= ДИНАМИКА ПЛАЗМЫ

УДК 629.3.036

МГД-ДВИГАТЕЛЬ С КАПИЛЛЯРНО-ПОРИСТЫМИ ЭЛЕКТРОДАМИ

© 2019 г. В. И. Ильгисонис^{а, b}, Ю. В. Мартыненко^{с, d, *}

^а Государственная корпорация по атомной энергии "Росатом", Москва, Россия ^b Российский университет дружбы народов, Москва, Россия ^c НИЦ "Курчатовский институт", Москва, Россия ^d Национальный исследовательский ядерный университет "МИФИ", Москва, Россия * e-mail: Martyn907@yandex.ru Поступила в редакцию 20.04.2018 г.

После доработки 31.05.2018 г. Принята в печать 31.05.2018 г.

Рассматриваются капиллярно-пористые электроды для плазменных МГД-устройств, которые могут быть непрерывно возобновляемыми, и позволяют в качестве двигателя для межорбитальных полетов использовать схему обращенного МГД-генератора, т.е. МГД-ускоритель. Рассмотрено два типа ускорения плазмы: 1) ускорение силой Лоренца при первичном токе перпендикулярном ускорению (схема Фарадея), и 2) ускорение на основе эффекта Холла. В первом случае двигатель имеет преимущества лишь при больших мощностях двигателя (>1 МВт), а во втором – тяга и удельная тяга уже при мощности 500–1000 кВт сравнимы и превосходят известные аналоги. Сформулированы условия работы капиллярно-пористых электродов.

DOI: 10.1134/S0367292119010062

1. ВВЕДЕНИЕ

В настоящее время ведутся работы по созданию двигателя для межорбитальных полетов [1]. Для таких двигателей создаются ядерные энергетические установки мощностью до 15 МВт [2]. Важная характеристика межорбитального двигателя – его долговечность. Недавно было предложено [3] использовать капиллярно-пористые электроды для плазменных МГД-устройств. Капиллярно-пористый электрод состоит из корпуса с расплавом металла со стороной, обращенной к плазме из пористых матов, пропитанных жидким металлом, поступающим за счет поверхностного натяжения, при этом корпус соединен с резервной емкостью с расплавом металла. Такие электроды могут быть возобновляемыми, их срок службы ограничен запасом металла, используемого для расплава. Если нет эрозии и деградации свойств электродов, то в качестве двигателя, возможна простая схема обрашенного МГЛ-генератора, т.е. МГД-ускоритель. Ускоритель представляет собой прямоугольную камеру, в которой по оси y создано магнитное поле **B**, а по оси z течет ток между капиллярно-пористыми электродами. Капиллярно-пористые электроды должны быть секционированы, т.е. разделены на полосы, перпендикулярные оси х. Это также, как в МГД-генераторах, необходимо для подавления токов Холла в электродах. Для рассматриваемого двигателя можно предложить, чтобы электроды длиной $\ell = 10$ см (вдоль оси *v*) и шириной 1 см (вдоль оси х) были разделены изоляторами (шириной 1 см вдоль оси x). Магнитное поле предлагается создавать постоянными магнитами, которые в настоящее время могут дать напряженность до 1.5 Тл. Сила $[j \times B]$ ускоряет плазму по оси *х*. В первой схеме ток по оси z создается при приложении напряжения между противоположными электродами (рис. 1). При ускорении за счет эффекта Холла, напряжение подается на крайние электроды, и первичный ток j_x направлен вдоль оси x (рис. 2). Остальные электроды попарно закорочены, по ним течет ток Холла j_z вдоль оси z. При условии $j_7 \gg j_x$ сила $j_7 B$ ускоряет плазму вдоль оси х. Преимуществом такой схемы является возможность использования одного источника тока.

2. СХЕМА РАБОТЫ МГД-УСКОРИТЕЛЯ С КАПИЛЛЯРНО-ПОРИСТЫМИ ЭЛЕКТРОДАМИ

В [3] было предложено использовать металл расплава капиллярно-пористых электродов также в качестве рабочего тела плазменного МГДускорителя. Однако ниже будет показано, что рабочее тело надо подавать в начале камеры ускорения. Ионизация рабочего тела возможна за счет

Рис. 1. Ускорение плазмы на основе схемы Фарадея.

нагрева электронно-циклотронным резонансом (ЭЦР). СВЧ греет только электроны, а ионы остаются холодными ~0.1 эВ, что соответствует температуре испаряемого лития. Время передачи энергии от электронов ионам и атомам t == $(M/m)(n\sigma_{ea}v_e) \approx 10^{-2}$ с (M – масса атома, m – масса электрона, n – плотность плазмы, σ_{ea} – сечение передачи энергии при столкновениях электронов с атомами и ионами, v_e – тепловая скорость электронов) много больше времени пролета ускорительной камеры $L/v \approx 10^{-4}$ с (L – длина ускорительной камеры, v – скорость потока плазмы). Толщина слоя поглощения СВЧ в плазме $\delta = (\mu_0 \omega \sigma)^{-1/2} \leq 1 \, \text{см} (\omega - \text{частота CBЧ-излуче ния, } \sigma$ – проводимость плазмы). Однако время рекомбинации плазмы $t = (\alpha n)^{-1} \leq (10^{-19} n)^{-1} (\alpha - коэффициент рекомбинации) больше времени$ пролета ускорительной камеры (при $n < 10^{23}$ м⁻³, т.е. практически всегда). Поэтому можно ионизовать малый слой в начале ускорения, и малая толщина слоя поглощения СВЧ не важна. При такой схеме пар, поступающий с электродов, не будет ионизован, не будет ускоряться, а будет лишь балластом. Возможны и другие способы ионизации пара, например, дуговой разряд.

В качестве рабочего тела и в качестве расплава в пористых электродах можно использовать литий. Литий подробно исследован и хорошо зарекомендовал себя в капиллярно-пористых системах в термоядерных установках [4], а в качестве рабочего тела он используется в магнитоплазмодинамическом двигателе [1]. Литий имеет малую атомную массу, позволяет получать максимальную удельную тягу F/(dM/dt) = v (F – тяга, dM/dt – расход рабочего тела, v – скорость истечения из сопла).

Рис. 2. Ускорение плазмы на основе схемы Холла.

Рассмотрим одномерное(по оси x) МГД-приближение и установившееся движение (dv/dt = vdv/dx). Будем рассматривать только ток j_z . Уравнение непрерывности дает

$$abla(nv) = 0, \quad n(x) = n_0 \frac{V_0}{V(x)}.$$
 (1)

Уравнение движения

$$Mn\frac{dv}{dt} = Mn\frac{vdv}{dx} = -\nabla p - \mu\Delta v + j_z B,$$
 (2)

где p — давление, μ — вязкость плазмы. В дальнейшем, для рассматриваемого случая, первым и вторым членами справа можно пренебречь вследствие малости,

$$\frac{T_i}{Mv^2} \ll 1.$$

Из уравнений (1) и (2) находим тягу

$$F = \ell^2 \int_0^L j_z B dx$$

Скорость и плотность как функции x, равны

$$v = \frac{1}{Mn_0v_0} \int_0^L j_z B dx, \quad n = \frac{Mv_0^2 n_0^2}{\int_0^L j_z B dx},$$

где n_0 — плотность плазмы в начале ускорительной камеры, v_0 — начальная скорость плазмы, принимаемая равной тепловой скорости ионов лития ~ 1.7×10^3 м/с.

Подача рабочего тела производится в начале ускорительной камеры (x = 0). При этом также возможно испарение лития с капиллярно-пористых систем, но не с токосъемных электродов.

Проводимость плазмы перпендикулярно магнитному полю равна

$$\sigma = \frac{\sigma_0}{1 + \beta^2},\tag{3}$$

где $\sigma_0 = (e^2 n/m)\tau = e^2/(m\sigma_{ei}v_e)$ — проводимость плазмы без магнитного поля, e — заряд электрона, $\beta = \omega_{ce}\tau$ — параметр Холла, $\omega_{ce} = eB/mc$ — циклотронная частота электрона, $\tau = (n\sigma_{ei}v_e)^{-1}$ и σ_{ei} время и сечение столкновений электрона с ионами. Степень ионизации должна быть $\alpha = 1$, $\sigma_{ei} \approx 10^{-16}/T_e^2$ м⁻², где T_e — электронная температура в эВ, T_e не должна быть слишком высокой, а лишь достаточной для $\alpha = 1$. Тогда $\sigma_0 \approx 400 T_e^{3/2} (\text{Ом} \cdot \text{м})^{-1}$. Вследствие неопределенности T_e можно ожидать, что σ_0 будет лежать в пределах 200—600 (Ом · м)⁻¹, для оценок примем $\sigma_0 = 400$ (Ом · м)⁻¹.

3. СХЕМА УСКОРЕНИЯ ФАРАДЕЯ

В этой схеме необходимо, чтобы $\beta < 1$ по всей длине ускорительной камеры, в том числе при x = L, где плотность плазмы минимальна. Поскольку для увеличения скорости истечения плазмы и уменьшения затрат энергии на ионизацию надо использовать минимальную плотность плазмы *n*, то потребуем, чтобы максимальное значение β при x = L равнялось $\beta(L) = 1$. В этом случае $\sigma = \sigma_0$, плотность тока *j* постоянна и задана напряжением на электродах U, $j = U\sigma/\ell$.

Далее в формулах всюду используется система СИ, но размерности опущены. Условие $\beta(L) = 1$ дает

$$\beta(L) = \frac{eB}{mc} \frac{1}{n\sigma_{ei}v_e} \approx 2.5 \frac{B}{v}u(L) = 1,$$

где $u = v/v_0$, $v = n_0/10^{21}$. Это условие позволяет все выходные параметры выразить через $n_0(v)$ и *B*

$$u(L) = 0.4 \frac{v}{B}, \quad v = 0.7 \times 10^3 \frac{v}{B},$$

$$F = \left(\ell^2 n M v_0^2\right) u = 0.13 \frac{v^2}{B}.$$
 (4)

Полезная мощность равна

$$W_1 = Fv = 90\frac{v^3}{B^2}.$$
 (5)

Мощность, требуемую на ионизацию, W_i , рассчитываем из правила установленного экспериментально [5]: на ионизацию одного атома требуется

ФИЗИКА ПЛАЗМЫ том 45 № 1 2019

энергия, равная $\sim 7I$, где I – потенциал ионизации (для лития I = 5.3 эВ). Тогда

$$W_i = n_0 v_0 \ell^2 \cdot 7I \approx 10^5 n. \tag{6}$$

Мощность, расходуемая на омический нагрев плазмы равна

$$W_{O} = \frac{\ell^{2} L j^{2}}{\sigma} = \frac{F^{2} L}{\ell^{2} B^{2} \sigma_{0}} = 4 \times 10^{-3} \left(\frac{v}{B}\right)^{4}.$$
 (7)

Мощность на поддержание температуры Li определяется излучением корпуса, который полагаем коробом со сторонами $3\ell \times 3\ell \times L$,

$$W_{Li} = \sigma T^4 S \approx 20 \text{ kBr}$$

Здесь $S \approx 4(3\ell) L \approx 1.2 \text{ м}^2 -$ площадь излучающей поверхности, $\sigma = 5.6 \times 10^{-8} k$ Вт/К⁴ · м², $k \approx 0.5 -$ серость, для оценок полагаем T = 900 K, что дает оценку сверху.

Из уравнений (4)—(7) следует, что оптимально выбрать минимальное магнитное поле *B*. В то же время внешнее поле *B* должно быть больше поля, создаваемого током B(J). Положим, что минимальное магнитное поле должно быть, по крайней мере, в 100 раз больше максимального магнитного поля B(J), создаваемого током. Поле тока B(J) при постоянной плотности тока максимально на периметре камеры и равно

$$B(J) = \frac{\mu_0 \ell J(L)}{2(\ell + L)},$$

где

$$J(x) = \int j dx = \frac{F}{\ell^2 B} = 14 \left(\frac{\nu}{B}\right)^2$$

Отсюда получаем минимальное возможное магнитное поле

$$B_{\min} = 0.044(v)^{2/3}$$
.

При $B = B_{\min}$ все характеристики выражаются через начальную плотность плазмы

$$u = 9v^{1/3}, \quad v = 1.5 \times 10^4 v^{1/3},$$

$$F = 3v^{4/3}, \quad W_1 = Fv = 4.5 \times 10^4 v^{5/3},$$

$$W_i = 10^5 v, \quad W_O = 10^3 v^{4/3}.$$

Полная мощность двигателя W равна

$$W (\kappa BT) = 45v^{3/3} + 100v + v^{4/3} + 20.$$

На рис. 3 представлена тяга и скорость истечения как функция мощности двигателя. Двигатель имеет большую тягу и относительно небольшую скорость истечения. Все параметры растут с ростом плотности плазмы и, соответственно, мощности двигателя.

Рис. 3. Зависимости тяги и удельной тяги от мощности двигателя при схеме ускорения Фарадея.

4. СХЕМА УСКОРЕНИЯ НА ОСНОВЕ ТОКА ХОЛЛА

В схеме ускорения на основе тока Холла (рис. 2) напряжение подается на крайние электроды, и первичный ток j_x направлен вдоль оси x. Остальные электроды попарно закорочены, по ним вдоль оси z течет ток Холла $j_z = \beta j_x$. Сила $j_z B$ ускоряет плазму вдоль оси x. В этом случае надо, чтобы ток Холла $j_z = \beta j_x \gg j_x$, т.е. необходимо, чтобы $\beta \gg 1$. В этой схеме необходимо максимальное поле B, и далее мы полагаем B = 1.5 Тл.

При напряжении между крайними электродами *U* плотность тока *j_x* равна

$$j_x = \frac{U}{\int_L \sigma^{-1} dx} = \frac{U \sigma_{00}}{\int_L u^2 dx},$$

где, согласно (3), $\sigma = \sigma_0 / (1 + \beta^2) \approx \sigma_{00} / u^2$, $\sigma_{00} = \sigma_0 / \beta_0^2$, $\beta_0 = (eB/mc) (n_0 \sigma_{ei} v_e)^{-1}$.

Плотность тока Холла равна

$$j_z(x) = \beta j_x = \frac{U\beta\sigma_{00}}{\int_L u^2 dx} u(x).$$

Скорость (безразмерная) плазмы определяется уравнением

$$u = \frac{1}{Mn_0 v_0^2} \int j_z B dx = A \int_x u dx,$$

где

$$A = \frac{A_0}{\int u^2 dx}, \quad A_0 = \frac{BU\beta_0\sigma_{00}}{LMn_0v_0^2} \approx \frac{5U}{L}.$$

Рис. 4. Тяга и удельная тяга двигателя как функция мощности двигателя при схеме ускорения Холла.

Тогда безразмерная скорость плазмы равна

$$u = \exp(Ax), \quad u(L) = (2A_0)^{1/2} = \left(\frac{10U}{L}\right)^{1/2}$$

Отсюда получаем все основные параметры двигателя

$$u = 3.1 \left(\frac{U}{L}\right)^{1/2}, \quad v = 5.3 \left(\frac{U}{L}\right)^{1/2} \text{ KM/C}$$
$$F = \ell^2 M n_0 v_0^2 u \approx v \left(\frac{U}{L}\right)^{1/2} \text{ H},$$
$$W_1 = 5.3 n \left(\frac{U}{L}\right) \text{ KBT.}$$

Мощность омического нагрева W_{Ox} за счет тока j_x мала

$$W_{Ox} = \ell^2 j_x U = 2.8 \times 10^{-2} n^2 \ln\left(\frac{10U}{L}\right) U$$

При U = 100 В, $v = 1W_{Ox}(v = 1) = 280$ Вт.

Мощность омического нагрева W_0 за счет тока Холла j_z равна

$$W_o = 2\left(\frac{U}{L}\right)^2 \ln(10U)$$
 BT.

Полная мощность двигателя

$$W = 5.3v \frac{U}{L} + 2 \times 10^{-3} \left(\frac{U}{L}\right)^2 \ln(10U) + 100v + 0.28 \text{ kBT}$$

Плотность плазмы оптимально положить v = 1, что обеспечит достаточно хорошую тягу. Тогда все параметры определяются напряженностью *U/L*. При мощности W = 1 МВт напряженноность *U/L* ≈ 120 В/м, полный ток Холла $J_z = l \int_L j_z dx \approx 530$ A, а $J_x = l^2 j_x \approx 3.3$ A. На рис. 4

ФИЗИКА ПЛАЗМЫ том 45 № 1 2019

МГД-ДВИГАТЕЛЬ С КАПИЛЛЯРНО-ПОРИСТЫМИ ЭЛЕКТРОДАМИ

	<i>W</i> , кВт	<i>F</i> , H	<i>v</i> , км/с	$W_1 = Fv, \kappa BT$	КПД, %
Схема Фарадея	500	10	20	200	40
Схема Фарадея	1000	21	24.5	514	54
Схема Холла	500	7.8	42	328	65
Схема Холла	1000	11	59	650	65
Двигатель Островского [1]	500	6	50	300	60

Таблица 1. W – полная мощность двигателя, F – тяга, v – скорость истеченияплазмы, $W_1 = Fv$ – полезная мощность двигателя, энергетический КПД двигателя.

представлены тяга и удельная тяга как функция полной мощности двигателя.

В схеме ускорения Холла скорость истечения больше, чем в схеме Фарадея. Поэтому мы предлагаем именно схему ускорения Холла. В табл. 1 приведены параметры предлагаемого двигателя в сравнении с двигателем [1].

Здесь предлагается основная концепция двигателя. Более частные вопросы будут разрабатываться в дальнейшем.

5. КАПИЛЛЯРНО-ПОРИСТЫЕ ЭЛЕКТРОДЫ

Капиллярно-пористые электроды должны быть секционированы, т.е. разделены на полосы, перпендикулярные оси *х*. Это, также как в МГД-генераторах, необходимо для подавления токов Холла в электродах. Для рассматриваемого двигателя можно предложить, как уже отмечалось выше, чтобы электроды длиной $\ell = 10$ см (вдоль оси *y*) и шириной 1 см (вдоль оси *x*) были разделены изолятором. Эти изоляторы, также как изолирующие стенки, параллельные оси *z*, должны поддерживаться при температуре, исключающей конденсацию лития на них.

Температура электродов должна не допускать большого испарения лития с них, поскольку литий, испаренный не вначале ускорительной камеры, не будет ионизован, "утяжелит" рабочее тело и не даст вклад в ускорение. Это означает, что подача пара лития и его ионизация должна осуществляться перед камерой ускорения.

Кроме того, поток пара и плазмы мало перемешивается перпендикулярно ускорению. Коэффициент диффузии плазмы поперек течения

$$D = \frac{lv_0}{3} = \frac{v_0}{3n\sigma_{ii,a}} \approx 10^{-2} \text{ m}^2/\text{c},$$

где $v_0 \approx 1.7 \times 10^3$ м/с – тепловая скорость, $\sigma_{ii,a} \approx 10^{-16}$ м² – сечение рассеяния ионов и атомов друг на друге. Расстояние, за которое перемеши-

ФИЗИКА ПЛАЗМЫ том 45 № 1 2019

вается плазма за время пролета ускорительной камеры

$$\Delta z = \left(\frac{DL}{V}\right)^{1/2} = \left(\frac{6 \times 10^{-2}}{3 \times 10^4}\right)^{1/2} \approx 10^{-3} \text{ M.}$$
(8)

Таким образом, испаренный с электродов литий образует у электродов плохо проводящий слой, что может привести к пробоям и образованиям дуг. Но капиллярно-пористые электроды способны не деградировать под действием дуг.

Кинематическая вязкость плазмы также составляет $\approx 10^{-2}$ м²/с, поэтому приповерхностный слой у стенок ускорительной камеры, где скорость потока плазмы мала, также описывается формулой (8) и составляет ~1 мм. Таким образом,

Рис. 5. Скорость эмиссии лития с поверхности капиллярно-пористой системы в зависимости от удельной стационарной энергетической нагрузки, создаваемой электронным пучком [6].

Таблица 2. Температурный предел совместимости металлов с Li

Материал	Максимальная температура, °С		
Аустенитная сталь типа SS316	700		
Феррито-мартенситная сталь типа HT-9	800		
Сплавы ванадия	900		
Сплавы молибдена	1200		
Сплавы вольфрама	1500		

торможение потока на стенках мало сказывается на выходящем потоке плазмы.

Оценим допустимую скорость испарения электродов. При испарении электродов уравнение (1) принимает вид

$$\nabla \cdot (nv) = g(x), \quad n = \frac{n_0 v_0 + \int g dx}{v}$$

Скорость подачи пара с токосъемных электродов $g(x) = Nu_1/\ell$, где N – число атомов в единице объема лития, u_1 – скорость, с которой движется поверхность в результате испарения, $u_1 \approx$ $\approx 0.38c \exp(-H/T)$, (c – скорость звука в литии, H = 1.5 эВ – энергия сублимации). Потребуем, чтобы $\int_L gdx \ll n_0v_0$, или чтобы $g < 0.1n_0v_0/L$. Отсюда следует, что токосъемные электроды должны иметь температуру меньше 890 К \approx 600°С. То есть температура токосъемных электродов может быть такая же, как для литиевого дивертора токамака: ~500–600°С [3].

В работе [6] получена зависимость температуры и скорости испарения капиллярно-пористой системы с литием от потока энергии на поверхность (см. рис. 1 и 2 в этой статье). Там же было показано, что даже при скорости испарения 0.1 г/см² с капиллярные силы успевают восстанавливать слой лития на поверхности.

Из этой работы следует, что поток энергии на поверхность литиевого электрода не должен превышать ~1 МВт/м². При токе на поверхность токосъемных электродов выделяется энергия частиц плазмы: электронов на положительном электроде, и ионов на отрицательном электроде. При степени ионизации $\alpha = 1$ температура электронов плазмы $T_e \approx 1$ эВ, а потенциал плазмы ≈ 3 эВ. Плотность потока мощности, выделяемой на поверхности составит

$$W_S \approx 3j.$$

Отсюда следует ограничение на плотность тока на электроды $j < 3 \times 10^5$ A/м², что сильно превышает ограничение для двигателя по мощности.

Если для подачи пара лития использовать также капиллярно-пористые элементы, то следует оценить их необходимую температуру. Скорость подачи пара $n_0v_0\ell^2 = Nu_1S$, где S – площадь испаряющей поверхности. Для Li $N = 5 \times 10^{28}$ м⁻³, H = 1.5 эВ, $0.38c \approx 2 \times 10^3$ м/с. Для обеспечения скорости подачи пара при $n_0 = 10^{21}$ м⁻³, $S/\ell^2 = 1$ нужна скорость испарения $u \approx 0.34 \times 10^{-4}$ м/с и температура лития $T_{\rm Li} = 975$ К ≈ 700 °C. Такая температура вполне возможна для большинства металлов в качестве пористой основы. В табл. 2 дан температурный предел совместимости лития с наиболее приемлемыми металлами.

Расход лития рабочего тела при $n_0 = 10^{21}$ м⁻³ (мощность двигателя 1 МВт) составит

$$\frac{dM}{dt} = M n_0 v_0 \ell^2 \approx 0.2 \ \mathrm{r/c}.$$

6. ЗАКЛЮЧЕНИЕ

Предложена схема МГД-двигателя для космических аппаратов с капиллярно-пористыми электродами, заполненными жидким литием, и с литием в качестве рабочего тела. Такие электроды могут быть возобновляемыми, их срок службы ограничен лишь запасом лития. Двигатель основан на схеме обрашенного МГЛ-генератора. Рассмотрено два типа ускорения плазмы: 1) ускорение силой Лоренца при первичном токе перпендикулярном ускорению (схема Фарадея), и 2) ускорение на основе эффекта Холла. В первом случае двигатель имеет преимущества лишь при очень больших мощностях двигателя (>1 МВт), а во втором, тяга и удельная тяга уже при мощности 500-1000 кВт сравнимы и превосходят известные аналоги. Поэтому сейчас отдается предпочтение схеме Холл, в которой напряжение подается на крайние электроды, и первичный ток j_x направлен вдоль оси ускорительной камеры. Остальные электроды попарно закорочены, по ним течет ток Холла j_z вдоль оси *z*. Магнитное поле *B*, создаваемое постоянными магнитами, направлено по оси *z*. При параметре Холла β ≥ 1 плотность тока $j_z \gg j_x$, сила $j_z B$ ускоряет плазму вдоль оси x. Двигатель при мощности 1 МВт имеет тягу >10 H и удельную тягу ≈60 км/с. Все параметры двигателя улучшаются при увеличении мощности двигателя. Двигатель имеет большую плотность тяги отношение тяги к площади поперечного сечения двигателя (~10⁻² м²).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Агеев В.П., Островский В.Г.* // Изв. РАН. Энергетика. 2007. № 3. С. 83.
- 2. Агеев В.П., Быстров П.И., Сухов Ю.И. Ракетные двигатели и установки. Вып. 1 (134). М.: НИИТП, 1992. С. 100.
- 3. Мартыненко Ю.В., Ильгисонис В.И. Капиллярнопористые электроды для магнитогидродинамиче-

ских плазменных преобразователей энергии. Патент № 26378816 БИ № 34 от 07.12.2017.

- 4. Люблинский И.Е., Вертков А.В., Семенов В.В. // ВАНТ. Сер. Термоядерный синтез. 2015. Т. 38. Вып. 1. С. 7.
- 5. Дудин С.В., Зыков А.В., Положий К.И., Фареник В.И. // Письма в ЖТФ. 1998. Т. 24. С. 33.
- 6. Петров В.Б., Хрипунов Б.И., Шапкин В.В., Антонов Н.В. // ВАНТ. Сер. Термоядерный синтез. 2004. № 4. С. 23.