_____ ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ _____ Свойства

УДК 543.429.3

ПОВЕДЕНИЕ ДВУХ МАГНИТНЫХ СОСТОЯНИЙ С ТЕМПЕРАТУРОЙ В "УМНЫХ" АНТИКОРРОЗИОННЫХ ПОКРЫТИЯХ

© 2023 г. Ф. Ф. Чаусов^а, А. Л. Ульянов^{а,} *, И. С. Казанцева^а, Л. В. Добышева^а

^аУдмуртский федеральный исследовательский центр УрО РАН, ул. Т. Барамзиной, 34, Ижевск, 426067 Россия *e-mail: lyuka17@mail.ru

Поступила в редакцию 27.09.2022 г. После доработки 07.11.2022 г. Принята к публикации 10.11.2022 г.

Соединения нитрилотриметиленфосфоновой кислоты (NTP) с переходными металлами часто используют в качестве ингибиторов коррозии стали. На поверхности стали образуется антикоррозионное покрытие FeNTP. Допирование некоторыми металлами (например, Zn или Cd) намного улучшает антикоррозионные свойства. Несмотря на полную изоструктурность FeNTP, FeZnNTP и FeCdNTP, при допировании происходят существенные изменения свойств: 1) атомы Fe в FeNTP находятся в высокоспиновом (HS) состоянии, тогда как FeZnNTP и FeCdNTP содержат атомы Fe с нулевым спином (LS) (рентгеноэлектронные спектры); 2) различие в квадрупольном расщеплении (мессбауэровская спектроскопия), специфичное для соотношения между HS- и LS-состояниями. Квантовомеханические расчеты системы FeNTP показали два решения, свойства которых совпадали с экспериментально найденными LS- и HS-состояниями для этих систем. В настоящей работе мы проверяем гипотезу о сосуществовании двух состояний. Получены мессбауэровские спектры FeNTP. FeZnNTP и FeCdNTP при различных температурах (77, 300 и 373 K) для изучения возможного теплового перераспределения между двумя магнитными состояниями. Данные свидетельствуют, что при повышении температуры в FeNTP появляется вторая компонента (основное состояние – HS, LS проявляется уже при комнатной и ее доля растет с температурой), в FeZnNTP (основное состояние – LS, HS появляется при 373 K). FeCdNTP имеет только одну LS компоненту при всех исследованных температурах.

Ключевые слова: железо, линейный координационный полимер, антикоррозионные покрытия, мессбауэровская спектроскопия, спиновый переход

DOI: 10.31857/S0015323022601416, EDN: KQQCBB

введение

Соединения нитрилотриметиленфосфоновой кислоты (NTP) с переходными металлами часто используют в качестве компонента ингибиторов коррозии стали [1–3]. Повышение эффективности использования ингибиторов является экономически важной проблемой. Для прогресса в этой проблеме необходимо понимание механизма формирования защитных противокоррозионных слоев на поверхности металла при его контакте с водной средой, содержащей производные NTP.

Одной из сфер экономически и технически эффективного применения NTP-содержащих ингибиторов коррозии являются так называемые "умные" защитные покрытия. "Умные" защитные покрытия отличаются от традиционных тем, что взаимодействие NTP-содержащего ингибитора с продуктами коррозии металла и формирование защитного слоя протекает не на всей поверхности металла, а лишь на наиболее подверженных коррозии участках [4, 5]. Это позволяет существенно повысить эффективность защиты металла от коррозии, одновременно снижая расход ингибитора и вред, наносимый окружающей среде воздействием ингибитора. Кроме того, "умные" защитные покрытия способны восстанавливать свою сплошность и противокоррозионную эффективность при локальных повреждениях, например, вследствие механических воздействий.

Долгое время механизм формирования противокоррозионных слоев в средах, содержащих NTP и ее комплексы, оставался неизученным [6, 7].

В работе [8] было показано, что при взаимодействии свободной NTP с ионами Fe^{2+} , образующимися при коррозии стали, образуется линейный координационный полимер с формулой [Fe(H₂O)₃µ-{NH(CH₂PO₃H)₃}]_{*n*} (далее – FeNTP). Позднее было показано [9], что при взаимодействии в аналогичных условиях ионов Fe^{2+} и ани-

Рис. 1. Структура линейных координационных полимеров FeNTP, FeCdNTP и FeZnNTP по данным [8, 9].

онного комплекса кадмий-NTP с формулой $[Cd(H_2O){N(CH_2PO_3)_3}^4$ протекает реакция

$$7/8n \operatorname{Fe}^{2+} + n [\operatorname{Cd}(\operatorname{H}_{2}\operatorname{O}) \{\operatorname{N}(\operatorname{CH}_{2}\operatorname{PO}_{3})_{3}\}]^{4-} + 6n \operatorname{H}_{2}\operatorname{O} = = [Fe_{7/8}\operatorname{Cd}_{1/8}(\operatorname{H}_{2}\operatorname{O})_{3} \mu \{\operatorname{NH}(\operatorname{CH}_{2}\operatorname{PO}_{3}\operatorname{H})_{3}\}]_{n} + (1) + 7/8n \operatorname{Cd}(\operatorname{OH})_{2} + 2\frac{1}{4}n \operatorname{OH}^{-}$$

с образованием гетерометаллического комплекса $[Fe_{7/8}Cd_{1/8}(H_2O)_3\mu-{NH(CH_2PO_3H)_3}]_n$ (далее – FeCdNTP).

При взаимодействии ионов Fe^{2+} и анионного комплекса цинк-NTP с формулой $[Zn{N(CH_2PO_3)_3}]^{4-}$ протекает реакция

$$\frac{1/2nFe^{2+} + n[Zn\{N(CH_2PO_3)_3]^{4-} + 7nH_2O =}{[Fe_{1/2}Zn_{1/2}(H_2O)_3\mu\{NH(CH_2PO_3H)_3\}]_n + (2) + 1/2nZn(OH)_2 + 3nOH^-}$$

с образованием гетерометаллического комплекса $[Fe_{1/2}Zn_{1/2}(H_2O)_3\mu$ -{NH(CH₂PO₃H)₃}]_n (далее – FeZnNTP). Структура соединений FeNTP, FeCdNTP и FeZnNTP идентична (рис. 1), за исключением замещения части атомов Fe атомами Cd или Zn соответственно [9].

Противокоррозионные свойства NTP-содержащих ингибиторов с добавкой ионов Cd или Zn значительно выше, чем без этих добавок [10]. Таким образом, несмотря на полную изоструктурность FeNTP, FeZnNTP и FeCdNTP, допирование цинком или кадмием приводит к существенному изменению свойств координационного полимера, конечным результатом которого является повышение эффективности формируемого "умного" противокоррозионного покрытия. Обнаружены [11] следующие отличия в электронной структуре FeNTP и FeCdNTP: (i) атомы Fe в составе FeNTP находятся в высокоспиновом (HS) состоянии, тогда как FeCdNTP и FeZnNTP содержат атомы Fe в низкоспиновом (LS) состоянии (получено из рентгеновских фотоэлектронных спектров, РФЭС); (ii) различие в квадрупольном расщеплении (получено с помощью мессбауэровской спектроскопии, MC) также специфично для соотношения между HS- и LS-состояниями; (iii) связи M–O в основной полимерной цепи FeNTP носят преимущественно ионный характер, а в FeCdNTP – ковалентный (по данным монокристального рентгеноструктурного анализа).

В работе [12] для исследования электронной структуры FeNTP были проведены квантовомеханические расчеты бесконечного периодического кристалла с элементарной ячейкой, содержащей 144 атома (из них 4 эквивалентных атома Fe). Было найдено два решения с различной намагниченностью ($M_{\rm Fe} = 4$ и 0 $\mu_{\rm B}$), различающихся, помимо магнитного момента атомов железа, расстояниями Fe–O и характером распределения электронной плотности в координационном окружении атома Fe.

Сравнение результатов расчетов и экспериментов (РФЭС, МС, рентгеноструктурного анализа) показало, что решение с $M_{\text{Fe}} = 4 \,\mu_{\text{B}}$ по своим свойствам хорошо совпадает с комплексом FeNTP [8], а решение с $M_{\text{Fe}} = 0 \,\mu_{\text{B}} - c$ гетерометаллическим комплексом FeZnNTP и FeCdNTP [9].

Мы полагаем, что замещение в цепочке координационного полимера одной восьмой части атомов Fe атомами Cd, или половины атомов железа атомами цинка меняет энергетическое соотношение между магнитным и немагнитным состояниями и делает низкоспиновое состояние энергетически предпочтительным. Различие в величине магнитного момента на атомах железа возникает из-за различного заполнения электронных орбиталей, что приводит к изменению меж-

Рис. 2. Мёссбауэровские спектры FeNTP при 77, 300 и 373 К. Штриховыми линиями показано разложение на компоненты, также приведены разностные спектры.

атомных взаимодействий. Это проявляется, в частности, в изменении антикоррозионных свойств.

В настоящей работе исследовано сосуществование и тепловое перераспределение HS- и LS-состояний в образцах FeNTP, FeZnNTP и FeCdNTP с помощью мёссбауэровской спектроскопии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Мессбауэровские исследования были проведены на спектрометре SM2201DR в режиме постоянных ускорений с источником резонансного γ -излучения Co-57 активностью 35 мKи в матрице Rh. В качестве стандарта для калибровки шкалы спектрометра был использован спектр порошка карбонильного α -Fe, отожженного в течение 2 ч при температуре 527 K, снятый при комнатной температуре. Ширина первой и шестой линий спектра стандартного образца составляла 0.26 мм/с. Образцы FeNTP, FeZnNTP и FeCdNTP были приготовлены путем равномерного нанесения порошков комплексов, смоченных в спиртовом растворе синтетического клея, на тонкую алюминиевую фольгу с последующей просушкой. Регистрацию спектров FeNTP, FeZnNTP и FeCdNTP проводили при температурах 77, 300 и 373 К. Получение спектров при температуре жидкого азота проводили в криостате, при температуре выше комнатной – в термостате с контролем температуры при помощи хромель-алюмелевой термопары. При более высоких температурах исследование не проводили из-за опасности термического разложения образцов.

Математическая обработка спектров в дискретном представлении проведена методом наименьших квадратов с использованием алгоритма Левенберга—Марквардта.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Полученные мессбауэровские спектры FeNTP (рис. 2) свидетельствуют о том, что спектр при температуре 77 К может быть хорошо описан одним дублетом с параметром квадрупольного расшепления OS, близким к параметру, найденному в первопринципном расчете для HS состояния. По данным из мёссбауэровской практики (например, [13]) такая величина QS характерна для высокоспинового состояния атомов железа. Однако уже при комнатной температуре появляется соответствующая LS-состоянию компонента. вклад которой возрастает при температуре 373 К. Величина квадрупольного расщепления соответствует найденной для LS-компоненты в расчетах и специфична для низкоспинового состояния железа по данным из мёссбауэровской практики [13]. Обсуждение взаимосвязи величины квадрупольного расщепления и магнитного момента применительно к системе FeNTP проведено нами в работе [12].

Для FeZnNTP (рис. 3) при температуре 77 К основное состояние является низкоспиновым, и мёссбауэровский спектр описывается хорошо одним дублетом. При повышении температуры до 373 К становится существенным вклад HS-компоненты спектра.

Спектр образца FeCdNTP при всех исследованных температурах содержит только одну компоненту, соответствующую LS-состоянию.

На рис. 4 показана температурная зависимость доли атомов железа, находящихся в HS- и LS-состояниях, полученная из мессбауэровских спектров FeNTP, FeZnNTP и FeCdNTP. Можно отметить, что зависимость удовлетворительно описывается статистическим распределением заселенности HS и LS состояний с различной энергией.

Рис. 3. Мёссбауэровские спектры FeZnNTP при 77, 300 и 373 К. Штриховыми линиями показано разложение на компоненты, также приведены разностные спектры.

Вклад каждой из составляющих спектра при различных температурах приведен в табл. 1.

Используя данные таблицы 1, выполнена оценка потенциального барьера ΔE между HS и LS состояниями по формуле

$$\Delta E = -kT\ln(p_i/p_j),$$

где p_i и p_j — вероятности менее и более заселенного состояний. Для соединения FeNTP основным состоянием является HS, и потенциальный барьер между состояниями составляет около 6.1 кДж/моль, или 0.07 эB/FeNTP. Для соединений FeZnNTP и FeCdNTP основным состоянием является LS-состояние. Потенциальный барьер между LS и HS состояниями для FeZnNTP составляет около 8.5 кДж/моль (0.09 эB/FeNTP).

Наличие двух спиновых состояний в органометаллических системах и переход между ними известны, см., напр., [13], при этом обычно реализуется переход LS \rightarrow HS при повышении температуры, как в системе FeZnNTP.

Рис. 4. Вклад состояний HS и LS в мёссбауэровские спектры FeNTP, FeZnNTP и FeCdNTP.

На рис. 5 и 6 показано поведение изомерного сдвига и квадрупольного расщепления с температурой.

Отметим, что при всех температурах изомерный сдвиг и квадрупольное расщепление на ядрах железа близки в трех системах, если рассматривать одинаковые магнитные состояния. Это происходит, так как соединения изоструктурны и отличаются относительно малым допированием (Cd замещает один из 288 атомов элементарной ячейки в FeCdNTP, Zn замещает один из 72 атомов в FeZnNTP), при этом замещающий атом находится далеко от атомов железа (~7 Å по цепочке полимера).

Таблица 1. Вклад составляющих спектров, отвечающих низкоспиновому (LS) и высокоспиновому (HS) состояниям атомов железа

Комплекс	<i>Т</i> , К	Вклады, %	
		LS	HS
FeNTP	77	0.0	100.0
	300	4.8	95.2
	373	17.4	82.6
FeZnNTP	77	100.0	0.0
	300	100.0	0.0
	373	94.3	5.7
FeCdNTP	77	100.0	0.0
	300	100.0	0.0
	373	100.0	0.0

Рис. 5. Температурное поведение изомерного сдвига компонент мёссбауэровских спектров Обозначения точек Fe, Zn и Cd соответствуют системам FeNTP, FeZnNTP и FeCdNTP.

Проведенные ранее расчеты [12] привели к выводу о существовании в системах FeNTP, FeZnNTP и FeCdNTP двух спиновых состояний, с магнитным моментом атома железа 0 и $4\mu_B$, различающихся распределением электронов по 3d-орбиталям атомов железа и величиной полной энергии (табл. 2).

Заполнение орбиталей в HS- и LS-состояниях соответствует ионам Fe²⁺, при этом изменения квадрупольного расщепления и изомерного сдвига найденных компонент мёссбауэровских спектров при переходе HS \leftrightarrow LS также характерны для HS и LS состояний Fe²⁺ [13].

Сравнение полученных в настоящей работе экспериментальных результатов с результатами расчетов, проведенных в работе [12], позволяет сопоставить теоретически полученное состояние с нулевым магнитным моментом на атоме железа с экспериментально наблюдаемым LS состоянием комплексов FeNTP, FeZnNTP и FeCdNTP. Теоретически рассчитанное состояние с магнитным моментом атома железа 4µ_в соответствует

Таблица 2. Результаты расчетов [12]. N – заселенность Fe3*d*-орбиталей для спиновых состояний \uparrow/\downarrow

Величина	HS состояние	LS состояние
Энергия, Ry/элем. яч.	-26948.8158	-26948.6133
M_{Fe}, μ_B	4	0
Δ , mm/s	2.63	0.47
$N(e_g 3d_{z2})$	1/0	0/0
$N(e_g 3d_{x2-y2})$	1/0	0/0
$N(t_{2g} 3d_{xz})$	1/0.06	1/1
$N(t_{2g} 3d_{xy})$	1/0.27	1/1
$N(t_{2g} 3d_{yz})$	1/0.67	1/1

Рис. 6. Температурное поведение квадрупольного расшепления компонент мёссбауэровских спектров FeNTP, FeZnNTP и FeCdNTP.

экспериментально наблюдаемому HS-состоянию комплексов FeNTP и FeZnNTP. В комплексе FeNTP при малых температурах реализуется высокоспиновое состояние; при комнатной температуре в мёссбауэровских спектрах появляется низкоспиновая компонента, и доля ее растет при повышении температуры. FeZnNTP демонстрирует при повышении температуры переход LS \rightarrow HS, область сосуществования двух состояний начинается выше комнатной температуры (при 373 K вклад LS состояния менее 6%). Система FeCdNTP при всех исследованных температурах находится в низкоспиновом состоянии.

Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (государственные регистрационные номера 121030100002-0 и 121030100003-7). Работа выполнена на оборудовании ЦКП "Центр физических и физико-химических методов анализа и исследования свойств и характеристик поверхностей, наноструктур, материалов и образцов" УдмФИЦ УрО РАН. Расчеты частично выполнены на суперкомпьютере "Уран" ИММ УрО РАН.

Конфликт интересов: Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Kuznetsov Yu.I., Mercer A.D., Thomas J.G.N. Organic Inhibitors of Corrosion of Metals // Springer. N.Y. 1996. 284 p. https://doi.org/10.1007/978-1-4899-1956-4
- Demadis K.D., Katarachia S.D., Koutmos M. Crystal growth and characterization of zinc-(amino-tris-(methylenephosphonate)) organic-inorganic hybrid networks and their inhibiting effect on metallic corrosion // Inorg. Chem. Commun. 2005. V. 8. P. 254–258. https://doi.org/10.1016/j.inoche.2004.12.019

- Сомов Н.В., Чаусов Ф.Ф. Структура ингибитора солеотложений и коррозии – тридекагидрата нитрилотриметилентрифосфонатоцинката тетранатрия // Кристаллография. 2014. Т. 59. С. 71–75. https://doi.org/10.7868/S0023476113050123
- Shchukin D.G. Container-based multifunctional selfhealing polymer coatings // Polym. Chem. 2013. V. 4. P. 4871–4877. https://doi.org/10.1039/c3py00082f
- Zhang F, Ju P., Pan M., Zhang D., Huang Y., Li G., Li X. Self-healing mechanisms in smart protective coatings: A review // Corros. Sci. 2018. V. 144. P. 74–88. https://doi.org/10.1016/j.corsci.2018.08.005
- Кузнецов Ю.И. Современное состояние теории ингибирования коррозии металлов // Защита металлов. 2002. Т. 38. С. 122–131.
- Кузнецов Ю.И. Физико-химические аспекты ингибирования коррозии металлов в водных растворах // Успехи химии. 2004. Т. 73. Р. 79–93. https://doi.org/10.1070/RC2004v073n01ABEH000864
- Сомов Н.В., Чаусов Ф.Ф., Закирова Р.М., Шумилова М.А., Александров В.А., Петров В.Г. Синтез, структура и свойства нитрило-трис(метиленфосфонато)-триакважелеза(II) {Fe[µ-NH(CH₂PO₃H)₃](H₂O)₃} – ингредиента защитных противокоррозионных покрытий на поверхности стали // Кристаллография. 2015. Т. 60. С. 915–921. https://doi.org/10.7868/S0023476115060338
- Чаусов Ф.Ф., Сомов Н.В., Закирова Р.М., Алалыкин А.А., Решетников С.М., Петров В.Г., Александров В.А., Шумилова М.А. Линейные органическо-

неорганические гетерометаллические сополимеры $[(Fe, Zn)(H_2O)_3\{NH(CH_2PO_3H)_3]]_n$ и $[(Fe,Cd)(H_2O)_3\{NH(CH_2PO_3H)_3\}]_n$: недостающее звено механизма ингибирования локальной коррозии стали фосфонатами // Известия РАН, Сер. Физическая. 2017. Т. 81. С. 394–396. https://doi.org/10.7868/S0367676517030085

- Chausov F.F., Kazantseva I.S., Reshetnikov S.M., Lomova N.V., Maratkanova A.N., Somov N.V. Zinc and Cadmium Nitrilotris(methylenephosphonate)s: A comparative study of different coordination structures for corrosion inhibition of steels in neutral aqueous media // ChemistrySelect. 2020. V. 5. P. 13711–13719. https://doi.org/10.1002/slct.202003255
- Chausov F.F., Lomova N.V., Dobysheva L.V., Somov N.V., Ul'yanov A.L., Maratkanova A.N., Kholzakov A.V., Kazantseva I.S. Linear organic/inorganic iron(II) coordination polymer based on Nitrilo-tris(Methylenephosphonic acid): Spin crossover induced by Cd doping // J. Solid State Chem. 2020. V. 286. P. 121324. https://doi.org/10.1016/j.jssc.2020.121324
- Dobysheva L.V., Chausov F.F., Lomova N.V. Electronic structure and chemical bonding in smart anti-corrosion coatings // Mater. Today Comm. 2021. V. 29. P. 102892. https://doi.org/10.1016/j.mtcomm.2021.102892
- König E. Nature and dynamics of the spin-state interconversion in metal complexes // Complex Chemistry. Structure and Bonding. 1991. V. 76. P. 51–152. Springer, Berlin, Heidelberg. 1991. https://doi.org/10.1007/3-540-53499-7_2