____ ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ _ СВОЙСТВА

УДК 669.74'1'71:538.958

ЭЛЕКТРОННАЯ СТРУКТУРА И ОПТИЧЕСКИЕ СВОЙСТВА СПЛАВОВ ГЕЙСЛЕРА $Mn_{2-x}Fe_{1+x}Al \ (x = -0.5, 0, 0.5, 1)$

© 2023 г. Е. И. Шредер^{*a*, *, А. В. Лукоянов^{*a*, *b*}, Р. Д. Мухачев^{*a*}, А. Н. Филанович^{*a*, *b*}, Шубра Даш^{*c*, *d*}, Аджит К. Патра^{*c*}, М. Васундхара^{*e*}}

^{*a}</sup>Институт физики металлов УрО РАН, ул. С. Ковалевской, 18, Екатеринбург, 620108 Россия* ^{*b*}Уральский федеральный университет, ул. Мира, 19, Екатеринбург, 620002 Россия ^{*c*}Central University of Rajasthan NH-8, Bandarsindri 305817, Rajasthan, India ^{*d*}MLR Institute of Technology, Dundigal, Hyderabad-500043, Telangana, India</sup>

^ePolymers and Functional Materials Department, CSIR-Indian Institution of Chemical Technology,

Tarnaka-500007, Hyderabad, Telangana, India

**e-mail: shreder@imp.uran.ru* Поступила в редакцию 16.11.2022 г.

После доработки 09.12.2022 г.

Принята к публикации 11.12.2022 г.

Представлены результаты расчетов электронной структуры, оптического спектра и экспериментального исследования оптических свойств сплавов Гейслера $Mn_{2-x}Fe_{1+x}Al$ (x = -0.5, 0, 0.5, 1). Обнаружено аномальное для металлических систем поведение оптической проводимости сплавов в ИК области спектра – отсутствие Друдевского роста и высокий уровень межзонного поглощения. Показано, что такое поведение определяется особенностями электронной структуры: уровень Ферми расположен в области высокой плотности состояний, формируемой *d*-состояниями Mn и Fe.

Ключевые слова: сплавы Гейслера, электронная структура, оптические свойства **DOI:** 10.31857/S001532302260201X, **EDN:** CNPMQN

1. ВВЕДЕНИЕ

Среди большого семейства сплавов Гейслера X_2 MeZ (X, Me – *d*-металл, Z – элемент III–V группы), материалы с Mn и Fe представляют особый интерес. Химическое подобие Mn и Fe обеспечивает взаимную растворимость, разнообразные и сложные магнитные фазовые диаграммы соединений [1–8]. Сплавы исследуют как перспективные материалы для магнитоэлектроники, создания жестких магнитов без редкоземельных элементов. Недавние исследования показали, что некоторые сплавы Гейслера рассматривают как материалы, перспективные для термоэлектрического применения [8–11].

Традиционно считается, что сплавы Гейслера имеют структуру $L2_1$, (Cu₂MnAl тип, пространственная группа *Fm*-3*m*, 225) [12], но также возможна инверсная *X*-структура (Hg₂CuTi тип, пространственная группа *F*-43*m*, 216) [4, 6]. Химическое или структурное разупорядочение приводит к частично разупорядоченной *B*2- или *A*2-структуре.

Экспериментальные исследования Mn_2FeAl и $Mn_{1.5}Fe_{1.5}Al$ показывают формирование геометрически фрустрированной структуры типа β -Mn (пространственная группа $P4_132$, 213) с антифер-

ромагнитным упорядочением. Элементарная ячейка структуры β-Мп содержит 20 атомов, которые распределены по двум неэквивалентным позициям: 8c [0.06361, 0.06361, 0.06361] (позиция I) и 12d [1/8, 0.20224, 0.45224] (позиция II) [1]. Наблюдение магнитного упорядочения в сплавах с β-Mn структурой вызывает споры из-за геометрического различия между двумя неэквивалентными позициями (I, II). Предположение, что позиция II несет магнитный момент, а позиция I считается немагнитной, до сих пор является предметом споров. Экспериментальная стабильность β-Мп-структуры подтверждена расчетами электронной структуры, выполненными для различного расположения атомов Mn, Fe и Al. Подробное исследование магнитных свойств сплавов Mn₂FeAl и Mn₁₅Fe₁₅Al со структурой β-Mn показали экспериментальную реализацию особенностей спинового стекла, подтвержденных анализом частотно-зависимой восприимчивости к переменному току с использованием критического степенного закона и закона Фогеля-Фулчера [1, 2].

Целью настоящего исследования является расчет электронной структуры и оптических свойств

Образец	Структура	Параметр решетки, Å
Mn _{2.5} Fe _{0.5} Al	β-Mn	6.36
Mn ₂ FeAl	β-Mn	6.357
$Mn_{1.5}Fe_{1.5}Al$	β-Mn	6.344
MnFe ₂ Al (I)	β -Mn +A2	6.33; 2.91
MnFe ₂ Al (II)	L2 ₁	5.815*

Таблица 1. Структурное состояние сплавов

* Имеется некоторый атомный беспорядок в позициях Fe и Mn.

сплавов Гейслера $Mn_{2-x}Fe_{1+x}Al (x = -0.5, 0, 0.5, 1)$, получение информации об электронной структуре из экспериментального исследования оптических свойств. Вместе с новыми данными для $Mn_{2.5}Fe_{0.5}Al$ и $MnFe_2Al$ мы приводим экспериментальные данные, полученные ранее для сплавов Fe₂MnAl [13], Mn_2FeAl [14], $Mn_{1.5}Fe_{1.5}Al$ [15].

2. ОБРАЗЦЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

Поликристаллические образцы сплавов $Mn_{2.5}Fe_{0.5}Al$, $MnFe_2Al$ (I), $Mn_{1.5}Fe_{1.5}Al$ были приготовлены плавкой в дуговой печи соответствующих порций Mn, Fe и Al (чистотой лучше, чем 99.95%). Плавление повторили несколько раз для получения лучшей однородности, при этом весовые потери составили менее 0.4%. Полученные слитки были отожжены в вакууме в кварцевых ампулах в течение 3 дней при температуре 1000°С.

Рис. 1. Рентгенограмма образца сплава Mn_{2.5}Fe_{0.5}Al.

После этого образцы были охлаждены до 650°C с дальнейшим отжигом в течение 3 дней и медленно охлаждены со скоростью 5°C/мин.

Образцы $MnFe_2Al(II)$ и Mn_2FeAl были приготовлены в индукционной печи в атмосфере очищенного аргона с трехкратным переплавом для получения лучшей однородности по составу. Результаты определения структурного состояния сплавов из рентгенографических данных представлены в табл. 1. Таким образом, среди исследуемых образцов есть как однофазные, так и неоднофазные, выплавленные в дуговой или индукционной печи и подвергнутые разным режимам термообработки. На рис. 1 в качестве примера приведена рентгенограмма образца $Mn_{2.5}Fe_{0.5}Al$, имеющего β-Mn-структуру, с уточнением данных рентгеновской дифракции методом Ритвельда.

Зеркальные поверхности для оптических исследований были получены шлифованием образцов на микропорошках карбида бора разной дисперсности и полированием на окиси хрома. Частотная зависимость действительной $\varepsilon_1(\omega)$ и мнимой $\varepsilon_2(\omega)$ части диэлектрической проницаемости (ω – циклическая частота световой волны) исследована эллипсометрическим методом Битти при комнатной температуре на воздухе в интервале спектра 0.07–5 эВ (λ = 0.25–13 мкм). Точность измерений составляла 2–5% в инфракрасной, видимой и ультрафиолетовой областях спектра. Оптическая проводимость вычислена по формуле $\sigma(\omega) = \varepsilon_2 \omega/4\pi$.

3. ТЕОРЕТИЧЕСКИЕ РАСЧЕТЫ ЭЛЕКТРОННОЙ СТРУКТУРЫ И ОПТИЧЕСКОГО СПЕКТРА

Расчеты электронной структуры выполнены в компьютерном пакете программ Quantum Espresso (QE) [16] с обменно-корреляционным потенциалом в приближении обобщенной градиентной поправки в подходе Педью-Бурке-Эрнзенхофа (РВЕ). Волновые функции разложены по плоским волнам. В базис орбитальных состояний были включены 4s-, 4p-, 3d-состояния переходных металлов марганца и железа, 3s-, 3p- и 3d-состояния алюминия. В расчетах использованы те же стандартные ультрамягкие псевдопотенциалы из библиотеки QE, что и в работе [1]. Для достижения требуемой сходимости в цикле самосогласования использован предел энергии 60 Rv для плоских волн. Интегрирование в обратном пространстве проведено по сетке из k-точек $8 \times 8 \times 8$. Код постобработки QE epsilon.x [16] использован для вычисления действительной и мнимой частей диэлектрического тензора совместно с плотностью состояний, исходя из вычисленных собственных значений и собственных векторов. В

Рис. 2. Кривые плотности состояний N(E) сплава $Mn_{2.5}Fe_{0.5}Al$ со структурой β -Мп для системы зон со спинами по (верхняя панель) и против (нижняя панель) направления намагниченности.

расчетах этого кода берутся межзонные переходы с сохранением импульса электрона *k*.

В работе приводим результаты расчета электронной структуры сплавов Гейслера $Mn_{2.5}Fe_{0.5}Al$ со структурой β -Mn и MnFe₂Al для разных структурных состояний.

Картина плотности состояний Mn₂ ₅Fe₀ ₅Al подобна тем, которые ранее были получены для Mn_2FeAl и $Mn_{1.5}Fe_{1.5}Al$ со структурой β-Mn [1, 14, 15]. Из рис. 2 видно, что сильно гибридизованные 3*d*-состояния Mn и Fe формируют общую *d*-зону, шириной ~8 эВ в системе зон со спинами по направлению намагниченности и ~7 эВ – с противоположной спиновой проекцией. Уровень Ферми расположен в области высокой плотности состояний в обеих спиновых подсистемах. Плотность 3s-, Зр-состояний атомов Al, 4s-, 4p-состояний атомов Mn и Fe невысокая, распределена по широкой области энергий. Полный магнитный момент $Mn_{2.5}Fe_{0.5}Al$ получен в расчете как 5.5 μ_B/ϕ . ед. При этом магнитные моменты ионов образуют ферримагнитный тип упорядочения, связанный с противоположными направлениями моментов ионов Mn, которые по величине составляют от 2.0 до 2.8 µ_в. Магнитные моменты различных ионов Mn имеют значения в указанном диапазоне по причине различного локального окружения другими ионами Mn, Fe, Al, которые располагаются разупорядочено в позиция двух типов: 8с и 12d [1]. Более подробно магнитные свойства данного состава и возможные валентности марганца в нем будут исследованы и опубликованы в дополнительной статье. Магнитные моменты ионов Fe и Al составляют 1.6 и 0.1 µ_в соответственно. Близкие по величине магнитные моменты были получены и для Mn_2 FeAl в β -Mn структуре в работе [1].

Рис. 3. Расчетный спектр межзонной оптической проводимости сплавов.

Расчет межзонной части оптической проводимости сплавов выполнен для сплавов $Mn_{1.5}Fe_{1.5}Al$, Mn_2FeAl , $Mn_{2.5}Fe_{0.5}Al$, имеющих β-Mn-структуру. Показано наличие интенсивного межзонного поглощения практически с нулевой энергии в обеих спиновых подзонах (рис. 3).

Для сплава MnFe₂Al зонные расчеты были выполнены с учетом кристаллической структуры реальных образцов, кривые плотности состояний приведены на рис. 4. В образце MnFe₂Al (I) рентгеноструктурный анализ показал наличие двух фаз – β-Mn и A2. Поэтому картина плотности состояний представлена двумя вкладами (рис. 4а). Вклад от β-Мп-структуры подобен тому, что был получен для $Mn_{1.5}Fe_{1.5}Al$, Mn_2FeAl , $Mn_{2.5}Fe_{0.5}Al$. Сильно гибридизованные 3*d*-состояния Mn и Fe формируют общую *d*-зону, шириной ~8 эВ в системе зон со спинами по направлению намагниченности и ~7 эВ – с противоположной спиновой проекцией. При этом очевидно, что вклад состояний со спином против направления намагниченности отличается от вклада с противоположной проекцией неоднородным смещением по энергии. Для разупорядоченной А2-структуры кривая плотности состояний имеет большее количество пиков в широкой области энергий для обеих спиновых подсистем. Структура энергетических зон MnFe₂Al в обеих кристаллических фазах такова, что уровень Ферми локализован в области высокой плотности состояний.

Принципиально другую картину плотности состояний получаем для сплава $MnFe_2Al$ со структурой $L2_1$, даже с учетом наличия антиструктурных атомов (рис. 46). Для структуры $L2_1$ уровень Ферми расположен в глубоком минимуме для состояний со спином (\uparrow) и в области практи-

Рис. 4. Кривые плотности состояний N(E) сплавов MnFe₂Al: (a) со структурой β -Mn и A2; (б) для идеальной $L2_1$ -структуры и с учетом антиструктурных атомов, для системы зон со спинами по (верхняя панель) и против (нижняя панель) направления намагниченности.

чески нулевой плотность состояний для состояний со спином (\downarrow). Такая картина N(E) позволяет отнести сплав к полуметаллическим ферромагнетикам. Учет беспорядка естественным образом приводит к перераспределению плотности состояний, однако уровень Ферми остается в глубоком минимуме для обеих спиновых подзон.

Полный магнитный момент MnFe₂Al получен в расчете для β -Mn-структуры как 3.0 $\mu_{\rm B}/\phi$. ед., для A2 структуры величина составила 1.5 $\mu_{\rm B}/\phi$. ед. В случае идеальной $L2_1$ -структуры MnFe₂Al полный магнитный момент составляет 2.0 $\mu_{\rm B}/\phi$. ед., с учетом антиструктурных атомов в $L2_1 - 1.8 \mu_{\rm B}/\phi$. ед. Как и в других сплавах Гейслера Mn_{2 – x}Fe_{1 + x}Al, тип магнитного порядка в MnFe₂Al остается ферри-

Рис. 5. Действительная ε_1 и мнимая ε_2 части диэлектрической проницаемости сплавов.

магнитным с противоположными направлениями моментов ионов в подрешетке Mn.

4. ОПТИЧЕСКИЕ СВОЙСТВА

4.1. Внутризонное поглощение

Дисперсионные кривые $\varepsilon_1(\omega)$, $\varepsilon_2(\omega)$ и $\sigma(\omega)$ сплавов MnFe₂Al(I), Mn_{2.5}Fe_{0.5}Al приведены на рис. 5 и 6 вместе с данными для сплавов MnFe₂Al(II), Mn_{1.5}Fe_{1.5}Al и Mn₂FeAl, полученными нами ранее [13–15].

В ИК-области спектра основным механизмом, определяющим оптические свойства металлов, является внутризонное поглощение так называемое "друдевское". Его вклад определяется параметрами электронов проводимости: плазменной частотой Ω и частотой релаксации γ , и убывает пропорционально квадрату частоты падающего света ω^2 .

Оптическим критерием металлического характера проводимости являются отрицательные значения действительной части диэлектрической проницаемости $\varepsilon_1(\omega)$ в ИК-области спектра [17]. На рис. 5 мы наблюдаем монотонное увеличение ε_2 с уменьшением энергии падающей световой волны и невысокие отрицательные или положительные значения ε_1 вплоть до границы исследованного интервала. Абсолютные значения невелики, значительно ниже тех, которые характерны для хороших металлов, и указывает на то, что исследуемые сплавы являются плохими металлами.

В первую очередь такая ситуация может быть связана с низкой эффективной концентрацией свободных носителей $N_{э\phi}$. В работах [14, 15] для Mn_2FeAl , $Mn_{1.5}Fe_{1.5}Al$ были сделаны оценки квад-

рата плазменной частоты электронов проводимости как $\Omega^2 \sim (0.9-1.3) \times 10^{30} \text{ c}^{-2}$ и связанной с ней эффективной концентрацией свободных носителей $N_{3\phi} = \Omega^2 m/4\pi e^2 \sim (3-4) \times 10^{20} \text{ см}^{-3}$ (*e*, *m* – заряд и масса свободного электрона). Значения $N_{3\phi}$ примерно на 2 порядка ниже тех, которые характерны для хороших металлов. Для MnFe₂Al (I) и MnFe₂Al (II) кривые $\varepsilon_1(\omega)$ незначительно отличаются, но близки к другим сплавам во всей исследованной области, значит, близки значения Ω^2 и $N_{3\phi}$.

Для Mn_{2.5}Fe_{0.5}Al значения $\varepsilon_1(\omega)$ остаются положительными вплоть до длинноволновой границы изученного интервала, оценку Ω^2 и $N_{3\phi}$ сделать невозможно. Значения $\varepsilon_2(\omega)$ в ИК-области спектра самые низкие среди всех исследованных сплавов, указывая на то, что в данном сплаве вклад свободных электронов в оптическое поглощение существенно ниже.

Для кубических кристаллов квадрат плазменной частоты Ω^2 определяется скоростью электронов υ на поверхности Ферми, которая в свою очередь связана с плотностью состояний на уровне

Ферми:
$$\Omega^2 = \frac{e^2}{3\pi^2\hbar} \int \upsilon dS_F, \ N(E_F) = \frac{1}{4\pi^3\hbar} \int \frac{dS_F}{\upsilon}$$
 [17].
На уровне Ферми, согласно зонным расчетам, отме-

чена высокая плотность состояний, образованная вкладами *d*-состояний атомов Mn и Fe (рис. 2, 4). Поэтому естественно ожидать низкие значения квадрата плазменной частоты Ω^2 и эффективной концентрации свободных носителей $N_{эф}$.

Еще одной причиной невысоких абсолютных значений $\varepsilon_1(\omega)$ и $\varepsilon_2(\omega)$ могут быть высокие значения частоты релаксации, которая включает в себя все механизмы рассеяния электронов, в частности, из-за структурного беспорядка. Однако видим, что кривые $\varepsilon_1(\omega)$ и $\varepsilon_2(\omega)$ близки для всех сплавов, независимо от структуры или степени порядка.

4.2. Межзонное поглощение

Оптическая проводимость $\sigma(\omega)$ является наиболее информативной функцией для выявления особенностей оптического поглощения. В ИКобласти спектра для металлов характерно наличие Друдевского подъема на кривой $\sigma(\omega)$, обусловленного вкладом от поглощения энергии падающей волны свободными электронами (внутризонное поглощение) [17]. По мере увеличения частоты падающего света включается, а затем начинает доминировать механизм квантового возбуждения электронов. В оптической проводимости появляется вклад от межзонного поглощения, дающего информацию об электронном энергетическом спектре.

Рис. 6. Оптическая проводимость сплавов. На вставке – более подробно ИК-область.

Главной особенностью спектров оптической проводимости исследованных сплавов является отсутствие Друдевского подъема (рис. 6). Это свидетельствует о слабом вкладе механизма внутризонного поглощения в формирование оптических свойств. На всем исследованном участке спектра доминирующую роль играют межзонные переходы, формируя сложную спектральную зависимость $\sigma(\omega)$. Наиболее интенсивное межзонное поглощение в ИК-области спектра отмечено в сплаве MnFe₂Al (II), для которого пики на кривой $\sigma(\omega)$ имеются уже при энергиях 0.16, 0.28, 0.66 эВ. В видимой и УФ области интенсивность межзонного поглощения постепенно снижается до уровня $\sigma(\omega) \sim 22 \times 10^{14} \, \text{c}^{-1}$. Дисперсия оптической проводимости образца MnFe₂Al (I), в котором выявлены две фазы, в общих чертах повторяет картину, но интенсивность поглощения в ИК-области спектра ниже по сравнению с MnFe₂Al (II).

Для образца сплава MnFe₂Al (II) со структурой $L2_1$ оптическая проводимость в ИК-области выше, чем для остальных сплавов, как упорядоченных в β-Mn-структуре, так и неоднофазном MnFe₂Al (I). В видимой и ультрафиолетовой областях интенсивность межзонного поглощения постепенно уменьшается с увеличением энергии падающего света и при E > 2 эВ практически совпадает со сплавом MnFe₂Al (I).

Для сплава Mn_{2.5}Fe_{0.5}Al отмечены самые низкие значения оптической проводимости во всей исследованной области спектра. В ИК-области спектра это определяется самой низкой эффективной концентрацией носителей заряда среди исследованных в работе сплавов. Возможные причины ослабления межзонного вклада обсудим ниже.

Отсутствие Друдевского подъема является аномальным для металлических систем. В пределе $\omega \to 0$ оптическая проводимость выходит на значение статической, которую можно получить из измерений удельного электросопротивления. Статическая проводимость при комнатной температуре σ_{cT} имеет значения 17.5 × 10¹⁴ c⁻¹ для Mn₂FeAl [14] и 31 × 10¹⁴ c⁻¹ для MnFe₂Al(II) [13]. Следовательно, в пределе $\omega \to 0$ оптическая проводимость должна еще уменьшиться.

Обсуждение экспериментальных результатов проведем на основе расчетов электронной структуры и оптических спектров. Для сплавов со структурой *β-Мп* расчеты показывают наличие интенсивного межзонного поглощения практически с нулевой энергии в обеих спиновых подзонах. Теоретические кривые оптической проводимости (рис. 3) в основных чертах согласуются с экспериментальными кривыми (рис. 6). Наличие пиков поглощения в ИК-области спектра свидетельствуют о существовании низкоэнергетических щелей в зонном спектре сплавов, как предсказывают зонные расчеты. Имеется согласие между теорией и экспериментом в положении особенностей поглощения во всем исследованном спектральном интервале. Вклад в поглощение дают переходы между гибридизованными состояниями $(p, d)_{\text{Mn, Fe, Al}} \rightarrow (d, p)_{\text{Mn, Fe, Al}}$ в обеих спиновых подсистемах, которые начинаются практически с нулевой энергии.

Отдельно обсудим возможные причины ослабления межзонного поглощения в сплаве $Mn_{2.5}Fe_{0.5}Al$ по сравнению с другими исследованными в работе сплавами. Теоретический расчет показывает одинаковую картину σ_{reop} по интенсивности межзонного поглощения для сплавов с β-Mn-структурой (рис. 3). Однако более высокое содержание Mn в $Mn_{2.5}Fe_{0.5}Al$ означает, что гибридизация 3*d*-состояний Mn и Fe не столь сильная, как в остальных сплавах, на уровень Ферми выходят преимущественно 3*d*-состояния Mn. Как результат — значительно снижается вероятность межзонных переходов между этими состояниями, что находит отражение в снижении оптической проводимости.

Для образцов сплава $MnFe_2Al$ с различным структурным состоянием отличие в оптических спектрах отмечено в области энергий от 0.1 до 2 эВ, т.е. не далее 2 эВ от уровня Ферми. Согласно зонным расчетам, принципиальное отличие состоит в положении уровня Ферми в области высокой плотности состояний для двухфазного образца $MnFe_2Al$ (I) и глубоком минимуме для образца $MnFe_2Al$ (II). Именно данная особенность зонного спектра может определять условия межзонных переходов электронов в данной области энергий. Кроме того, в ИК-области спектра вклад от межзонного поглощения сосуществует с вкладом от внутризонного поглощения. Из зависимости действительной и мнимой части диэлектрической проницаемости (рис. 5) видно, что абсолютные значения ε_1 и ε_2 и, следовательно, вклад от внутризонного поглощения, выше для MnFe₂Al (II).

ЗАКЛЮЧЕНИЕ

Выполнено комплексное исследование электронной структуры сплавов Гейслера $Mn_{2-x}Fe_{1+x}Al(x = -0.5, 0, 0.5, 1)$ теоретически расчетами зонного и оптического спектра и экспериментально методом оптической спектроскопии.

Показано формирование общей d-зоны атомов Mn и Fe шириной ~7–8 эВ. Уровень Ферми находится в области высокой плотности состояний для сплавов со структурой β -Mn. Для образца сплава со структурой $L2_1$ уровень Ферми находится в минимуме плотности состояний.

Обнаружено аномальное поведение оптических свойств сплавов в ИК-области спектра – отсутствие вклада от внутризонного поглощения и наличие интенсивного межзонного поглощения.

Полученная картина зонного спектра и спектра оптической проводимости позволяет дать качественное объяснение особенностей оптического спектра поглощения и дисперсии диэлектрической проницаемости. Показано, что низкая концентрация носителей заряда и наличие пиков межзонного поглощения в ИК-области определяется структурой энергетических зон.

Исследования проведены за счет гранта Российского научного фонда (проект № 22-22-20109 https://rscf.ru/project/22-22-20109/, ИФМ УрО РАН).

Нет конфликтов интересов.

СПИСОК ЛИТЕРАТУРЫ

- Dash Sh., Lukoyanov A.V., Nancy, Mishra D., Mohammed Rasi U.P., Gangineni R.B., Vasundhara M., Patra A.K. Structural stability and magnetic properties of Mn₂FeAl alloy with a β-Mn structure // JMMM. 2020. V. 513. P. 167205.
- Khorwal A.K., Nancy, Dash Sh., Kumar A., Lukoyanov A.V., Shreder E.I., Bitla Yu., Vasundhara M., Patra A.K. Evidence for canonical spin glass behaviour in polycrystalline Mn_{1.5}Fe_{1.5}Al Heusler alloy // JMMM. 2022. V. 546. P. 168752.
- Марченков В.В., Ирхин В.Ю., Перевозчикова Ю.А., Терентьев П.Б., Семянникова А.А., Марченкова Е.Б., Eisterer М. Кинетические свойства и полуметаллический магнетизм в сплавах Гейслера Mn₂YAl // ЖЭТФ. 2019. Т. 155. Вып. 6. С. 1083–1090.
- Wollmann L., Chadov S., Kübler J., Felser C. Magnetism in cubic manganese-rich Heusler compounds // Phys. Rev. B. 2014. V. 90. P. 214420.

- Yang Z.J., Gao Q.H., Xiong H.N., Shao J.X., Wang X.W., Xu Z.J. Pressure-induced magnetic moment abnormal increase in Mn₂FeAl and non-continuing decrease in Fe₂MnAl via first principles // Sci. Rep. 2017. V. 7. P. 16522.
- Luo H.Z., Zhang H.W., Zhu Z.Y., Ma L., Xu S.F., Wu G.H., Zhu X.X., Jiang C.B., Xu H.B. Half-metallic properties for the Mn₂FeZ (Z = Al, Ga, Si, Ge, Sb) Heusler alloys: A first-principles study // J. App. Phys. 2008. V. 103. P. 083908.
- Gavrikov I., Seredina M., Zheleznyy M., Shchetinin I., Karpenkov D., Bogach A., Chatterjee R., Khovaylo V. Magnetic and transport properties of Mn₂FeAl // JMMM. 2019. V. 478. № 1. P. 55–58.
- Jum'h I., Sâad essaoud S., Baaziz H., Charifi Z., Telfah A. Electronic and Magnetic Structure and Elastic and Thermal Properties of Mn2-Based Full Heusler Alloys // J. Supercond. Novel Magn. 2019. V. 32. P. 3915–3926.
- Li H., Hayashi K., Nagashima Y., Yoshioka S., Dong J., Li J-F., Miyazaki Y. Effects of Disorder on the Electronic Structure and Thermoelectric Properties of an Inverse Full-Heusler Mn₂CoAl Alloy // Chem. Mater. 2021. V. 33. P. 2543–2547.
- Hayashi K., Li H., Eguchi M., Nagashima Y., Miyazaki Y. Magnetic Full-Heusler Compounds for Thermoelectric Applications / Magnetic Materials and Magnetic Levitation (ed. D.R. Sahu and V.N. Stavrou. https://doi.org/10.5772/intechopen.92867
- Hayashi K., Eguchi M., Miyazaki Y. Structural and Thermoelectric Properties of Ternary Full–Heusler Alloys //J. Electronic Materials. 2017. V. 46. P. 2710.

- Webster P.J. Heusler Alloys // Contemporary Physics. 1969. V. 10. P. 559–577.
- Шредер Е.И., Свяжин А. Д., Фомина К. А. Оптические свойства сплавов Гейслера Fe₂NiAl, Fe₂MnAl // ФММ 2012. Т. 113. № 2. С. 155–161.
- Шредер Е.И., Махнев А.А., Лукоянов А.В., Сташкова Л.А., Кузьмин Ю.И., Семянникова А.А., Марченков В.В. Оптические свойства сплава Гейслера Mn₂FeAl с β-Mn структурой // ФММ. 2021. Т. 122. С. 791–795.
- Шредер Е.И., Лукоянов А.В., Махнев А.А., Кузьмин Ю.И., Даш Ш., Патра А.К., Васундхара М. Электронная структура и оптические свойства сплава Гейслера Mn_{1.5}Fe_{1.5}Al // ЖЭТФ. 2021. Т. 160. Вып. 4(10). С. 546–552.
- Giannozzi P., Andreussi O., Brumme T., Bunau O., Nardelli M.B., Calandra M., Car R., Cavazzoni C., Ceresoli D., Cococcioni M., Colonna N., Carnimeo I., Dal Corso A., de Gironcoli S., Delugas P., DiStasio Jr. R.A., Ferretti A., Floris A., Fratesi G., Fugallo G., Gebauer R., Gerstmann U., Giustino F., Gorni T., Jia J., Kawamura M., Ko H.-Y., Kokalj A., Küçükbenli E., Lazzeri M., Marsili M., Marzari N., Mauri F., Nguyen N.L., Nguyen H.-V., Otero-de-la-Roza A., Paulatto L., Poncé S., Rocca D., Sabatini R., Santra B., Schlipf M., Seitsonen A.P, Smogunov A., Timrov I., Thonhauser T., Umari P., Vast N., Wu X., Baroni S. Advanced capabilities for materials modelling with Quantum ESPRESSO // J. Phys.: Condens. Matter. 2017. V. 29. P. 465901.
- 17. Соколов А.В. Оптические свойства металлов. М.: ГИФМЛ, 1961. 464 с.