Tomilin S., Lyashko S., Shaposhnikov A., Prokopov A., Karavainikov A., Bokova A., Berzhansky V. Tamm magnetophotonic structures with Bi-substituted iron garnet layers at oblique incidence // J. Phys.: Conf. Series. 2018. V. 1124. P. 051062.
- Mikhailova T., Shaposhnikov A., Prokopov A., Karavainikov A., Tomilin S., Lyashko S., Berzhansky V. Tamm plasmon-polaritons structures with Bi-substituted garnet layers // EPJ Web of Conferences. 2018. V. 185. P. 02016.
- Sasin M.E., Seisyan R.P., Kalitteevski M.A., Brand S., Abram R.A., Chamberlain J.M., Egorov A.Yu., Vasil'ev A.P., Mikhrin V.S., Kavokin A.V. Tamm plasmon polaritons: Slow and spatially compact light // Appl. Phys. Lett. 2008. V. 92. P. 251112.
- 14. Chen Y., Zhang D., Zhu L., Fu Q., Wang R., Wang P., Ming H., Badugu R., Lakowicz J.R. Effect of metal film thickness on Tamm plasmon-coupled emission // Phys. Chem. Chem. Phys. 2014. № 16. P. 25523–25530.
- Uchida K., Adachi H., Kikuchi D., Ito S., Qiu Z., Maekawa S., Saitoh E. Generation of spin currents by surface plasmon resonance // Nature Communications. 2015. ncomms6910. http://www.nature.com/articles/ncomms6910.
- Venditti I. Gold Nanoparticles in Photonic Crystals Applications: A Review // Materials (Basel). 2017. V. 10. № 2. P. 97.
- Inoue M., Baryshev A.V., Khanikaev A.B., Dokukin M.E., Chung K., Heo J., Takagi H., Uchida H., Lim P.B., Kim J. Magnetophotonic Materials and Their Applications // IEICE Transactions on Electronics. 2008. V. E91. C. Iss. 10. P. 1630–1638.
- Tomilin S.V., Berzhansky V.N., Shaposhnikov A.N., Prokopov A.R., Milyukova E.T., Karavaynikov A.V., Tomilina O.A. Ultrathin and Nanostructured Au Films with Gradient of Effective Thickness. Optical and Plasmonic Properties // J. Phys.: Conf. Ser. 2016. V. 741. P. 012113.
- Mikhailova T.V., Lyashko S.D., Tomilin S.V., Shaposhnikov A.N., Karavainikov A.V. and Berzhansky V.N. Hybrid states of Tamm plasmon polaritons in nanostructures with Bi-substituted iron garnets // J. Phys.: Conf. Ser. 2019. V. 1389. P. 012103.
- Mikhailova T.V., Lyashko S.D., Tomilin S.V., Karavainikov A.V., Prokopov A.R., Shaposhnikov A.N., Berzhansky V.N. Magneto-optical microcavity with Au plasmonic layer // J. Phys.: Conf. Ser. 2017. V. 917. P. 062053.
- Tomilina O.A., Berzhansky V.N., Tomilin S.V. The Influence of Dielectric Environment on Spectral Shift of Localized Plasmonic Resonance // J. Phys.: Conf. Ser. 2020. V. 1695. P. 012138.

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 123 № 7 2022