_____ ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ ____ СВОЙСТВА

УДК 537.611.3

ОСОБЕННОСТИ ПРОЯВЛЕНИЯ ФЛЕКСОМАГНИТОЭЛЕКТРИЧЕСКОГО ЭФФЕКТА ВО ВНЕШНЕМ МАГНИТНОМ ПОЛЕ

© 2023 г. Р. М. Вахитов^{а,} *, Р. В. Солонецкий^а, А. Р. Низямова^а

^аУфимский университет науки и технологий, ул. Заки Валиди, 32, Уфа, 450076 Россия *e-mail: vakhitovrm@yahoo.com Поступила в редакцию 20.07.2022 г. После доработки 23.09.2022 г.

Принята к публикации 12.10.2022 г.

Исследуется влияние магнитного поля на поведение 180-градусных доменных границ в одноосной ферромагнитной пленке с неоднородным магнитоэлектрическим взаимодействием. Показано, что в зависимости от величины и направления поля можно усилить или ослабить флексомагнитоэлектрический эффект в исследуемом в образце. Кроме того, было установлено, что в обратном поле возможен эффект переключения характера взаимодействия источника электрического поля с доменной стенкой с притяжения на отталкивание.

Ключевые слова: одноосная ферромагнитная пленка, флексомагнитоэлектрический эффект, 180-градусная доменная граница, неоднородное электрическое поле, магнитное поле **DOI:** 10.31857/S0015323022601350, **EDN:** KQLORM

1. ВВЕДЕНИЕ

В настоящее время повышенный интерес вызывают исследования магнитоэлектрических эффектов, наблюдаемых в определенном классе магнетиков, называемых мультиферроиками [1, 2]. Они характеризуются двумя и более параметрами порядка и обладают рядом необычных свойств, которые могут найти применение в устройствах спинтроники и магнитной памяти нового поколения. К мультиферроикам, как известно, относятся и пленки ферритов-гранатов, в которых и был обнаружен гигантский магнитоэлектрический эффект (линейный) при комнатной температуре [3]. Спустя некоторое время в них был открыт новый эффект подобного типа, заключающийся в явлении смещения доменных границ (ДГ) под действием неоднородного электрического поля [4]. Анализируя данные эксперимента, авторы предположили, что их можно объяснить проявлефлексомагнитоэлектрического нием эффекта (ФМЭ) [1], т.е. наличием в исследуемых материалах неоднородного магнитоэлектрического взаимодействия (НМЭВ), впервые рассмотренного в работе [5]. Полученные в [4] результаты инициировали новые исследования в этом направлении [6-11], что позволило более основательно изучить влияние электрического поля на структуру и свойства магнитных неоднородностей различной топологии в магнитных пленках с НМЭВ.

В то же время в работах [12, 13] была предложена другая интерпретация опытных данных [3], которая не связана с "заряженными" ДГ. Она базируется на эффекте возможного изменения константы анизотропии материала, обусловленного смещением однотипных ионов относительно положения равновесия под действием неоднородного электрического поля. Необходимо отметить. что в работе [14] на основе флуоресцентной спектроскопии одиночных молекул была подтверждена флексомагнитоэлектрическая природа наведенной электрической поляризации в пленках ферритов-гранатов. Тем не менее сравнительный анализ приведенных механизмов показал [15], что они оба на качественном уровне вполне объясняют картину поведения ДГ в неоднородном электрическом поле. Отсюда следует, что каждый из механизмов вносит свой вклад в изучаемое явление. Однако какой из них является доминирующим, необходимо выяснить в ходе дальнейших исследований. Кроме того, представляет практический интерес изучение различных факторов (внешних или внутренних), существенно сказывающихся на степень проявления данного эффекта. В частности, в работах [15-19] было показано, что на некоторые свойства ДГ (величину смещения, скорость и т.д.), а также на ее трансформацию в неоднородном электрическом поле существенное влияние оказывает внешнее магнитное поле, и в особенности ее плоскостная компонента [15, 19]. С этой целью в данной работе проводится теоретический анализ влияния внешнего магнитного поля на характер проявления ФМЭ в изучаемых магнетиках.

2. ПОСТАНОВКА ЗАДАЧИ

Рассматривается одноосный ферромагнетик в форме пленки толщиной *D*. Предполагается, что ось легкого намагничивания перпендикулярной анизотропии направлена вдоль нормали к пленке и параллельна оси *Oz* (рис. 1), ось *Oy* совпадает с направлением, вдоль которого образец неоднороден, т.е. вдоль нее происходит вращение магнитных моментов. Вектор намагниченности $\mathbf{M} = M_{s}\mathbf{m}$ (M_{s} – намагниченность насыщения) выражается через единичный вектор \mathbf{m} , определяемый через переменные θ и ϕ : $\mathbf{m} = (\sin\theta \cdot \cos\phi, \sin\phi, \cos\theta \cdot \cos\phi)$.

Энергия магнетика, приведенная к площади сечения пленки плоскостью *xOz*, берется в виде:

$$E = \int_{-\infty}^{\infty} \left\{ A \left[\left(\frac{d\varphi}{dy} \right)^2 + \cos^2 \varphi \left(\frac{d\theta}{dy} \right)^2 \right] + K_u \times \right.$$

$$\times \left(\sin^2 \theta \cos^2 \varphi + \sin^2 \varphi \right) + \varepsilon_{\text{int}} + \varepsilon_{\text{H}} + 2\pi M_s^2 \sin^2 \varphi \left. \right\} \frac{(1)}{dy}.$$

Здесь A — обменный параметр, K_u — константа одноосной анизотропии, ε_{int} , ε_H — плотности энергии НМЭВ и зеемановского взаимодействия, соответственно. Последнее слагаемое представляет плотность энергии размагничивающих полей от объемных зарядов [20, 21]. При этом предполагается, что пленка является толстой ($\Delta_0 \ll D < \Lambda_0, \Delta_0 = \sqrt{A/K_u}$ — характерный размер ДГ, $\Lambda_0 = \sqrt{A/2\pi M_s}$ — размер линии Блоха [22]) и пренебрегается вкладом размагничивающих полей. Соответственно, формула для ε_H имеет вид:

$$\varepsilon_{\rm H} = -M_{\rm s}\,({\rm m}{\rm H}),\tag{2}$$

+(

выражение для ε_{int} берется в форме [23]:

$$\varepsilon_{\rm int} = M_{\rm s} \mathbf{E} \left(b_{\rm l} \mathbf{m} {\rm div} \mathbf{m} + b_{\rm 2} \left[\mathbf{m} \times {\rm rot} \mathbf{m} \right] \right), \qquad (3)$$

где b_1 , b_2 — магнитоэлектрические постоянные, Е и **H** — напряженности, соответственно, электрического и магнитного полей. В данном случае эти поля считаются неоднородными и действуют в ограниченных областях пространства:

$$\mathbf{E} = \mathbf{E}_0 / \mathrm{ch}^{-1} (y/L_1), \quad H = H_0 / \mathrm{ch}^{-1} (y/L_2), \quad (4)$$

где $\mathbf{E}_0 = \mathbf{E}(0)$, $H_0 = H(0)$ — значения соответствующих полей в центре полосы их действия, L_1, L_2 — характерные размеры соответствующих полос вдоль оси *Оу*. При этом предполагается, что поле **E** направлено вдоль оси *Oz* (**E**||*Oz*), поле **H** произвольно.

Рис. 1. Схема, иллюстрирующая геометрию задачи.

Тогда выражение для ε_{int} , записанное через угловые переменные, примет вид:

$$\varepsilon_{\text{int}} = \mathbf{E}M_{s}^{2} \bigg[(b_{1}\cos^{2}\varphi + b_{2}\sin^{2}\varphi)\cos\theta \frac{d\varphi}{dy} + b_{2}\sin\theta\sin\varphi\cos\varphi \frac{d\theta}{dy} \bigg].$$
(5)

Структура и свойства магнитных неоднородностей определяются из уравнений Эйлера— Лагранжа, которые имеют вид:

$$\frac{d}{d\xi} \left(\cos^2 \varphi \frac{d\theta}{d\xi} \right) - \sin \theta \cos \theta \cos^2 \varphi + + (\lambda_1 + \lambda_2) f(\xi) \sin \theta \cos^2 \varphi d\varphi \frac{d\varphi}{d\xi} + + \lambda_2 \sin \theta \sin \varphi \cos \varphi \frac{df(\xi)}{d\xi} - \frac{\frac{\partial \varepsilon_{\rm H}}{\partial \theta}}{M_{\rm s} H_{\rm u}} = 0; \frac{d^2 \varphi}{d\xi^2} - \sin \varphi \cos \varphi \left[\cos^2 \theta - \left(\frac{d\theta}{d\xi} \right)^2 \right] -$$
(6)
$$- (\lambda_1 + \lambda_2) f(\xi) \sin \theta \cos^2 \varphi \frac{d\theta}{d\xi} + (\lambda_1 \cos^2 \varphi + \lambda_2 \sin^2 \varphi) \cos \theta \frac{df(\xi)}{d\xi} - \frac{1}{M_{\rm s} H_{\rm u}} \frac{\partial \varepsilon_{\rm H}}{\partial \varphi} - - Q^{-1} \sin \varphi \cos \varphi = 0.$$

Здесь $\lambda_i = \mathbf{E}_0 / \mathbf{E}_i = \mathbf{E}_0 M_s^2 b_i / 2K_u \Delta_0$, $\mathbf{E}_i = 2K_u \times \Delta_0 / M_s^2 b_i$, i = 1, 2; $\xi = y / \Delta_0$, $l_i = L_i / \Delta_0$, $f(\xi) =$ = ch⁻¹ (ξ / l_i), Q = $K_u / 2\pi M_s^2$. Величины λ_i , \mathscr{E}_i – соответственно, приведенные и характерные электрические поля, ξ – приведенная координата, Q – фактор качества материала, $H_u = 2K_u / M_s$ – поле одноосной анизотропии. В дальнейшем будет задействован еще один безразмерный параметр h == H_0 / H_u (приведенное магнитное поле).

Численный анализ этих уравнений с учетом НМЭВ показал [21], что в одноосных ферромагнетиках при h = 0 в зависимости от выбранных

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 124 № 1 2023

Рис. 2. Зависимости интегральной величины поляризации N 180° ДГ от параметра λ в магнитном поле **Н** || Ox. Линия I (черная) соответствует h = 0, 2 (красная) - h = 0.1, 3 (синяя) - h = 0.2, 4 (желтая) h = 0.4. Здесь и в дальнейшем значения материальных параметров берутся следующие: $Q = 3, l_1 = 5, l_2 = 1000$.

граничных условий, налагаемых на θ и ϕ при $|\xi| \to \infty$, возможно существование трех типов микромагнитных структур. Таковыми являются 180° ДГ с некруговой траекторией вектора намагниченности [24], 0° ДГ с квазиблоховской структурой [24, 25], 0° ДГ неелевского типа [25]. В данной работе основное внимание будет уделено поведению 180° ДГ в исследуемом ферромагнетике во внешнем магнитном поле, что связано с аналогичными экспериментальными исследованиями Φ MЭ [15, 19], в которых наблюдали только такой тип границ.

3. ТРАНСФОРМАЦИЯ 180° ДГ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ, **H** = 0

Очевидно, 180° ДГ блоховского типа во внешнем магнитном поле **H** будет трансформироваться, однако характер этих изменений будет зависеть как от величины, так и от ориентации поля **H** относительно плоскости ДГ. При этом случай, когда **H** $\parallel Oz$, для 180° ДГ не имеет смысла рассматривать, так как такое поле приведет лишь к смещению ДГ как целого.

Рассмотрим сначала случай h = 0. Численное исследование уравнений (6) (здесь рассматривается случай $\lambda_1 = \lambda_2 = \lambda$) показывает [21], что 180° ДГ блоховского типа при действии на нее неоднородного электрического поля претерпевает ряд трансформаций ее текстуры при возрастании величины λ : 180° ДГ блоховского типа \rightarrow 180° ДГ с квазиблоховской структурой \rightarrow 180° ДГ с квазинеелевской структурой \rightarrow 180° ДГ неелевского типа. Магнитные неоднородности, находящиеся в данной цепочке превращений в промежуточных позициях, относятся к ДГ с некруговой траекторией вектора намагниченности [10, 21, 24]. Это означает, что магнитные моменты в обоих типах ДГ имеют как блоховскую ($m_x \neq 0$), так и неелевскую ($m_y \neq 0$) компоненты. Однако их отличие заключается в том, что 180° ДГ с квазиблоховской структурой не имеет участков с чисто неелевским законом поворота магнитных моментов ($m_y = 0$), а во втором типе такие участки имеются.

Следует отметить, что каскад трансформаций структуры 180° ДГ, возникающих при возрастании электрического поля, сопровождается вначале индуцированием в окрестности 180° ДГ связанных зарядов, и последующим возрастанием электрической поляризации (как ее дифференциальной величины $p = vp_0$, так и интегральной – $P = Np_0$, где v и N – приведенные, дифференциальная и интегральная поляризации ($p_0 = M_s^2 b_j / \Delta_0$ – характерная величина поляризации [21]). При достижении полем значения $\lambda = \lambda_c$, при котором 180° ДГ становится полностью неелевской, на графике зависимости $N = N(\lambda)$ (рис. 2, черная кривая) имеется излом: резкий подъем сменяется участком медленного (адиабатического) возрастания величины N.

4. ТРАНСФОРМАЦИЯ 180° ДГ В МАГНИТНОМ ПОЛЕ, $\lambda = 0$

Рассмотрим влияние внешнего магнитного поля на структуру и свойства 180° ДГ. Положим, что **H** || *Ох* и совпадает с направлением магнитных моментов в плоскости ДГ при *y* = 0. При этом магнитные моменты образуют с полем угол ψ , лежащий в интервале $0 \le \psi \le \theta_0$, где θ_0 = arcsin (h). Анализ уравнений (6) для данного случая показывает, что в отсутствие электрического поля (λ = 0) намагниченность в доменах **M**₀ составляет с осью *Оz* угол θ_0 . Соответственно, 180° ДГ блоховского типа при действии магнитного поля *h* становится уже (180°–2 θ_0) с законом поворота вектора **m** в стенке, определяемый выражениями (при $l_2 \rightarrow \infty$):

$$\theta = 2 \arctan\left\{ \left[1 - \sqrt{1 - h^2} th\left(\frac{\sqrt{1 - h^2}\xi}{2}\right) \right] / h \right\}, \quad \varphi = 0.(7)$$

Отсюда видно, что при возрастании поля *h* максимальный угол разворота намагниченности θ_m в такой ДГ, равный $\theta_m = (180^\circ - 2\theta_0)$, будет непрерывно уменьшаться, а ее ширина Δ будет увеличиваться (рис. 3).

При достижении полем *h* критической величины h = 1 ($H = H_u$) предельные ориентации намагниченности в доменах \mathbf{m}_1 и \mathbf{m}_2 ($\mathbf{m}_1 = \mathbf{m}$ ($-\infty$), $\mathbf{m}_2 = \mathbf{m}$ (∞)) становятся параллельными ($\mathbf{m}_1 \| \mathbf{m}_2$),

Рис. 3. Зависимости ширины 180° ДГ Δ от магнитного поля. (**H** || *Ox*). Здесь $\lambda = 0$, линия *I* соответствует $l_2 = 3$, $2 - l_2 = 5$, $3 - l_3 = 10$, $4 - l_2 = 1000$.

а ширина такой ДГ неограниченно возрастает. Соответственно, $\theta_m \rightarrow 0$ и стенка исчезает. Однако, если магнитное поле является неоднородным и действует в ограниченной области, представляющей полоску шириной l_2 (вдоль оси *Oy*), то в этом случае согласно расчетам при возрастании *h* ширина ДГ Δ будет также увеличиваться, но с меньшим углом наклона соответствующей кривой (рис. 3). В то же время угол разворота θ_m будет убывать, но предельного значения $\theta_m = 0$ он достигнет в значительно больших полях (h > 1).

Если магнитное поле направлено противоположно оси Ox, то 180° ДГ будет трансформироваться по другому сценарию. В данном случае магнитные моменты в доменах начнут также отклоняться от оси Oz в сторону направления поля **H**, но разворот вектора **m** будет уже $\theta_m \ge \pi$. При этом структура 180° ДГ станет описываться уже другим распределением намагниченности, имеющем вид (при $l_2 \to \infty$):

$$\theta = -2\operatorname{arctg}\left\{\left[1 + \sqrt{1 - h^2} \operatorname{cth}\left(\sqrt{1 - h^2} \xi/2\right)\right]/h\right\}, \quad (8)$$

$$\varphi = 0.$$

Соответственно, годограф вектора намагниченности **m** будет описывать более "длинную" траекторию на поверхности сферы единичного радиуса ($\theta_m = \pi + 2\theta_0$), чем в первом случае ориентации **H**. Таким образом эта стенка представляет ($180^\circ + 2\theta_0$) ДГ. При возрастании *h* угол θ_m будет увеличиваться и в пределе при *h* = 1 угол $\theta_m = 2\pi$, т.е. ($180^\circ + 2\theta_0$) ДГ станет уже 360° ДГ. Соответственно, магнитные моменты, расположенные в центре стенки (вблизи *y* = 0), будут направлены противоположно полю **H**. Как извест-

Рис. 4. Зависимости угла ϕ от приведенной координаты ξ в магнитном поле $H \parallel Oy$ для разных значений h. Здесь $\lambda = 0$, линия I' (зеленая штриховая) соответствует h = 0.1, 2' (желтая штрих-пунктирная) -h == -0.1, $\lambda = 0.3$: линия I (фиолетовая) соответствует значению h = 0.1, линия 2 (красная) -h = 0, линия 3(зеленая) -h = -0.2, линия 4 (голубая) -h = -0.26, линия 5 (желтая) -h = -0.3, линия 6 (черная) -h = -0.4

но, такая стенка становится неустойчивой относительно флуктуаций вектора намагниченности неелевского типа и при определенной величине поля h [26] схлопывается и исчезает.

Если магнитное поле **H** направлено вдоль оси *Oy*, то происходит качественное изменение структуры 180° ДГ в магнитном поле. В этом случае стенка, оставаясь 180-градусной, преобразуется из блоховского типа в квазиблоховскую стенку, т.к. происходит выход намагниченности **M** из плоскости ДГ ($\phi \neq 0$). Кроме того, намагниченность в доменах **M**₀ отклоняется от плоскости *xOz* (совпадающая с плоскостью ДГ) на угол $\phi_0 = \phi(\infty) \neq 0$ (рис. 4, зеленая штриховая линия (*T*)).

С возрастанием *h* максимальный угол выхода φ_m увеличивается и при некотором $h = h_1$ достигает значения $\varphi_m = \pi/2$. При дальнейшем увеличении поля вплоть до $h = h_2$ (при Q = 3, $l_2 = 1000$, $h_2 =$ = 0.4) неелевский вклад в структуру ДГ возрастает (m_y увеличивается), а блоховский – убывает ($m_x \rightarrow 0$). Наконец при $h = h_2$ стенка становится полностью неелевской. Последующее увеличение *h* приводит к тому, что стенка становится неустойчивой и схлопывается. При уменьшении размера полосы неоднородности магнитного поля l_2 это критическое поле возрастает. В обратном поле процесс трансформации 180° ДГ полностью повторяется, однако угол φ_m в этом случае будет принимать значения противоположного знака.

Рис. 5. Профили 180° ДГ, определяемые зависимостями угловых переменных θ (а) и φ (б) от приведенной координаты ξ в магнитном поле **H** || *Ох*: линия *1* (черная) – *h* = 0, линия *2* (красная) – *h* = 0.2, линия *3* (синяя) – *h* = -0.13. Здесь λ = 0.2.

5. ПРЕОБРАЗОВАНИЕ 180° ДГ В МАГНИТНОМ ПОЛЕ, $(\lambda \neq 0)$

Изучим теперь влияние внешнего магнитного поля на флексомагнитоэлектрический эффект. Будем считать, что **H** || *Ох*, и киральность ДГ такова, что направление магнитных моментов (при y = 0) совпадают с **H**. Тогда при "включении" поля будет иметь место аналогичная трансформация, рассмотренная в предыдущем разделе: 180° ДГ с квазиблоховской структурой преобразуется в (180° – 2 θ_0) ДГ также с выходом **m** из плоскости вращения магнитных моментов (рис. 5а). Однако при этом с возрастанием величины *h*, которое стремится повернуть магнитные моменты вдоль поля (т.е. вернуть их снова в плоскость ДГ при неизменном значении параметра λ) максимальный угол выхода ϕ_m уменьшается (рис. 5б).

Кроме того, понижается и максимальная величина дифференциальной поляризации *p*_m (рис. 6).

Последнее приводит к уменьшению интегральной поляризации *N*. Однако с возрастанием напряженности электрического поля \mathscr{C}_0 (увеличивается λ) относительное убывание $\Delta N/N (\Delta N = N (h_2) - N(h_1), N(h_i)$ – значения интегральной поляризации, рассматриваемые

Рис. 6. Зависимости величины $v_m для 180^\circ Д\Gamma$ от параметра λ в магнитном поле $H \parallel Ox$. Линия 1 (черная) соответствует h = 0, 2 (красная) -h = 0.1, 3 (синяя) -h == 0.2, 4 (желтая) -h = 0.4.

для разных величин h_i (i = 1.2), но при одинаковом значении λ) будет уменьшаться, пока в пределе не достигнет нуля. В этом случае все кривые $N = N(\lambda)$ сходятся в пределе ($\lambda \rightarrow \infty$) к одной и той же асимптоте (рис. 2), которой соответствует кривая зависимости 180° ДГ неелевского типа (h = 0). Такое же поведение демонстрируют и кривые зависимости $\phi_m = \phi_m(\lambda)$ и $v_m = v_m(\lambda)$. Отсюда следует, что воздействие магнитного поля с $\mathbf{H} \parallel Ox$, ослабляет ФМЭ. Кроме того, наличие магнитного поля приводит к сглаживанию перехода от 180° ДГ квазинеелевского типа в 180° ДГ типа Нееля (на графиках зависимости $N = N(\lambda)$), (рис. 2) отсутствует "излом" кривых), а также – к понижению критического поля λ_c такого перехода.

Если магнитное поле направить противоположно оси Ox, то магнитные моменты в доменах будут отклоняться от оси Oz в обратную сторону и 180° ДГ также преобразуется в (180° – 2 θ_0) ДГ. При этом угол выхода намагниченности из плоскости стенки существенно возрастает (рис. 5), соответственно, возрастает и дифференциальная поляризация v, что ведет к увеличению интегральной поляризации N (рис. 2). Таким образом, в обратном поле ФМЭ в исследуемом образце значительно усиливается.

Рассмотрим теперь ситуацию, когда на исходный магнетик действует магнитное поле $\mathbf{H} \mid Oy$. В этом случае 180° ДГ типа Блоха преобразуется под действием магнитного поля в квазиблоховскую стенку уже при $\lambda = 0$. При этом намагниченность в доменах \mathbf{M}_0 отклоняются от плоскости xOz на угол φ_0 (рис. 4). При $\lambda \neq 0$ процесс изменения топологии стенки усиливается; с возрастанием величины *h* увеличивается как угол φ_0 и максимальный угол отклонения от однородного состояния ($\varphi_m - \varphi_0$), так и максимальное значение диффе-

Рис. 7. Зависимости интегральной поляризации 180° ДГ от параметра λ в магнитном поле $H \parallel Oy$. Линия 4 (черная) соответствует h = 0, 3 (красная) -h = 0.1, 2 (синяя) -h = 0.2, 1 (желтая) -h = 0.4, 5 (красная штриховая) -h = -0.1, 6 (синяя штриховая) -h = -0.2.

ренциальной поляризации v_m . Соответственно, повышается и величина интегральной поляризации N (рис. 7).

При этом наблюдается интересная закономерность: чем больше значение h, тем при меньших электрических полях достигается переход квазиблоховской 180° ДГ в неелевскую стенку, в то же время максимальное значение интегральной поляризации уменьшается (рис. 8).

При достижении электрическим полем его критического значения $\lambda = \lambda_c$ структура 180° ДГ становится неелевской. При этом на графике зависимости интегральной поляризации *N* от λ также имеет место излом, аналогично тому, что было при h = 0. Отсюда следует, что при действии магнитного поля **H** вдоль оси *Oy* ФМЭ усиливается, но происходит это в малых полях *h*, а в больших – эффект ослабевает.

В случае, когда направление Н противоположно оси Оу, магнитные моменты, поворачиваясь в сторону поля, в результате образуют угол $\phi_0 = \phi(\infty)$, который становится отрицательным и понижает максимальный угол выхода намагниченности из плоскости ДГ ϕ_m (рис. 4). В итоге уменьшаются величины v_m и *N*. При дальнейшим возрастании h, величина N понижается и при некотором значении $h = h_0$, она становятся нулевой, а при $h > h_0$ отрицательной (рис. 8). Это означает, что 180° ДГ должна будет отталкиваться от источника неоднородного электрического поля. Таким образом, путем переключения направления магнитного поля можно осуществить смену знака поляризации и тем самым изменить характер взаимодействия 180° ДГ с внешним электрическим полем. Полученный результат хорошо согласуется с экспериментальными данными [4]. Он позволяет с помощью электрического и магнитного полей ре-

Рис. 8. Зависимости максимального угла отклонения от однородного состояния $\phi_{\rm m}$ 180° ДГ от параметра λ в магнитном поле $H \parallel Oy$. Линия 4 (черная) соответствует h = 0, 3 (красная) - h = 0.1, 2 (синяя) - h = 0.2, 1 (желтая) h = 0.4, 5 (красная штриховая) - h = -0.1, 6 (синяя штриховая) - h = -0.2.

гулировать движение ДГ, что представляет практический интерес.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Таким образом, из приведенных результатов следует, что наличие внешнего магнитного поля оказывает существенное влияние на флексомагнитоэлектрический эффект, наблюдаемый в пленках ферритов-гранатов с НМЭВ. Степень его воздействия зависит как от величины, так и от ориентации магнитного поля относительно плоскости 180° ДГ. В частности, в данной работе структуру 180° ДГ изучали при двух взаимно перпендикулярных направлениях: $H \parallel Ox$, $H \parallel Oy$. Coгласно расчетам существенное (многократное) усиление эффекта будет иметь место при действии на 180° ДГ электрических и магнитных полей в следующей геометрии: $E \parallel O_z, \mathbf{H} \parallel O_y$, причем наибольший эффект усиления можно достичь уже в малых магнитных полях. Это согласуется с экспериментальными данными [15, 19], из которых следует, что наибольшее смещение ДГ в неоднородном электрическом поле происходит при действии магнитного поля, перпендикулярного плоскости стенки. В данном случае эффект усиления интегральной поляризации N достигается за счет возрастания угла выхода вектора намагниченности из плоскости ДГ. Соответственно, повышается величина объемных магнитных зарядов, определяемая выражением $\rho_v = -M_s \text{div} \mathbf{m}$ [18, 26], что в итоге и приводит к возрастанию параметров и N.

Из полученных результатов следует также, что, меняя ориентацию магнитного поля на противоположную, можно изменить характер проявления флексомагнитоэлектрического эффекта: либо его усилить (в случае $\mathbf{H} \parallel Ox$), либо ослабить. Однако переключением направления **Н** можно достичь также и изменения характера взаимодействия ДГ с электрическим полем с притяжения ДГ на ее отталкивание и наоборот. Данное свойство может иметь важное значение в прикладных разработках. С другой стороны, это свойство указывает на то, что флексомагнитоэлектрический механизм является доминирующим и при воздействии на ДГ неоднородного электрического поля. Дело в том, что перпендикулярное магнитное поле может изменять ширину ДГ, его топологию, но не перемещать его.

Работа выполнена при финансовой поддержки Государственного задания на выполнение научных исследований лабораториями (Приказ MH-8/1356 от 20.09.2021).

СПИСОК ЛИТЕРАТУРЫ

- 1. Пятаков А.П., Звездин А.К. Магнитоэлектрические материалы и мультиферроики // УФН. 2012. Т. 182. № 6. С. 593-620.
- Spaldin N.A., Ramesh R. Advances in magnetoelectric multiferroics // Nature Mater. 2019. V. 18. P. 203–212.
- 3. *Кричевцов Б.Б., Павлов В.В., Писарев Р.В.* Линейное воздействие электрического поля на процессы намагничивания в пленках ферритов-гранатов// Письма в ЖЭТФ. 1989. Т. 31. № 7. С. 77–88.
- Логгинов А.С., Мешков Г.А., Николаев А.В., Пятаков А.П. Магнитоэлектрическое управление доменными границами в пленке феррита-граната // Письма в ЖЭТФ. 2007. Т. 86. № 2. С. 124–127.
- 5. Барьяхтар В.Г., Львов В.А., Яблонский Д.А. Теория неднородного магнитоэлектрического эффекта // Письма в ЖЭТФ. 1983. Т. 37. № 12. С. 565–567.
- Meshkov G.A., Pyatakov A.P., Belanovsky A.D., Zvezdin K.A., Logginov A.S. Writing Vortex Memory Bits Using Electric Field // J. Magn. Soc. Jpn. 2012. V. 36. P. 45–48.
- 7. Вахитов Р.М., Харисов А.Т., Николаев Ю.Е. Влияние электрического поля на структуру доменных границ в магнетиках с флексомагнитоэлектрическим эффектом // ДАН. Физика. 2014. Т. 455. № 2. С. 150–152.
- Борич М.А., Танкеев А.П., Смагин В.В. Структура и динамические свойства скрученной магнитной доменной границы в электрическом поле // ФТТ. 2016. Т. 58. № 1. С. 63–72.
- Борич М.А., Танкеев А.П., Смагин В.В. Микромагнитная структура доменной границы с блоховскими линиями в электрическом поле // ФТТ. 2016. Т. 58. № 7. С. 1329–1337.
- 10. Вахитов Р.М., Исхакова Р.Р., Юмагузин А.Р. Магнитные фазы и неоднородные микромагнитные структуры в феррит-гранатовой пленке с ориентацией (210) // ФТТ. 2018. Т. 60. № 5. С. 923–932.
- Pyatakov P., Belotelova V.I., Kulikova D.P., Khokhlova N.E., Pyatakova Z.A. Magnetoelectricity in topological magnetic textures // J. Magn. Magn. Mater. 2017. V. 440. P. 60–62.
- Кабыченков А.Ф., Лисовский Ф.В., Мансветова Е.Г. Магнитоэлектрический эффект в пленках гранатов с наведенной магнитной анизотропией в неод-

нородном электрическом поле // Письма в ЖЭТФ. 2013. Т. 9. № 5. С. 304–308.

- Арзамасцева Г.В., Балбашов А.М., Лисовский Ф.В., Мансветова Е.Г., Темирязев А.Г., Темирязева М.П. Свойства обладающих магнитоэлектрическим эффектом эпитаксиальных пленок ферритов-гранатов с (210)-ориентацией // ЖЭТФ. 2015. Т. 147. № 4. С. 793-810.
- Veshchunov I.S., Mironov S.V., Magrini W., Stolyarov V.S., Rossolenko A.N., Skidanov V.A., Trebbia J.B., Buzdin A.I., Tamarat P., Lounis B. Direct Evidence of Flexomagnetoelectric Effect Revealed by Single-Molecule Spectroscopy// Phys. Rev. Lett. 2015. V. 115. P. 027601(5).
- Пятаков А.П., Сергеев А.С., Николаева Е.П., Косых Т.Б., Николаев А.В., Звездин А.К. Микромагнетизм и топологические дефекты в магнитоэлектрических средах // УФН. 2015. Т. 185. № 10. С. 1077–1088.
- Сергеев А.С., Сечин Д.А., Павленко О.В., Николаева Е.П., Николаев А.В., Косых Т.Б., Пятаков А.П. Влияние магнитного поля на микромагнитную структуру и электростатические свойства доменных границ // Изв. РАН. Сер. физическая. 2013. Т. 77. С. 1523–1526.
- Куликова Д.П., Пятаков А.П., Николаева Е.П., Сергеев А.С., Косых Т.Б., Пятакова З.А., Николаев А.В., Звездин А.К. Зарождение цилиндрических магнитных доменов в пленках ферритов гранатов с помощью электрического зонда // ЖЭТФ. 2016. Т. 104. С. 196–200.
- Sechin D.A., Nikolaeva E.P., Pyatakov A.P., Nikolaev A.B., Kosykh T.B. The Influence of the Magnetic Field on Electrically Induced Domain Wall Motion // Solid State Phenomena. 2015. V. 233–234. P. 443–446.
- Vakhitov R.M., Solonetsky R.V., Gurjanova V.R., Nizyamova A.R., Sechin D.A., Gareev T.T., Pyatakov A.P. Magnetic-field tuning of domain-wall multiferroicity // Phys. Rev. 2021. B 104. P. 144407(1–5).
- 20. *Магадеев Е.Б., Вахитов Р.М.* Топология уединенных магнитных неоднородностей в тонкой ферромагнитной пленке // ТМФ. 2012. Т. 171. № 3. С. 511–518.
- Вахитов Р.М., Гареева З.В., Солонецкий Р.В., Мажитова Ф.А. Микромагнитные структуры, индуцированные неоднородным электрическим полем, в магнитодноосных пленках с флексомагнитоэлектрическим эффектом // ФТТ. 2019. Т.61. № 6. С. 1120–112.
- Малоземов А., Слонзуски Дж. Доменные стенки в материалах с цилиндрическими магнитными доменами. Мир, 1982. С. 382.
- 23. *Dzyaloshinskii I.E.* Magnetoelectricity in ferromagnets // Europhys. Lett. 2008.V. 83. № 6. P. 67001(1–2).
- 24. Плавский В.В., Шамсутдинов М.А., Филиппов Б.Н. Структура и ориентация доменных границ в (111)пластинах кубических ферромагнетиков // ФММ. 1999. Т. 88. № 3. С. 22–29.
- Maksutova F.A, Solonetskiy R.V., Vakhitov R.M., Pyatakov A.P. The electric-field–induced "zero-degree domain walls" in ferromagnets // Europhys. Lett. 2020. V. 129. P. 27004(1–5).
- 26. *Khodenkov H.E., Kudelkin N.N., Randoskin V.V.* The Break-Down of the 360° Bloch Domain Wall in Bubble Magnetic Films // Phys. Status Solidi A. 1984. V. 84. K13.