_ СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ ____ И ЛИФФУЗИЯ

УЛК 543.429.3:544.178:004.67:537.622.4:537.622.6

СОЗДАНИЕ СЛОЖНЫХ МНОГОКОМПОНЕНТНЫХ МОДЕЛЕЙ МЁССБАУЭРОВСКИХ СПЕКТРОВ НА ПРИМЕРЕ ИССЛЕДОВАНИЯ СВЕРХТОНКИХ ВЗАИМОДЕЙСТВИЙ В КВАЗИБИНАРНЫХ СПЛАВАХ СО СТРУКТУРОЙ ФАЗ ЛАВЕСА

© 2023 г. М. Е. Мацнев^{*a*}, В. С. Русаков^{*a*, *}

^а Московский государственный университет им. М.В. Ломоносова, Физический факультет, Ленинские горы, 1, стр. 2, Москва, 119991 Россия *e-mail: rusakov@phys.msu.ru Поступила в редакцию 18.11.2022 г. После доработки 14.12.2022 г. Принята к публикации 26.12.2022 г.

Описан способ создания новых пользовательских моделей парциальных мессбауэровских спектров на основе уже существующих, встроенных в программу SpectrRelax, без изменения самой программы, путем написания фрагментов кода на встроенном языке программирования Lua. Расширение возможностей программы SpectrRelax продемонстрировано на примере исследования сверхтонких взаимодействий ядер ⁵⁷Fe в квазибинарных сплавах Tb(Fe_{0.8}Al_{0.2})₂ и Ho(Fe_{0.8}Mn_{0.2})₂ со структурой фаз Лавеса С15. Создана и использована модель расшифровки спектров, которая учитывает одновременно композитную и магнитную неэквивалентность позиций атомов Fe в этих сплавах, что позволило получить новую информацию об ориентации оси легчайшего намагничивания, анизотропии сверхтонкого магнитного поля и влиянии замещения атомов Fe атомами Al и Mn на сверхтонкие параметры мёссбауэровских спектров.

Ключевые слова: мёссбауэровская спектроскопия, программа SpectrRelax, кубическая фаза Лавеса, редкоземельные интерметаллиды, сверхтонкие взаимодействия DOI: 10.31857/S0015323022601751, EDN: CNDYUC

ВВЕДЕНИЕ

Мёссбауэровские спектры образцов, в которых атомы железа расположены во многих структурно- и магнитно-неэквивалентных позициях, обладают сложной сверхтонкой структурой, состоящей из большого числа парциальных спектров. Часть параметров этих парциальных спектров может иметь одинаковые значения или быть связана соотношениями, обусловленными особенностями кристаллической и магнитной структур образца. Расшифровка таких спектров предполагает создание моделей, состоящих из совокупности моделей отдельных парциальных спектров с физически обусловленными связями между их варьируемыми параметрами.

SpectrRelax [1, 2] – программа для обработки и анализа мёсбауэровских спектров. Она позволяет просматривать и обрабатывать экспериментальные спектры, моделировать спектры и находить оптимальные значения параметров модели расшифровки при подгонке огибающей к экспериментальному спектру. В моделях можно использовать неограниченное количество спектральных линий с независимыми или связанными параметрами. SpectrRelax состоит из нескольких крупных и достаточно независимых блоков: интерфейса пользователя, функций минимизации функционала "хи-квадрат" и поиска оптимальных значений варьируемых параметров, модуля вычисления математических выражений, задаваемых пользователем, и библиотеки моделей парциальных спектров. В программе SpectrRelax реализована возможность задавать произвольные связи между параметрами, создаваемые с помощью введения дополнительных варьируемых параметров и создания аналитических выражений [1, 2]. Однако при большом числе парциальных спектров и связей между их многочисленными параметрами, число которых может достигать нескольких десятков, работать с такими моделями расшифровки спектров становится сложно, возрастает вероятность допустить ошибки в задании условий и связей.

В работе описан предусмотренный в программе SpectrRelax способ создания новых пользовательских моделей парциальных спектров на основе уже существующих, встроенных в программу,

СОЗДАНИЕ СЛОЖНЫХ МНОГОКОМПОНЕНТНЫХ МОДЕЛЕЙ

Поле	Тип	Описание	
Name	Строка	Название модели	
Parameters	Таблица	Описание параметров	
Area	Строка	Название параметра, задающего площадь спектра	
Distribution	Таблица	Названия параметров, распределения которых можно восстанавливать	
Initialize	Функция	Функция, возвращающая функцию вычисления модельной огибающей	

Таблица 1. Поля таблицы описания модели

Таблица 2. Поля описания параметра в таблице параметров parameters

Поле	Тип	Описание	
Name	Строка	Название параметра	
Min, max	Число	Минимальное и максимальное значение параметра	
Initial	Число	Начальное значение параметра при добавлении новой модели	
Var	Флаг	Начальное значение флага фиксации параметра при добавлении новой модели: true или не задано — параметр варьируется, false — параметр фиксирован, но может быть разблокирован пользователем	
Dim	Число	Одно из значений кода размерности из таблицы dimensions в SpectrRelax (см. Приложение), для задания связей между однородными параметрами	

моделей без изменения самой программы, путем написания фрагментов кода на встроенном языке программирования Lua [3]. Расширение возможностей программы SpectrRelax продемонстрировано на примере исследования сверхтонких взаимодействий ядер ⁵⁷Fe в квазибинарных сплавах Tb(Fe_{0.8}Al_{0.2})₂ и Ho(Fe_{0.8}Mn_{0.2})₂ со структурой фаз Лавеса C15.

СОЗДАНИЕ ПОЛЬЗОВАТЕЛЬСКИХ МОДЕЛЕЙ В SpectrRelax

Для упрощения расшифровки мёссбауэровских спектров, для которых требуется модель с большим числом математических выражений и связей, мы встроили в SpectrRelax язык Lua для добавления новых моделей в библиотеку без изменения самой программы. При создании новых моделей можно использовать и уже существующие модели. Lua (переводится с португальского как "луна") – простой интерпретируемый язык программирования, созданный в Pontifical Catholic University Puo-де-Жанейро, Бразилия для конфигурирования сложного программного обеспечения [3]. Lua проектировалась для встраивания в другие приложения и используется с этой целью в сотнях программ по всему миру.

Чтобы добавить пользовательскую модель, необходимо создать файл с расширением .lua и с любым названием, которое не используется в SpectrRelax. Код в файле вызывается из Spectr-Relax при запуске программы и возвращает таблицу языка Lua с описанием модели, поля которой представлены в табл. 1.

Поле parameters в табл. 1 представляет собой список параметров, элементы которого задают описания параметров модели. Поля каждого описания представлены в табл. 2. Функция initialize принимает единственный параметр isotope, содержащий в SpectrRelax описание мёссбауэровского изотопа, и возвращает функцию вычисления огибающей, которая для разных изотопов может быть разной.

Функция вычисления огибающей вызывается с параметрами, представленными в табл. 3.

При вычислении значений модельной функции применен метод автоматического дифференцирования с использованием двойных чисел [4], поэтому не требуется писать отдельный код вычисления частных производных.

Продемонстрируем создание сложной многокомпонентной модели мессбауэровских спектров на языке Lua в программе SpectrRelax на примере модели пользователя "Laves", которая учитывает локальную магнитную неоднородность позиций атомов Fe в фазах Лавеса $R(Fe_{1-x}M_x)_2$.

СВЕРХТОНКИЕ ВЗАИМОДЕЙСТВИЯ ЯДЕР ⁵⁷Fe В КВАЗИБИНАРНЫХ СПЛАВАХ *R*(Fe_{1 - x}*M*_x)₂ И МОДЕЛЬ "Laves"

Интерметаллические соединения редкоземельных металлов (R) и 3d-переходных металлов (M) типа RM_2 со структурой фаз Лавеса до сих пор вызывают повышенный интерес исследователей

Параметр	Тип	Описание	
N	Число	Число точек, в которых необходимо вычислить значение огибающей	
R	Массив чисел или двойных чисел	Массив чисел, в который записываются значения огибающей	
v	Массив чисел	Массив значений скоростей, соответствующих эксперимен-	
		тальным точкам в спектре	
Параметры модели	Число или двойное число	Параметры модели, заданные пользователем	

Таблица 3. Параметры функции вычисления огибающей

прежде всего из-за обнаруженных в них гигантской магнитострикции [5] и большого магнитокалорического эффекта [6]. В то же время, благодаря своей относительно простой высоко симметричной кристаллической структуре, они являются прекрасными модельными объектами для теоретического и экспериментального исследования в области физики конденсированного состояния.

При наличии в фазах Лавеса RM₂ мёссбауэровского атома ⁵⁷Fe открывается возможность исследования в них сверхтонких взаимодействий (СТВ). Замещение обоих компонентов другими атомами в этих соединениях позволяет изучать многообразие механизмов и особенностей СТВ, а также взаимосвязь параметров СТВ с локальными характеристиками и свойствами соединения. Несмотря на достаточно большое число работ. посвященных исследованию СТВ в фазах Лавеса (см., напр., [7–15]), к настоящему времени механизмы СТВ в них изучены недостаточно. Отметим, в частности, такие не полностью решенные вопросы, как природа анизотропии магнитных СТВ, а также характер поведения параметров СТВ в процессе замещения одних компонентов другими.

Существенным шагом в исследовании СТВ стало использование тензорного описания магнитных СТВ [8, 10], которое позволяет непосредственно из мёссбауэровских спектров получать все необходимые параметры СТВ и с большой точностью определять ориентацию оси легкого намагничивания (ОЛН). Использование тензорного описания оказалось достаточно продуктивным при изучении фаз Лавеса с несколькими атомами разного типа в кристаллографической позиции редкоземельных атомов [8, 10, 14], которые в малой степени влияют на СТВ ядер ⁵⁷Fe.

Трудности возникают при исследовании железосодержащих фаз Лавеса с замещением в кристаллографической позиции атомов Fe. В этом случае существенно меняются как параметры обменных взаимодействий атома Fe с его окружением, так и параметры СТВ, возникают неэквивалентные не только в магнитном, но и в композиционном отношении [10], позиции мёссбауэровских атомов ⁵⁷Fe. Мёссбауэровские спектры ядер ⁵⁷Fe становятся спектрами со сложной сверхтонкой структурой, состоящими в общем случае из большого числа парциальных спектров с взаимосвязанными сверхтонкими параметрами. Без учета взаимосвязи найти значения этих параметров в силу их большого числа и, как правило, плохо разрешенного экспериментального спектра, не представляется возможным. В такой ситуации необходимо создать и реализовать модель расшифровки, учитывающую по возможности все особенности кристаллической и магнитной структуры многокомпонентного соединения в рамках тензорного описания магнитных СТВ.

Предлагаемая и реализованная нами с помощью программы SpectrRelax модель расшифровки спектров квазибинарных сплавов $R(Fe_{1-x}M_x)_2$ со структурой фазы Лавеса C15 основана на следующих предположениях:

1. Соединения обладают кубической структурой фазы Лавеса С15 (пр. гр. $Fd\overline{3}m$).

2. Магнитная структура соединения коллинеарная — магнитные моменты всех атомов вне зависимости от их локального окружения направлены вдоль общей оси ОЛН.

3. Сверхтонкие магнитные поля на ядрах ⁵⁷Fe описываются в рамках тензорного описания магнитных сверхтонких взаимодействий, зависят от сверхтонких изотропных H_{is} и анизотропных H_{an} полей, и ориентации ОЛН, которая задается полярным ϑ и азимутальным ϕ углами относительно кристаллографических осей соединения [10, 14].

4. Сверхтонкие изотропные поля H_{is} и сдвиги δ для мёссбауэровских спектров атомов Fe с различным ближайшим атомным окружением разные, а сверхтонкие анизотропные поля и константы квадрупольного взаимодействия e^2qQ для всех атомов Fe одинаковы и не зависят от ближайшего атомного окружения.

5. Учет энергии электрического квадрупольного взаимодействия во втором порядке малости [16].

6. Локальная неоднородность атомов Fe за счет вариации числа атомов разного типа во второй и далее координационных сферах атома Fe учитывается с помощью описания формы резонансных линий функцией псевдо Фойгт [1, 2].

7. Поскольку в замещенных редкоземельных фазах Лавеса $R(Fe_{1-x}M_x)_2$ в ближайшем атомном окружении атомов Fe в общем случае находятся от 0 до 6 атомов М, практически невозможно реализовать модель расшифровки спектра, используя только пользовательские математические выражения, как это было сделано для $Zr_{l-x}Sc_xFe_2$ в [14]. С этой целью необходимо создать сложную модель парциального спектра на языке программирования Lua. В рассматриваемом случае фаз Лавеса $R(Fe_{1} - M_{x})_{2}$ для каждого парциального спектра, соответствующего определенному числу атомов М в ближайшем атомном окружении атомов Fe, была создана состоящая из четырех взаимосвязанных зеемановских секстетов модель пользователя "Laves", основанная на соотношениях (19)–(30), приведенных в работе [14], которая учитывает локальную магнитную неоднородность позиций атомов Fe (см. Приложение).

В результате в распоряжении пользователя появляется модель парциального спектра, которую можно использовать наряду с остальными предусмотренными в программе SpectrRelax моделями (включая восстановление распределений сверхтонких параметров спектра):

$$N_{\text{Laves}} \begin{pmatrix} v; I, \frac{2I}{1I}, \frac{3I}{1I}, \frac{4I}{1I}, \frac{I_2}{I_1}, \frac{I_3}{I_1}, \delta, e^2 q Q, \\ \varphi, \theta, H_{\text{is}}, H_{\text{an}}, \Gamma_1, \frac{\Gamma_2}{\Gamma_1}, \frac{\Gamma_3}{\Gamma_1}, \alpha \end{pmatrix}.$$
 (1)

Здесь: І – интенсивность (площадь) парциального спектра в единицах оценки общей площади спектра, $\frac{2I}{1I}, \frac{3I}{1I}, \frac{4I}{1I}$ – отношения интенсивностей второго, третьего и четвертого к интенсивности первого парциального спектра соответственно; δ – сдвиг всех четырех парциальных спектров; $e^2 q O$ константа квадрупольного взаимодействия для всех четырех парциальных спектров; ϕ , θ – азимутальный и полярный углы, задающие направление оси легкого намагничивания относительно кристаллографических осей соединения; $H_{\rm is}$, $H_{\rm an}$ – изотропное и анизотропное сверхтонкие магнит-ные поля на ядрах ⁵⁷Fe; Γ_1 – ширина первой резонансной линии зеемановского секстета; $\frac{\Gamma_2}{\Gamma_1}, \frac{\Gamma_3}{\Gamma_1}$ – отношения ширины второй и третьей к интенсивности первой резонансной линии в зеемановском секстете соответственно; α – доля гауссовского вклада в интенсивность резонансной линии, изменяется от 0 (лоренцевская форма) до 1 (гауссовская форма).

Как видим, учет априорной информации о кристаллической и магнитной структурах соеди-

Таблица 4. Сверхтонкие параметры мёссбауэровских спектров $Tb(Fe_{0.8}Al_{0.2})_2$ и Ho(Fe_{0.8}Mn_{0.2})_2

Сверхтонкий параметр	$Tb(Fe_{0.8}Al_{0.2})_2$	Ho(Fe _{0.8} Mn _{0.2}) ₂
$\delta(m=0), \text{MM/c}$	-0.084(7)	-0.107(2)
$\overline{\Delta\delta}$, мм/с	+0.048(4)	-0.000(2)
$H_{\rm is}(m=0), \ \kappa \Im$	187.7(8)	182.0(4)
$\overline{\Delta H}_{is}, \ \kappa \Im$	-35.5(5)	-23.4(7)
H _{an} , кЭ	-12.2(9)	-6.3(6)
$e^2 q Q$, мм/с	-0.874(4)	-1.05(3)
ф, град	45 – fix	45 – fix
θ, град	38.1(2.7)	13.0(1.1)

нений типа RFe_2 в рамках тензорного описания анизотропии сверхтонких магнитных взаимодействий позволяет учесть магнитную неэквивалентность атомов Fe для каждой позиции с различным числом атомов $M(m_M)$ в ближайшем окружении, и существенно уменьшить число варьируемых параметров, задающих положения компонент спектра.

При этом все эти параметры – $\{\delta, e^2 q Q, \varphi, \theta, H_{is}, H_{an}\}$ имеют физический смысл и являются, как правило, предметом поиска.

СВЕРХТОНКИЕ ВЗАИМОДЕЙСТВИЯ ЯДЕР ⁵⁷Fe В КВАЗИБИНАРНЫХ СПЛАВАХ Tb(Fe_{0.8}Al_{0.2})₂ И Ho(Fe_{0.8}Mn_{0.2})₂

В качестве примера использования модели пользователя "Laves" приведем результат расшифровки мёссбауэровских спектров ядер 57 Fe в квазибинарных сплавах Tb(Fe_{0.8}Al_{0.2})₂ и Ho(Fe_{0.8}Mn_{0.2})₂. Модель расшифровки спектра состояла из пяти наиболее вероятных для данной концентрации Al и Мп моделей парциальных спектров "Laves", параметры которых связаны друг с другом, а также пользовательских математических выражений. Результаты модельной расшифровки мессбауэровских спектров представлены на рис. 1, 2 и табл. 4. Видно, что модель расшифровки хорошо описывает экспериментальные спектры - отсутствуют явные систематические отклонения в разностных спектрах (рис. 1) при значениях функционалов "хи-квадрат", близких к 1.

Относительные интенсивности парциальных спектров I_m , соответствующие позициям атомов Fe с различным числом *m* атомов Al и Mn в своем ближайшем окружении, с некоторыми отклонениями неплохо соответствуют биномиальному распределению (рис. 2). Результаты модельной расшифровки позволили получить значения параметра ближнего порядка Каули (Cowley) [17], которые рассчитывали заданием математическо-

Рис. 1. Результаты модельной расшифровки спектров ядер 57 Fe в сплавах Tb(Fe_{0.8}Al_{0.2})₂ и Ho(Fe_{0.8}Mn_{0.2})₂.

Рис. 2. Интенсивности парциальных спектров I_m ядер ⁵⁷Fe, значения сдвига спектра δ и изотропного поля H_{is} в зависимости от числа *m* замещенных атомов Fe атомами Al и Mn в ближайшем окружении атома Fe.

го выражения непосредственно в программе SpectrRelax:

$$\alpha_{\text{Cowley}} = 1 - \frac{1}{nx} \frac{\sum_{m=0}^{n} m I_m}{\sum_{m=0}^{n} I_m},$$
(2)

где n = 6 – число атомов в первой катионной координационной сфере атома Fe, x = 0.2 – концентрация атомов Al или Mn в квазибинарных сплавах Tb(Fe_{0.8}Al_{0.2})₂ и Ho(Fe_{0.8}Mn_{0.2})₂. В результате были получены значения $\alpha_{Cowely}^{Al} = -0.22 \pm 0.05$ и $\alpha_{Cowely}^{Mn} = -0.05 \pm 0.04$, которые означают, что распределение атомов Fe и Mn по позициям атомов переходного металла в Ho(Fe_{0.8}Mn_{0.2})₂ близко к биномиальному, а при распределении атомов Fe и Al некоторое энергетическое предпочтение имеют связи Fe–Al по сравнению со связями Al–Al и Fe–Fe.

В результате модельной расшифровки спектров оказалось, что сдвиги спектров и изотропные поля *H*_{is} меняются практически линейно с изменением числа атомов Al и Mn в ближайшем окружении атома Fe (рис. 2). При этом средние значения изменений сдвига спектра $\overline{\Delta\delta}$ и изотропного поля $\overline{\Delta H}_{is}$ при замещении атома Fe на атом Al и Mn в ближайшем окружении атома Fe (табл. 4) показывают, что изменение сверхтонких параметров наиболее чувствительно к замещению атомов Fe атомами Al. Объяснение этому следует искать в первую очередь в существенном различии электронных конфигураций атомов Fe и Al по сравнению с малым различием электронных конфигураций атомов Fe и Mn, которые соседствуют в таблице Менделеева.

Сравнительно большое значение анизотропного поля ~–12 кЭ для сплава $Tb(Fe_{0.8}Al_{0.2})_2$ по сравнению с ~–6 кЭ для сплава $Ho(Fe_{0.8}Mn_{0.2})_2$ (табл.4) связано в первую очередь с большим вкладом дипольного поля от эффективного спина атома Tb^{3+} по сравнению с атомом Ho^{3+} (см., напр., [10]). При поиске направления ОЛН оказалось, что экспериментальные спектры слабо чувствительны к вариации азимутального угла ϕ в области значения 45°, поэтому он был фиксирован. При комнатной температуре ОЛН отклонена для $Ho(Fe_{0.8}Mn_{0.2})_2$ на ~13° от кристаллографической оси [100], а для $Tb(Fe_{0.8}Al_{0.2})_2$ на ~17° от оси [111] в плоскости (110) (табл. 4).

ЗАКЛЮЧЕНИЕ

Расширены возможности программы обработки и анализа мессбауэровских спектров SpectrRelax, которые позволяют создавать новые пользовательские модели парциальных спектров на основе уже существующих в программе без изменения самой программы. С этой целью создается файл с структурированными фрагментами кода на встроенном языке программирования Lua, которые описывают модель.

Новые возможности продемонстрированы на примере создания пользовательской модели "Laves", которая в рамках тензорного описания анизотропии сверхтонких магнитных взаимодействий учитывает особенности кристаллической и магнитной структур кубических фаз Лавеса типа *R*M₂.

Применение пяти наиболее вероятных моделей "Laves" для расшифровки спектров ядер ⁵⁷Fe в квазибинарных сплавах $Tb(Fe_{0.8}Al_{0.2})_2$ и $Ho(Fe_{0.8}Mn_{0.2})_2$ позволило учесть одновременно композиционную и магнитную неэквивалентность позиций атомов Fe в этих сплавах. В результате получена новая информация об ориентации оси легчайшего намагничивания, анизотропии сверхтонкого магнитного поля и влиянии замещения атомов Fe атомами Al и Mn на сверхтонкие параметры мёссбауэровских спектров.

Авторы выражают свою благодарность сотруднику кафедры физики твердого тела физического факультета МГУ Е.В. Солодову за предоставленный для обработки и анализа экспериментальный спектр сплава Tb(Fe_{0.8}Al_{0.2})₂.

СПИСОК ЛИТЕРАТУРЫ

- Matsnev M.E., Rusakov V.S. SpectrRelax: an application for Mössbauer spectra modelling and fitting // AIP Conference Proceedings. 2012. V. 1489. P. 178–185.
- Matsnev M.E., Rusakov V.S. Study of spatial spin-modulated structures by Mössbauer spectroscopy using SpectrRelax // AIP Conference Proceedings. 2014. V. 1622. P. 40–49.

- Иерузалимски Р. Программирование на языке Lua. М.: ДМК Пресс, 2014. 382 с.
- 4. *Piponi D.* Automatic Differentiation, C++ Templates and Photogrammetry // J. Graphics Tools, 2004.
- 5. *Engdahl G.* Handbook of giant magnetostrictive materials. Academic Press, 2000. 386 p.
- Gschneidner, Jr.K.A., Pecharsky V.K., Tsokol A.O. Recent Developments in Magnetocaloric Materials // Rep. Progr. Phys. 2005. V. 68. P. 1479–1539.
- Raj P., Kulshreshtha S.K. Magnetically induced quadrupole interactions and anisotropic hyperfine fields at Fe-sites in RFe₂-compounds // J. Phys. 1980. V. 41. P. 1487–1494.
- 8. *Николаев В.И., Русаков В.С., Солодченкова Т.Б.* Кинетика спиновой переориентации при наличии анизотропии сверхтонких взаимодействий // Изв. АН СССР. Сер. Физическая. 1990. Т. 54. № 9. С. 1681–1685.
- Pokatilov V.S. Hyperfine fields and magnetic moments in Laves phase compounds RFe₂ (R = Sc, Y, Zr, Gd, Ce, Lu) // JMMM. 1998. V. 189. P. 189–194.
- Русаков В.С. Мёссбауэровская спектроскопия локально неоднородных систем. Алматы: ИЯФ НЯЦ РК. 2000. 431 с.
- Покатилов В.С. Сверхтонкие взаимодействия в кубических сплавах Лавеса Sc_{1 – x}Y_xFe₂ // ЖЭТФ. 2003. Т. 123. № 1. С. 71–78.
- Wiertel M., Surowiec Z., Budzyński M., Sarzyński J., Beskrovnyi A.I. Magnetic and structural properties of Sc(Fe_{1 - x}Si_x)₂ Laves phases studied by Mössbauer spectroscopy and neutron diffraction // Nukleonika. 2015. V. 60. P. 155–160.
- Вершинин А.В., Наумов С.П., Сериков В.В., Клейнерман Н.М., Мушников Н.В., Русаков В.С. Параметры сверхтонкого взаимодействия и магнитный фазовый переход антиферромагнетик—ферромагнетик в Ce(Fe_{1 – x}Si_x)₂ // ФММ. 2016. Т. 117. № 12. C. 1234–1240.
- Русаков В.С., Покатилов В.С., Губайдулина Т.В., Мацнев М.Е. Сверхтонкие магнитные поля на ядрах ⁵⁷Fe в интерметаллической системе Zr_{1-x}Sc_xFe₂ // ΦMM. 2019. Т. 120. № 4. С. 366–371.
- Наумов С.П., Мушников Н.В., Терентьев П.Б., Клейнерман Н.М. Магнитные свойства и локальное атомное упорядочение в Ce(Fe_{1-x}Si_x)₂ с содержанием кремния x ≤ 0.05 // ФММ. 2022. Т. 123. № 6. С. 588–595.
- Onodera H., Fujita A., Yamamoto H., Sagawa M. and Hirosawa S. Mossbauer study of the intermetallic compound Nd₂Fe₁₄B. I. Interpretation of complex spectrum // J. Magn. Magn. Mater. 1987. V. 68. P. 6–14.
- Займан Дж. Модели беспорядка. Теоретическая физика однородно неупорядоченных систем: Пер. с англ. М.: Мир, 1982. 592 с.