____ ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ ____ Свойства

УДК 537.611.4

МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ СПЛАВОВ НИЖЕ ПОРОГА ПЕРКОЛЯЦИИ

© 2023 г. В. И. Белоконь^{*a*}, О. И. Дьяченко^{*b*}, *, Р. В. Лапенков^{*a*}

^аИнститут наукоемких технологий и передовых материалов, департамент теоретической физики и интеллектуальных технологий, Дальневосточный федеральный университет, п. Аякс. 10. о. Русский, Владивосток, Приморский край, 690922 Россия

п. Аякс, 10, 0. Гусскии, Блиоивосток, приморскии краи, 090922 Госсия

^bИнститут наукоемких технологий и передовых материалов, департамент общей и экспериментальной физики, Дальневосточный федеральный университет,

п. Аякс, 10, о. Русский, Владивосток, Приморский край, 690922 Россия

*e-mail: dyachenko.oi@dvfu.ru Поступила в редакцию 19.08.2022 г. После доработки 18.11.2022 г.

Принята к публикации 21.11.2022 г.

В рамках теории случайных полей взаимодействия показана возможность определения точки Кюри и парамагнитной точки Кюри, соответствующей появлению ближнего порядка. В ферромагнитных сплавах существует интервал концентраций, для которого разрушается дальний порядок, но еще сохраняется ближний. Это приводит к появлению фазы кластерного стекла, для которого характерна зависимость магнитной восприимчивости от времени и появление вязкой намагниченности. На примере сплава AuFe исследуется поведение начальной магнитной восприимчивости как функции температуры и концентрации, проводится сравнение с данными, полученными экспериментально.

Ключевые слова: магнитная восприимчивость, фаза кластерного стекла, теория случайных полей взаимодействия, температура Кюри, магнитная вязкость, сплавы **DOI:** 10.31857/S0015323022601131, **EDN:** KPUOJZ

введение

В последнее время активно изучаются магнетики с конкурирующим взаимодействием, такие как спиновые, структурные, сверхпроводящие стекла и т.д. Среди неупорядоченных магнетиков и сплавов большинство веществ относится к спиновым стеклам, которых на данный момент известно огромное количество – металлы, диэлектрики, полупроводники, разбавленные и концентрированные сплавы, кристаллические и аморфные вещества [1–4].

Для развития теории фазовых переходов в магнитных материалах используются различные модели. Так модель Изинга, получившая решение для одномерного случая в 1925 г., ожидала появления точного решения для двумерных решеток до 1944 г., а для объемных решеток точное решение до сих пор не найдено.

Существуют несколько моделей, описывающих спиновые стекла: модель Эдвардса—Андерсона и модель бесконечного радиуса, предложенная Шеррингтоном и Киркпатриком. Также существует эвристическая модель состояния спинового стекла, основанная на результатах численного моделирования [5, 6]. Целью данного исследования является изучение возможности использования метода случайных полей взаимодействия и модели Изинга для описания магнитной восприимчивости магнетика, находящегося в состоянии спинового стекла, на примере часто обсуждаемого сплава AuFe.

ДАЛЬНИЙ И БЛИЖНИЙ ПОРЯДОК

Как было показано в работе [7], в приближении теории случайных полей взаимодействия в рамках модели Изинга критическая концентрация обменно-взаимодействующих ионов приближенно определяется выражением:

$$p_c = \frac{2}{z},\tag{1}$$

где z – координационное число, зависящее от типа решетки. В свою очередь магнитная восприимчивость χ при температуре выше температуры Кюри $T_{\rm C}$ вычисляется как [8]:

$$\chi = \frac{\frac{1}{mB} \operatorname{th}\left[\frac{mB}{kT}\right]}{1 - \frac{mH_0}{mB} \operatorname{th}\left[\frac{mB}{kT}\right]}.$$
(2)

В этом соотношении принято считать магнитный момент m и постоянную Больцмана k равными единице. Тогда температура T, поле H_0 и поле B измеряются в энергетических единицах и определяются как:

$$H_0 = p \sum_k \varphi_k, \tag{3}$$

$$B^2 = 2p \sum_{k} \varphi_k^2, \qquad (4)$$

где φ_k — обменное поле, p — концентрация обменно-взаимодействующих частиц, T — абсолютная температура.

При $B \to 0$ формула (2) переходит в известное из теории молекулярного поля выражение:

$$\chi = \frac{1}{T - H_0}.$$
(5)

Соответственно, $1/\chi$ обращается в 0 при $T = T_{\rm C}$ и асимптотически при $T \to \infty$ стремится к $T - H_0$. В теории молекулярного поля дальний и ближний порядок возникает одновременно. По нашему представлению, точка Кюри определяется соотношением (2), а из соотношения (5) определяется парамагнитная точка Кюри, соответствующая температуре появления ближнего порядка.

Таким образом, теория случайных полей взаимодействия позволяет различать точку Кюри и парамагнитную точку Кюри $\theta > T_{\rm C}$, соответствующую появлению ближнего порядка [13].

МАГНИТНАЯ ВЯЗКОСТЬ И НАЧАЛЬНАЯ ВОСПРИИМЧИВОСТЬ

В отсутствие протекающего кластера при $p < p_c$ дальний порядок невозможен, однако группы взаимодействующих обменно ионов (кластеры) будут сохранять магнитный момент при T < 0 и обеспечивать магнитные свойства сплава. Как следует из экспериментальных данных [14], при достаточно низких температурах магнитный момент растет пропорционально lg *t*, где *t* время действия постоянного поля *H*. Очевидно, что ансамбль кластеров должен обладать широким спектром времен релаксации, который обусловлен их разбросом по числу ионов и полям перемагничивания H_c . В этом случае время релаксации τ , магнитный момент кластера *m* и его критическое поле H_c будут связаны простым соотношением:

$$\frac{1}{\tau} = f_0 \exp\left[\frac{-mH_c}{kT}\right],\tag{6}$$

где f_0 – частотный фактор, k – константа Больцмана. Относительно частотного фактора в литературе существуют различные мнения, в данной работе мы связываем его с температурой Дебая, которая, например, для золота или железа имеет

порядок 10^2 К. Вероятность необратимого поворота магнитного момента кластера определяется "частотой попыток флуктуаций", которая связана с упругими колебаниями ионов в кристаллической решетке. По определению частота Дебая — это максимально возможная частота фононного спектра, поэтому мы связываем частотный фактор именно с частотой Дебая. Соответственно, из выражения $\hbar\omega_{\rm D} = kT_{\rm D}$ оценка для $\omega_{\rm D} \sim f_0$ имеет порядок 10^{13} с⁻¹.

Будем предполагать, что магнитный момент кластера подобно магнитному моменту однодоменной частицы зависит от температуры следую-

щим образом:
$$m(T) = m_0 \left(1 - \frac{T}{\theta}\right)^{\beta}$$
, где $\beta = 1/3$ [9].
Аналогично, $H_c = H_{c,0} \left(1 - \frac{T}{\theta}\right)^{\beta}$ ($H_{c,0}$ – поле при

Аналогично, $H_{c} = H_{c,0} \left(1 - \frac{1}{\theta} \right)$ ($H_{c,0}$ – поле при T = 0).

Таким образом:

$$\ln\left[f_0\tau\right] = \frac{mH_c}{kT};\tag{7}$$

$$m = m_0 \left(1 - \frac{T}{\Theta}\right)^{1/3}; \tag{8}$$

$$H_{\rm c} = H_{\rm c,0} \left(1 - \frac{T}{\theta} \right)^{1/3}; \tag{9}$$

$$\lg[f_0\tau] = \alpha m_0 \left(1 - \frac{T}{\theta}\right)^{2/3}.$$
 (10)

Полагая распределение кластеров по αm_0 равномерным (m_0 – магнитный момент частицы при T = 0), получим при постоянной температуре T равномерное распределение по lg[$f_0 \tau$], которое подтверждается опытом [12].

Если время релаксации τ меньше 10^{-2} с (характерного времени измерения магнитной восприимчивости), то восприимчивость системы частиц в случае отсутствия взаимодействия между кластерами может быть представлена следующим образом:

$$\chi \sim \frac{N \langle m^2 \rangle}{T},\tag{11}$$

$$\chi = \frac{A\left(1 - \frac{T}{\theta}\right)^{1/3}}{T},$$
(12)

1/2

где N — число кластеров, вовлеченных в процесс намагничивания: $N \sim 1/B(T) \sim 1/m(T)$, $\chi \sim m \sim \sim \left(1 - \frac{T}{\theta}\right)^{1/3}$ [10], $\langle m^2 \rangle$ — среднее значение квадрата магнитных моментов кластеров.

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 124 № 1 2023

Рис. 1. Экспериментальная магнитная фазовая диаграмма сплава AuFe [11].

Соотношение (12) справедливо при т < $< 10^{-2}$ с (lg[$f_0 \tau$] < 11). В противном случае определенная часть магнитных моментов не будет успевать реагировать на внешнее поле, что приведет к уменьшению магнитной восприимчивости.

Рассмотрим зависимость времени релаксации от температуры для кластера с максимальным значением α*m*₀:

$$x_1 = \lg[f_0\tau_1] = \alpha m_0 \frac{\left(1 - \frac{T}{\theta}\right)^{2/3}}{T}.$$
 (13)

При температуре $T + \Delta T$:

$$x_{2} = \lg[f_{0}\tau_{2}] = \alpha m_{0} \frac{\left(1 - \frac{T + \Delta T}{\theta}\right)^{2/3}}{T + \Delta T} =$$

$$= \alpha m_{0} \left(\frac{\left(1 - \frac{T}{\theta}\right)^{2/3}}{T} + \frac{(T - 3\theta)\Delta T}{3T^{2}\theta\left(1 - \frac{T}{\theta}\right)^{1/3}}\right).$$
(14)

 θ

Таким образом,

$$\Delta x = \alpha m_0 \frac{(T - 3\theta) \Delta T}{3T^2 \theta \left(1 - \frac{T}{\theta}\right)^{1/3}},$$
(15)
$$\frac{\left(\left(1 - \frac{T_2}{\theta}\right)^{2/3} - \left(1 - \frac{T_1}{\theta}\right)^{2/3}\right)}{\left(1 - \frac{T_1}{\theta}\right)^{2/3}}$$

$$x_2(T_2) - x_1(T_1) = \alpha m_0 \left(\frac{\left(1 - \frac{1}{\theta}\right)}{T_2} - \frac{\left(1 - \frac{1}{\theta}\right)}{T_1} \right).$$
(16)

Если при температуре T_1 максимальное время релаксации было 10^{-2} с, то

$$\alpha m_0 \frac{\left(1 - \frac{T_1}{\theta}\right)^{2/3}}{T_1} = 11.$$
 (17)

Обратимся к хорошо известной зависимости точки Кюри от концентрации железа в сплаве АиFe при низких температурах (рис. 1) [11]. Очевидно, что концентрация частиц Fe p = 0.16 соответствует концентрационному фазовому переходу для ГЦК-решетки частиц Au ($p_c = 2/z = 0.17$). В то же время в области 0.16 < *p* < 0.24 при низких температурах обнаруживаются элементы кластерного стекла, характерные для концентрационного фазового перехода ОЦК-решетки частиц Fe ($p_c = 2/z = 0.25$). Это обстоятельство отражает конкуренцию ОЦК- и ГЦК-решеток при уменьшении концентрации частиц Fe.

Использование полученных соотношений возможно при условии известных из экспериментальных данных температур T_1 и θ . В качестве примера рассмотрим полученную экспериментально зависимость магнитной восприимчивости от температуры для сплава AuFe с различной концентрацией железа [12] (рис. 2).

Как следует из рис. 2, при концентрации Fe p = 0.08 максимальная восприимчивость соответствует температуре $T_1 = 30$ К. Парамагнитная точка Кюри для железа с концентрацией 0.08 составляет приблизительно $\theta = 90$ К. Будем считать, что минимальным временем релаксации $\tau \approx 10^{-13}$ с обладают изолированные ионы железа.

В этом случае, как следует из уравнений (16) и (17):

$$x_{2}(T_{2}) - x_{1}(T_{1}) =$$

$$= \frac{11T_{1}}{\left(1 - \frac{T_{1}}{\theta}\right)^{2/3}} \left(\frac{\left(1 - \frac{T_{2}}{\theta}\right)^{2/3}}{T_{2}} - \frac{\left(1 - \frac{T_{1}}{\theta}\right)^{2/3}}{T_{1}} \right).$$
(18)

Рис. 2. Низкополевая магнитная восприимчивость $\chi(T)$ сплавов AuFe с концентрацией железа 5 и 8% [12].

В качестве примера рассмотрим случай при $T < T_1$. Пусть $T = T_2 = 20$ K, $T_1 = 30$ K, $\theta = 90$ K:

$$x_2(T_2) - x_1(T_1) = \lg[f_0\tau_2] - \lg[f_0\tau_1] = 7.29.$$
 (19)

Таким образом, в создании магнитного момента не примут участие кластеры, для которых время релаксации определяется соотношением:

$$11 \le \lg[f_0 \tau] \le 18.29. \tag{20}$$

Их число составляет:

$$\bar{N} = N \frac{7.29}{18.29} = 0.4N. \tag{21}$$

Соответственно магнитная восприимчивость при $T_2 = 20$ К должна составлять 0.6 от максимального значения 2.4, т.е. приблизительно 1.44, что согласуется с данными, представленными на графике.

При
$$T > T_1$$

$$\frac{\chi_2(T)}{\chi_1(T_1)} = \frac{T_1}{T} \frac{\left(1 - \frac{T}{\theta}\right)^{1/3}}{\left(1 - \frac{T_1}{\theta}\right)^{1/3}}.$$
(22)

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 124 № 1 2023

Рис. 3. Графики зависимости магнитной восприимчивости $\chi(T)$ сплава AuFe с концентрацией железа 5 и 8%. Сплошная линия — экспериментальные данные [12], пунктирная линия — результаты расчета.

Полагая $T_1 = 30$ К и $\chi_1(T_1) = 2.4$, можно построить зависимость восприимчивости от температуры $\chi(T)$ при T > 30 K.

Соответственно, при T < 30 К отношение $\frac{\chi_2(T_2)}{\chi_1(T_1)}$ определяется долей кластеров, имеющих

$$\tau \approx 10^{-2}$$
 c.

Таким образом, используя формулы с (16) по (20), можно построить, график зависимости $\chi(T)$ для концентрации железа 8% (рис. 3). Результаты расчета хорошо согласуются с экспериментальными данными, полученными в статье [12].

В случае сплава AuFe с концентрацией железа p = 0.05 температура, соответствующая максимальной восприимчивости может быть получена из следующих соображений:

$$\alpha m_0 \sim \frac{1}{p_c - p}, \quad \text{при} \quad p_c > p,$$
 (23)

$$\frac{\left(\alpha m_{0}\right)_{1}}{\left(\alpha m_{0}\right)} = \frac{p_{c} - p_{2}}{p_{c} - p_{c}},$$
(24)

$$\lg[f_0\tau] = 11. \tag{25}$$

Таким образом, используя формулы (13), (23)–(25), найдем температуру T_2 из соотношения:

$$1 = \frac{p_{\rm c} - p_2}{p_{\rm c} - p_1} \frac{\left(1 - \frac{T_1}{\theta_1}\right)^{2/3}}{T_1} \frac{T_2}{\left(1 - \frac{T_2}{\theta_2}\right)^{2/3}},$$
 (26)

где $T_1 = 30$ K, $\theta_1 = 90$ K, $\theta_2 = 56$ K, $p_c = \frac{2}{12}$, $p_1 = 0.08, p_2 = 0.05$.

Из формулы (26) следует, что $T_2 = 21$ К. Полученный результат согласуется с экспериментальными данными (см. рис. 2).

В соответствии с формулами (8), (23)–(26), для определения магнитной восприимчивости при p = 0.05 воспользуемся следующим соотношением:

$$\chi_{2} = \chi_{1} \frac{\left(p_{c} - p_{1}\right)^{2}}{\left(p_{c} - p_{2}\right)^{2}} \left(\frac{p_{2}}{p_{1}}\right)^{2} \frac{T_{1}}{T_{2}} \frac{\left(1 - \frac{T_{2}}{\theta_{2}}\right)^{1/3}}{\left(1 - \frac{T_{1}}{\theta_{1}}\right)^{1/3}} = 0.72, \quad (27)$$

где $\chi_1 = 2.4$.

Для концентрации p = 0.05 график зависимости $\chi(T)$ представлен на рис. 2 пунктирной линией.

ЗАКЛЮЧЕНИЕ

Таким образом, на основании проведенных расчетов можно утверждать:

1. Поведение магнитной восприимчивости сплава AuFe в интервале концентраций от 5 до 8% удовлетворяет предположению о существенном влиянии прямого обмена на магнитное упорядочение в кластерах. На этом интервале концентраций реализуется упорядочение типа кластерного

стекла с размером кластеров ~ $\frac{1}{p_{\rm c} - p}$;

2. Как следует из формулы (1), критическая концентрация для ОЦК-решетки, характерной для железа, равна $p_c = 0.25$. В то же время для ГЦК-решетки золота $p_c = 0.17$. Постепенное разбавление железа золотом приводит к конкуренции ОЦК- и ГЦК-решеток, что отражается на зависимости точки Кюри от концентрации железа и приводит к появлению кластерного стекла при концентрации ниже 0.25.

Результаты исследований, представленные в статье, получены за счет средств гранта Президента Российской Федерации для государственной поддержки ведущих научных школ Российской Федерации (НШ-2559.2022.1.2).

СПИСОК ЛИТЕРАТУРЫ

- Keim N.C., Paulsen J.D., Zeravcic Z., Sastry S., Nagel S.R. Memory formation in matter// Rev. Mod. Phys. 2019. V. 91. P. 035002.
- Morgan I.L., Avinery R., Rahamim G., Beck R., Saleh O.A. Glassy Dynamics and Memory Effects in an Intrinsically Disordered Protein Construct // Phys. Rev. Lett. 2020. V. 125. P. 058001.
- Kumar R., Sharma J., Iyer K., Sampathkumaran E. Reentrant spin-glass and transport behavior of Gd₄PtAl, a compound with three sites for Gd // J. Magn. Magn. Mater. 2019. V. 490. P. 165515.
- Binder K. Spin Glasses: Experimental Facts, Theoretical Concepts, and Open Questions // Review of Modern Phys. 1986. V. 58(4). P. 801–976.
- Доценко В.С. Физика спин-стекольного состояния // Успехи физ. наук. 1993. Т. 163. № 6. С. 1–37.
- Коренблит И.Я., Шендер Е.Ф. Спиновые стекла и неэргодичность // Успехи физических наук. 1989. Т. 157. № 2. С. 267–310.
- Белоконь В.И., Дьяченко О.И., Лапенков Р.В. Влияние диффузии на возникновение перколяционного кластера в магнетиках с прямым обменом // ФММ. 2021. Т. 122. С. 1257–1260.
- Belokon V., Lapenkov R., Chibiriak E., Dyachenko O. Oguchis Magnetic susceptibility of systems with different types of interactions: The random interaction fields method // J. Magn. Magn. Mater. 2020. V. 512. P. 167051.
- 9. *Иудин Д.И.* Фракталы: от простого к сложному. Н. Новгород: ННГАСУ. 2012. С. 200.
- Белоконь В.И., Дьяченко О.И., Лапенков Р.В., Чибиряк Е.В. Многообразие видов магнитного упорядочения: метод случайных полей обменного взаимодействия // ФММ. 2020. Т. 121. С. 802–806.
- Hagiwara M., Nagata K. Magnetism and Magnetic Interaction in a Complex Oxide Glass System Containing Deposited Clusters of Magnetite at the Superparamagnetic State // J. Phys. Soc. Japan. 1998. V. 67. P. 3590– 3600.
- Cannella V., Mydosh J.A. Magnetic ordering in goldiron alloys // Phys. Rev. B-Solid State. 1972. V. 6. P. 4220.
- 13. Вонсовский С.В. Магнетизм. М.: Наука. 1971. 1032 с.
- 14. *Петраковский Г.А.* Спиновые стекла // Соросовский образовательный журн. 2001. Т. 7. № 9.