____ ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ _____ Свойства

УДК 537.622

ОСОБЕННОСТИ МАГНИТНОГО СОСТОЯНИЯ УПОРЯДОЧЕННОГО МАССИВА ФЕРРОМАГНИТНЫХ ЛЕНТ

© 2023 г. В. А. Орлов^{а, b, *}, Р. Ю. Руденко^а, А. В. Лукьяненко^b, В. Ю. Яковчук^b, В. А. Комаров^b, В. С. Прокопенко^c, И. Н. Орлова^c

^аСибирский федеральный университет, просп. Свободный, 79, Красноярск, 660041 Россия ^bИнститут физики им. Л.В. Киренского ФИЦ КНЦ СО РАН, Академгородок, 50, стр. 38, Красноярск 660036 Россия ^cКрасняорский государственный педагогический университете им. В.П. Астафьева, vл. Ады Лебедевой, 89, Красноярск, 660049 Россия

> **e-mail: vaorlov@sfu-kras.ru* Поступила в редакцию 21.09.2022 г. После доработки 20.11.2022 г. Принята к публикации 22.11.2022 г.

Обсуждаются особенности магнитного состояния массива параллельно ориентированных пермаллоевых лент. Массивы изготовлены методом взрывной литографии. Толщины лент составляли 180 нм, ширины 2.8 мкм, длины порядка 4 мм. Расстояния между лентами в разных образцах варьировалась от 300 нм до 4 мкм. Обнаружено, что вдали от торцов ленты находятся в монодоменном состоянии с малоугловой рябью, распределение намагниченности которой коррелирует с неоднородностями боковых поверхностей лент. Помимо этого, наблюдается отчетливая связь в пространственном распределении ряби соседних лент при относительно малом расстоянии между ними. Это обстоятельство позволяет оценить роль магнитостатической связи магнитных подсистем элементов массива и оценить характерное значение случайного поля рассеяния, закрепляющего намагниченность.

Ключевые слова: магнитная доменная стенка, магнитный вихрь, ферромагнитная лента **DOI:** 10.31857/S0015323022601295, **EDN:** HKKUJT

введение

Низкомерные объекты подобные ферромагнитным микро-, нанолентам считаются перспективными объектами для использования в устройствах хранения информации и других устройствах спинтроники нового поколения [1-4]. Интерес к лентам обусловлен несколькими факторами. В частности, открывается возможность кратно увеличить плотность записи с одновременной миниатюризацией устройств. Решение этой двойственной задачи вынуждают исследовать магнитные свойства не только индивидуальных нанообъектов, но и их массивов [5-9]. Это обстоятельство неизбежно подводит к необходимости исследовать влияние взаимодействия магнитных подсистем нанообъектов на свойства массивов. Особенно это важно для устройств с высоким быстродействием и/или устройств спинтроники, в основе которых лежат быстро протекающие процессы перемагничивания [10-13].

В частности, в устройствах хранения информации нового поколения носителями бита являются топологические неоднородности намагниченности в магнитных лентах/проволоках: магнитные вихри/скирмионы, доменные стенки разных типов [14-20]. Важным является разработка надежного способа управления магнитным состоянием таких объектов. Как правило, процедура записи и считывания информации связана с управляемым скольжением топологических неоднородностей, которое спровоцировано наличием электромагнитных полей, спин-поляризованных токов и прочими факторами. На подвижность носителей бита влияют дефекты структуры, неоднородности полей и пр. В том числе на статическое магнитное состояние и процессы перемагничивания сушественное влияние оказывают неоднородности полей рассеяния, за существование которых ответственны дефекты поверхности (шероховатости) нанопроволок/нанолент [21-25]. Более того, основным механизмом взаимодействия магнитных подсистем элементов в массивах может являться магнитостатическое взаимодействие посредством полей рассеяния.

В настоящей работе мы представляем экспериментальные результаты исследования упорядоченных массивов ферромагнитных лент с различным периодом следования элементов.

ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

Массивы параллельно ориентированных лент были сформированы методом взрывной литографии. На подготовленную кремниевую подложку наносился слой негативного фоторезиста AZ Nlof 2035. Данный фоторезист был выбран из-за высокой термостабильности (до 250°) и высокой химической стойкости. Стадией формирования маски резиста является создание равномерной пленки определенной толщины. Для этой операции использовалось центрифугирование, позволяющее получать равномерные пленки (отклонения от средней толщины вдоль поверхности не более ±10%). Подложка закрепляется вакуумным присосом на центрифуге и после нанесения нескольких капель резиста раскручивается со скоростью 3000 об./мин. Планаризирующее действие центробежных сил приводит к образованию сверхгладких пленок с однородностью по толщине ~1%, которую нельзя получить какимлибо другим способом. Затем производилась засветка через заранее подготовленный фотошаблон. На этапе экспонирования в качестве источника актиничного электромагнитного излучения использовалась ртутная лампа ДРШ-350, которая характеризуется высокой интенсивностью излучения, параллельностью светового пучка и его равномерностью. Затем образец промывался в проявителе, удаляющем фоторезист с неизмененной структурой. После чего в высоком вакууме на подложку с фоторезистом производилось осаждение пленки термическим методом из сплава 80НХС. После осаждения покрытия образец погружается в органический растворитель, растворяющий фоторезист и обеспечивающий его удаление с поверхности полупроводника. При этом вместе с фоторезистом удаляются ненужные слои осажденного металла.

Таким образом были получены массивы лент размером 4×4 мм². Толщина лент b = 180 нм. Расстояние между лентами в различных массивах варьировалось от 4 до 0.3 мкм. На рис. 1 представлены морфологии образцов, полученные методом сканирующей зондовой силовой микроскопии. На рис. 2 показан пример морфологии лент на торцах. Форма в этой области имеет особенности в виде "вилки".

Состояние намагниченности исследовалось методом магнитно-силовой микроскопии на микроскопе Veeco MultiMode NanoScopeIIIa SPM System по двухпроходной методике в режиме регистрации частоты в качестве МСМ контраста. Детали магнитного состояния массива обсудим в следующем разделе.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В результате анализа данных магнитно-силовой микроскопии обнаружено, что состояние лент практически однодоменное (преобладает ориентация намагниченности вдоль длинной оси) с замыканием потока на торцах лент посредством комбинированных доменных стенок, включающих в себя магнитные вихри (см. рис. 3).

Вихревому и квазивихревому распределению намагниченности на краях лент способствует дендридная форма с элементами полуокружностей. В работах [27-29] теоретически и в компьютерном моделировании получены диаграммы, определяющие соотношения линейных размеров наноразмерных магнетиков, при которых реализуются различные типы магнитных состояний (магнитный вихрь, намагниченность в плоскости, намагниченность перпендикулярно плоскости и пр.). Отношение толшины b к характерному радиусу кривизны *R* на границе лент (в нашем случае $b/R \approx 0.3$) по данным этих авторов соответствует состоянию магнитного вихря или вихревой доменной стенки. Это фактически подтверждается данными микроскопии.

Мы предполагаем, что при включении поля вихревые объекты, образованные на торцах лент и разделяющие домены, приходят в движение, перемещаясь вдоль длинной оси лент. При этом вихревые стенки движутся в случайном потенциале полей рассеяния, созданных неровностями поверхности. Это процесс перемагничивания лент является доминирующим [30].

Вдали от торцов наблюдается рябь намагниченности, практически повторяющая неровности боковых поверхностей лент (см. рис. 4). Поэтому мы связываем существование этой ряби с неоднородностями боковых поверхностей лент, где возникают поля рассеяния. Это справедливо для образцов а и б, где расстояние между лентами относительно велико и роль взаимодействия магнитных подсистем разных лент невелика.

Анализ контраста показал, что угловой разброс направления намагниченности вдали от торцов не превышает $\pm 20^{\circ}$. Эта оценка была получена из анализа МСМ-изображения путем проведения поперечного среза вдоль оси ленты - cross section анализ. На рис. 5 приведен пример для образца (б), на основе которого была определена связь между углом разориентации намагниченности и частотой. Между участками, имеющими максимальное различие в частоте на поперечном срезе, которое имеет значение $\Delta v = 1.2$ Гц, будет и максимальный угол между векторами намагниченности. При повороте магнитного момента примерно на 90° разность частот составляет $\Delta v =$ = 2.5 Гц. Эта связь угла с частотой была установлена благодаря анализу МСМ-изображения на краю той же самой ленты (см. рис. 6), где нам из-

Рис. 1. Морфология упорядоченных массивов лент. Изображения получены вдали от торцов лент. Ширина лент составляет 2.8 мкм: a - pacctoshue между лентами ≈ 4 мкм; $6 - \approx 2$ мкм; $B - \approx 1.5$ мкм; $r - \approx 0.3$ мкм.

Рис. 2. Морфология лент на торцах.

вестно угловое распределение намагниченности, например, для магнитного вихря вблизи торца.

Важным обстоятельством является тот факт, что в массиве с близко расположенными лентами (образцы (в) и (г), см. рис. 7) распределения ряби намагниченности в разных лентах заметно коррелирует, что позволяет сделать вывод о значительном магнитостатическом механизме взаимодействия магнитных подсистем посредством полей рассеяния на неоднородностях боковых поверхностей. Это позволяет сделать оценку средней константы эффективной случайной анизотропии, выполняющей роль закрепляющего фактора, связанного с дефектами поверхности.

В работе [31] предложен теоретический метод оценки полей рассеяния, созданных шероховатостями поверхности ферромагнетика. Этот метод был развит в [32, 33] применительно к моделям со случайно распределенными неровностями. Согласно [31-33], поле, созданное неровностями можно оценить с помощью выражения

$$H = M_{\rm s} \frac{\pi^2}{\sqrt{2}} \frac{h^2}{\lambda L} \exp\left(-\frac{2\pi d\sqrt{2}}{\lambda}\right). \tag{1}$$

Здесь $M_{\rm S}$ — намагниченность насыщения, h и λ — средняя глубина неровностей и средний период их следования соответственно, *L* – ширина магнетика (ширина лент), d — ширина немагнитного зазора (расстояние между лентами).

Оценить константу случайной анизотропии $K_{\rm ef}$, связанной с существованием полей рассеяния можно из следующих простых рассуждений. Если между рябью намагниченности соседствующих лент проявляется заметная связь (как на рис. 5), то поле рассеяния, в котором находится выделенная лента, начинает выигрывать конкуренцию с закрепляющим полем эффективной анизотропии, со-

(б)

Рис. 4. Магнитно-силовой контраст вдали от торцов лент у массивов а, б. Светлыми стрелками вблизи бо-ковых поверхностей показана примерная ориентация намагниченности.

зданной шероховатостями (эти поля сравнимы). Тогда для константы *K*_{еf} можно записать:

$$K_{\rm ef} = H_{\rm M} M_{\rm S}.$$
 (2)

Здесь $H_{\rm M}$ — поле рассеяния созданное всеми элементами массива вследствие дальнодействующего характера магнитостатического взаимодействия. В предположении, что все ленты намагничены в одном направлении, $H_{\rm M}$ можно оценить, проведя суммирование (1):

$$H_{\rm M} \approx 2M_{\rm S} \frac{\pi^2}{\sqrt{2}} \frac{h^2}{\lambda L} \sum_{n=1}^{\infty} \exp\left(-\frac{2\pi d\sqrt{2}}{\lambda}\right) =$$

= $M_{\rm S} \sqrt{2} \frac{\pi^2 h^2}{\lambda L} \left(\exp\left(\frac{2\pi d\sqrt{2}}{\lambda}\right) - 1\right)^{-1}.$ (3)

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 124 № 2 2023

Рис. 5. Пример результата cross section вдоль длинной оси ленты вдали от торца.

Заметное ослабление корреляции ряби намагниченности лент мы наблюдаем на рис. 5 для образца (в). В образце (б) (см. рис. 4), этой связи практически нет. Поэтому можно утверждать, что интересующее нас расстояние *d* в формуле (3) примерно соответствует расстоянию между лентами в массиве с ($d \approx 1.5$ мкм). Характерная величина глубин шероховатостей *h* составляет примерно 0.2 мкм (см. верхний рис. 4), а период следования $\lambda \approx 4$ мкм (см. рис. 4). С учетом этих данных из выражений (2) и (3) для константы получим:

$$K_{\rm ef} \approx 0.026 M_{\rm S}^2. \tag{4}$$

В рамках магнитных измерений были получены петли гистерезиса методом Керра. Результаты показаны на рис. 6. Линейный размер участка, охваченного измерением, составлял порядок 3 мкм. В качестве источника света использовался лазер с круглой формой пятна. Измерения проведены по разным участкам каждого из образцов. Различий в петлях, принадлежащих одному массиву, снятых на разных участках, не обнаружено.

На кривых образцов (б) и (в) особенно выражены перетяжки, т.е. участки петли на которых происходит заметное понижение коэрцитивной силы по сравнению с петлями, полученными для сплошных пленок. Графики с перетяжками выглядят так, как будто по оси напряженности поля петля несколько сжата. Это позволят считать, что перемагничивание происходит подобно двух-(или более) компонентной системе. Действительно, в измеряемую область методом Керра частично попадают не более двух—трех лент. При этом для массивов (б) и (в) расстояние между лентами не настолько велико, чтобы считать их не взаимодействующими, но и не настолько мало, чтобы

Рис. 6. Пример результата cross section вдоль длинной оси ленты вблизи торца.

это взаимодействие обеспечивало синхронное перемагничивание, подобное сплошной пленке. Для образцов (а) и (г) особенности в виде перетяжек практически не проявляются. Действительно, в случае массива (а) в область измерений попадает лишь одна лента (ведет себя как сплошная пленка), а в случае (г) магнитостатическая связь настолько велика, что перемагничивание происходит практически одновременно (подобно сплошному магнетику). Относительно небольшие значения коэрцитивной силы косвенно говорят о том, что процесс зарождения и движения вихревых доменных стенок вблизи торцов лент происходит в небольших полях по сравнению, например, с проволоками, где процесс перемагничивания обеспечивается скольжением традиционных стенок [34]. Основным механизмом перемагничивания в перпендикулярном направлении к оси лент (нижний ряд графиков на рис. 6) является процесс вращения намагниченности. Но присутствуют и особенности (перетяжки), которые мы связываем с исчезновением вихревой структуры по мере увеличения поля и приближения к насыщению.

Подведем итоги. Исследование методом магнитно-силовой микроскопии упорядоченных двумерных массивов ферромагнитных лент пока-

Рис. 7. Магнитно-силовой контраст вдали от торцов лент у массивов в, г. Светлыми штрих-пунктирными линиями показаны синхронизированные участки ряби намагниченности, принадлежащие разным лентам.

зало, что равновесным является практически однородное состоянием намагниченности, ориентированное вдоль длинной оси лент с наложением малоугловой ряби. Период ряби определяется периодом неоднородностей боковых поверхностей лент. Это утверждение нарушается в массивах с относительно малым расстоянием между лентами, где наблюдается синхронизация ряби намагниченности разных лент вне зависимости от положения шероховатостей поверхности. Явление синхронизации мы связываем с наличием полей рассеяния, индуцированных дефектами поверхности.

Структурные неоднородности лент фактически создают случайный потенциал, в котором

Рис. 8. Кривые перемагничивания массивов. Левый ряд рисунков соответствуют перемагничиванию вдоль длинной оси лент, правый ряд — перемагничивание под прямым углом к оси лент в плоскости массивов.

движутся доменные стенки при перемагничивании лент. Сравнение магнитного состояния образцов с различным расстоянием между элементами позволило оценить характерную величину случайного закрепляющего поля или среднюю константу случайной анизотропии, наведенной неоднородностями поверхности.

Важно заметить, что снимки магнитно-силовой микроскопии говорят о наличии вихревых образований на торцах лент, что соответствует

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 124 № 2 2023

теоретическим предсказаниям для образцов исследуемых геометрических размеров. Мы предполагаем, что в процессе перемагничивания комбинированные доменные стенки (смесь неелевских разворотов и магнитных вихрей), возникающие на концах лент, приходят в движение и скользят в случайном потенциале, созданном полями рассеяния, подобно движению вихревых стенок в поле случайной анизотропии [35].

Таким образом, разумно предположить, что эффекты, связанные с взаимодействием между элементами массивов, заметно влияют на магнитные состояния. Эти эффекты следует учитывать при проектировании устройств хранения данных особенно на основе массивов плотноупакованных элементов.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-02-00696 в части изготовления образцов, и в рамках государственного задания Министерства науки и высшего образования Российской Федерации (№ темы FSRZ-2020-0011) в части магнитных измерений и теоретических расчетов.

СПИСОК ЛИТЕРАТУРЫ

- Allwood D.A., Xiong G., Faulkner C.C., Atkinson D., Petit D., Cowburn R.P. Magnetic Domain-Wall Logic // Science 2005. V. 309. P. 1688–1692.
- Hayashi M., Thomas L., Moriya R., Rettner C., Parkin S.S.P. Current-Controlled Magnetic Domain-Wall Nanowire Shift Register // Science 2008. V. 320. P. 209–211.
- Parkin S.S.P., Hayashi M., Thomas L. Magnetic Domain-Wall Racetrack Memory // Science 2008. V. 320. P. 190–194.
- Walker B.W., Cui C., Garcia-Sanchez F., Incorvia J.A.C., Hu X., Friedman J.S. Skyrmion Logic Clocked via Voltage Controlled Magnetic Anisotropy // (arXiv:2103.02724v2 [cond-mat.mes-hall] 5 Mar 2021).
- Song J.-F., Bird J.P., Ochiai Y. A nanowire magnetic memory cell based on a periodic magnetic superlattice // J. Phys.: Condens. Matter. 2005. V. 17. P. 5263–5268.
- Kozlov A.G., Stebliy M.E., Ognev A.V., Samardak A.S., Davydenko A.V., Chebotkevich L.A. Effective magnetic anisotropy manipulation by oblique deposition in magnetostatically coupled co nanostrip arrays // J. Magn. Magn. Mater. 2017. V. 422. P. 452–457.
- Kozlov A.G., Stebliy M.E., Ognev A.V., Samardak A.S., Chebotkevich L.A. Micromagnetic Structure of Co Stripe Arrays With Tuned Anisotropy // IEEE Trans ON Magn. 2015. V. 51(11). P. 2301604.
- Purnama I., Chandra Sekhar M., Goolaup S., Lew W.S. Current-induced coupled domain wall motions in a two-nanowire system // Appl. Phys. Lett. 2011. V. 99. P. 152501.
- Iglesias-Freire O., Jaafar M., Perez L., O. de Abril, Vazquez M., Asenjo A. Domain configuration and magnetization switching in arrays of permalloy nanostripes // J. Magn. Magn. Mater. 2014. V. 355. P. 152–157.

- Krishnia S., Purnama I., Lew W.S. Remote Walker breakdown and coupling breaking in parallel nanowire systems // Appl. Phys. Lett. 2014. V. 105. P. 042404.
- O'Brien Д., Lewis L.R., Fernandez-Pacheco A., Petit D., Cowburn R.P. Dynamic Oscillations of Coupled Domain Walls // Phys. Rev. Lett. 2012. V. 108. P. 187202.
- Su Y., Sun J., Hu J., Lei H. Current-driven spring-like oscillatory motion of coupled vortex walls in a twonanostripe system // EPL 2013. V. 103. P. 67004.
- Galkiewicz A. T., O'Brien L., Keatley P.S., Cowburn R.P., Crowell P.A. Resonance in magnetostatically coupled transverse domain walls // Phys. Rev. B 2014. V. 90. P. 024420.
- Youk H., Chern G.-W., Merit K., Oppenheimer B., Tchernyshyov O. Composite domain walls in flat nanomagnets: The magnetostatic limit // J. Appl. Phys. 2006. V. 99. P. 08B101.
- Rougemaille N., Uhlur V., Fruchart O., Pizzini S., Vogel J., Toussaint J.C. Phase diagram of magnetic domain walls in spin valve nano-stripes // Appl. Phys. Lett. 2012. V. 100. P. 172404.
- Thiaville A., Nakatani Y. Domain-Wall Dynamics in Nanowires and Nanostrips // Appl. Phys. 2006. V. 101. P. 161–205.
- Jamet S., Rougemaille N., Toussaint J.C., Fruchart O. 25 Head-to-head domain walls in one-dimensional nanostructures: An extended phase diagram ranging from strips to cylindrical wires, Editor(s): Manuel Vazquez // In Woodhead Publishing Series in Electronic and Optical Materials, Magnetic Nano- and Microwires, Woodhead Publishing, 2015. P. 783–811 (ISBN 9780081001646)
- Janutka A. Complexes of Domain Walls in Ferromagnetic Stripes // Acta Phys. Polonica A. 2013. V. 124. P. 641–648.
- Orlov V.A., Ivanov A.A., Orlova I.N. On the Effect of Magnetostatic Interaction on the Collective Motion of Vortex Domain Walls in a Pair of Nanostripes // Phys. Stat. Sol. B. 2019. P. 1900113.
- Nguyen V.D., Fruchart O., Pizzini S., Vogel J., Toussaint J.-C., Rougemaille N. Third type of domain wall in soft magnetic nanostrips // Scientific RepoRts. V. 5. P. 12417. https://doi.org/10.1038/srep12417
- Иванов А.А., Орлов В.А. Сравнительный анализ механизмов закрепления доменной стенки в нанопроволоке // ФТТ. 2011. Т. 53. С. 2318–2326.
- Bogart L.K., Atkinson D., O'Shea K., McGrouther D., McVitie S. Dependence of domain wall pinning potential landscapes on domain wall chirality and pinning site geometry in planar nanowires // Phys. Rev. B 2009. V. 79. P. 054414.
- Brandao J., Novak L.K., Lozano H., Soledade P.R., Mello A., Garcia F., Sampaio L.C. Control of the magnetic vortex chirality in Permalloy nanowires with asymmetric notches // J. Appl. Phys. 2014. V. 116. P. 193902.
- Burn D.M., Arac E., Atkinson D. Magnetization switching and domain-wall propagation behavior in edgemodulated ferromagnetic nanowire structures // Phys. Rev. B 2013. V. 88. P. 104422.
- 25. Kim K.-J., Gim G.-H., Lee J.-C., Ahn S.-M., Lee K.-S., Cho Y. J., Lee C.-W., Seo S., Shin K.-H., Choe S.-B.

Depinning Field at Notches of Ferromagnetic Nanowires With Perpendicular Magnetic Anisotropy // IEEE Trans. On Magn. 2009. V. 45(10). P. 4056–4058.

- Vidal E.V., Ivanov Y.P., Mohammed H., Kosel J. A detailed study of magnetization reversal in individual Ni nanowires // Appl. Phys. Lett. 2015. V. 106, P. 032403.
- Guslienko K. Yu., Novosad V. Vortex state stability in soft magnetic cylindrical nanodots // J. Appl. Phys. 2004. V. 96. P. 4451.
- Scholz W., Guslienko K.Yu., Novosad V., Suess D., Schrefl T., Chantrell R.W., Fidler J. Transition from singledomain to vortex state in soft magnetic cylindrical nanodots // J. Magn. Magn. Mater. 2003. V. 266. P. 155– 163.
- Rougemaille N., Uhlor V., Fruchart O., Pizzini S., Vogel J., Toussaint J.-C. Phase diagram of magnetic domain walls in spin valve nano-stripes // App. Phys. Lett. 2012. V. 100(17). P. 172404.
- Иванов А.А., Орлов В.А. Сценарии перемагничивания тонких проволок // ФТТ. 2015. Т. 57. С. 2143– 2150.

- Neel L. Sur un nouveau mode de couplage entre les aimantations de deux couches minces ferromagn
 ütiques. Comptes Rendus Hebdomadaires Des Seances De // Academ. des Sci. 1962. V. 255(15). P. 1676–1681.
- Kamali Ashtiani M.J., Mokhtarzadeh M., Hamdi M., Mohseni S.M. Morphological magnetostatic coupling in spin valves due to anisotropic self-affine interface roughness // J. Appl. Phys. 2020. V. 127. P. 095301.
- Tiusan C., Hehn M., Ounadjela K. Magnetic-roughnessinduced magnetostatic interactions in magnetic tunnel junctions // Eur. Phys. J. B 2002. V. 26. P. 431–434.
- Goolaup S., Singh N., Adeyeye A.O. Coercivity Variation in Ni₈₀Fe₂₀ Ferromagnetic Nanowires // IEEE Trans. Nanotech. 2005. V. 4(5). P. 523–526.
- Orlov V.A., Patrin G.S., Dolgopolova M.V., Orlova I.N. Magnetic vortex near the extended linear magnetic inhomogeneity // J. Magn. Magn. Mater. 2021. V. 533. P. 167999.