_____ ДИАГНОСТИКА ПЛАЗМЫ

УДК 533.9

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЫСОКОЧАСТОТНОГО ЕМКОСТНОГО РАЗРЯДА В АРГОНЕ И ВОДОРОДЕ

© 2019 г. М. Tanişli^{a, *}, N. Şahin^a, S. Demir^a, S. Mertadam^a

^a Anadolu University, Science Faculty, Department of Physics, Yunusemre Campus 26470 Eskişehir, Turkey *e-mail: mtanisli@anadolu.edu.tr

> Поступила в редакцию 24.04.2018 г. После доработки 23.09.2018 г. Принята к публикации 25.10.2018 г.

Исследуется симметричный высокочастотный (13.56 МГц) разряд низкого давления. Электрические характеристики разряда в чистом аргоне и водороде определялись с помощью осциллограмм тока и напряжения. Плотность электронов измерялась одиночным зондом. В рамках однородной модели высокочастотного разряда вычислялись электрические характеристики разряда, а также определялось их изменение при разных давлениях газа и подводимой мощности.

DOI: 10.1134/S0367292119040085

1. ВВЕДЕНИЕ

Неравновесные разряды играют все большую роль в современных технологиях. Они используются в процессах травления, нанесения тонких пленок, плазменной очистке и в других областях. Одновременно с этим растет интерес к исследованию свойств таких разрядов. Так, например, широкое использование высокочастотного емкостного (ВЧЕ) разряда в технологических процессах привело к росту исследований разряда данного типа [1]. ВЧЕ-разряд является двухэлектродным разрядом. К одному электроду подводится высокочастотное напряжение, а другой электрод заземляется. Значительная часть приложенной разности потенциалов падает в приэлектродной области. Поле в приэлектродном заряженном слое направлено так, что ускоряет ионы в направлении электрода. Внутри самой плазмы поле отсутствует, поэтому заряженные частицы движутся хаотически с тепловыми скоростями [2, 3]. Разрядный промежуток за счет приэлектродных слоев заряжен положительно, и квазинейтральная область плазмы имеет положительный потенциал относительно электродов. Также этой области может быть приписано некоторое значение сопротивления [4].

Множество работ было посвящено разработке новых методов инициирования разрядов, а также исследованию их различных параметров и особенностей. Одним из способов создания плазмы является ВЧЕ-разряд низкого давления. Данный тип разряда использовался и в данной работе. ВЧЕ-разряд инициировался в водороде и аргоне, где измерялись электрические свойства полученной плазмы с помощью электрического зонда и осциллографических данных.

Электрический потенциал плазмы — один из основных параметров разряда, который зависит только от плотности заряженных частиц. На него не влияет ни распределение частиц по скоростям, ни дрейф частиц [5]. Положительный потенциал плазмы в разряде низкого давления ускоряет ионы в направлении электродов, а электроны — в направлении плазмы [6].

В ряде работ рассматривался ВЧ-разряд в аргоне при давлениях от 3 мТорр до 3 Торр [7–9], в аргоне и гелии при давлениях от 50 до 760 Торр [10], в смеси аргона и водорода [11] и в водороде при давлениях 0.2-1 Торр [12]. В других работах использовался разряд постоянного тока, одна из которых относится к исследованию разряда в аргоне при давлениях меньше 1 Торр [13]. Иногда можно встретить работы, в которых использовался разряд с источником переменного тока [7, 14]. В этих работах исследовался разряд в аргоне при различных давлениях: 3 мТорр, 9.75-997.6 мТорр, 3 Торр, от 10 мТорр до 10 Торр, а также в парах ртути при давлении 6 мТорр. В аналитических подходах обычно использовалась простейшая эквивалентная цепь и модель динамического заряженного слоя. Однородная модель разряда была разработана Годяком и Поповым [18]. Для описания параметров заряженного слоя обычно используется закон Чайлда-Ленгмюра. Иногда учитываются химические превращения вещества. В некоторых работах показано, что ионизация с участием метастабильных частиц является основным механизмом производства электронов в раз-

Рис. 1. (в цвете онлайн) Схема экспериментальной установки для исследования ВЧЕ-разряда.

ряде, в том числе и в приэлектродных заряженных слоях. Поскольку взаимодействия электронов протекают на временах порядка нескольких наносекунд, а химические реакции – на временах порядка сотен миллисекунд [19], то для моделирования часто используется двумерная гидродинамическая модель плазмы с зависимостью от времени. Эта модель описывает производство, перенос и гибель заряженных частиц [12]. Модель симметричного ВЧЕ-разряда была улучшена Бора [20]; наряду с нелинейной "глобальной" моделью в нее включено постоянное смещение потенциала, возникающее на заряженном слое. Также в работах [21-24] использовались несколько различных типов реакторов. Блетцинг и Флемминг [21] обнаружили, что напряжение разряда в аргоне обратно пропорционально давлению газа в диапазоне от 0.1 до 10 Торр. В работе [12] было показано, что импеданс заряженного слоя обратно пропорционален его емкости, а сопротивление заряженного слоя пропорционально току [21, 25]. При анализе литературных данных [12, 26] нами было установлено, что модель однородного разряда, использовавшаяся для ВЧЕ-разряда при давлениях 15-350 мТорр, может также использоваться и при давлениях 350-1400 мТорр.

Организация статьи следующая: после Введения, в разд. 2 рассматривается экспериментальная установка. В разд. 3 представлено моделирование и уравнения, а раздел 4 посвящен детальному рассмотрению результатов. В Заключении анализируются результаты, полученные на осциллограммах и подчеркивается инновационность и важность этого исследования.

2. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

В данной работе для исследования ВЧЕ-разряда использовалась камера. Изготовленная из кварцевого стекла. В качестве источника напряжения применялся ВЧ-генератор фирмы Cesar вместе с согласующим устройством фирмы Navio. Измерение разрядного тока и напряжения в используемом симметричном ВЧЕ-разряде не составляло труда [27]. Электроды располагались параллельно друг другу на расстоянии 22 см и были выполнены в виде дисков толщиной 4.5 см и радиусом 5 см. Один из электродов был соединен с выходом ВЧ-генератора, а второй заземлен. Для измерения тока и напряжения в плазме использовались датчик напряжения Р5100А и датчик тока 6021А фирмы Tektronix. Сигналы регистрировались с помощью осциллографа Tektronix 3052С. Вакуумная система установки состояла из механического насоса и датчика давления фирмы Edwards (рис. 1). Измерения электрических характеристик разряда в зависимости от подводимой мошности и расхода газа проводились при различных давлениях. Значения тока и напряжения разряда при различных давлениях фиксировались для разных мощностей ВЧ-разряда и потока. Вольтамперные характеристики определялись по среднеквадратичным значениям токов и напряжений, регистрируемых осциллографом.

Плотность электронов в плазме измерялась с помощью электрического зонда. Для этих целей использовался коммерчески выпускаемый зонд фирмы Impedans. В использованном зонде ВЧкомпенсация выполняется последовательно со-

Рис. 2. Электрическая схема ВЧЕ-разряда в рамках однородной модели.

единенными индуктивностями с собственной резонансной частотой, равной частоте ВЧ-поля. Компенсационные индуктивности размещены в непосредственной близости от рабочей поверхности зонда. Рабочая часть зонда была выполнена в виде вольфрамовой нити, которая помещалась внутрь пустотелой керамической трубки. Радиус зонда составлял 0.195 мм. длина — 12 мм. Отношение площадей поверхности электродов и зонда составляло 10⁴. Для правильной интерпретации получаемых данных необходимо, чтобы размеры плазмы были намного меньше длины свободного пробега электрона [28]. Вольтамперная характеристика снималась в диапазоне напряжений от -100 до 100 В. Характеристики плазмы измерялись отдельно для двух рабочих газов: водорода и аргона, а экспериментальные результаты сравнивались для аналогичных условий.

3. МОДЕЛИРОВАНИЕ ВЫСОКОЧАСТОТНОГО ЕМКОСТНОГО РАЗРЯДА

При моделировании использовалась модель однородного ВЧЕ-разряда. Эта модель может быть представлена с помощью электрической схемы, изображенной на рис. 2. Элементами схемы являются емкость заряженного слоя (C_s), объемное сопротивление (R_{bp}) и объемная индуктивность (L_{bp}) плазмы. При известных значениях плазменной частоты (ω_{pe}) и емкости (C_e) образованного электродами конденсатора можно определить индуктивность плазмы L_{bp} [3, 29, 30], используя следующие соотношения:

$$\omega_{pe}^2 = \frac{ne^2}{\varepsilon_0 m},\tag{1}$$

$$L_{bp} = \frac{1}{\omega_{pe}^2 C_e} = \frac{md}{An_e e^2},\tag{2}$$

ФИЗИКА ПЛАЗМЫ том 45 № 5 2019

где е и ε_0 — заряд электрона и диэлектрическая постоянная, A — площадь поверхности электрода, n_e — концентрация электронов в плазме, m — масса электрона, d — межэлектродное расстояние. Данная модель используется для разряда атмосферного давления, однако при учете необходимых поправок она может использоваться и для описания разряда низкого давления [26]. Необходимость поправок вызвана возникновением плазменного резонанса в ВЧЕ-разряде низкого давления, который приводит к заниженной оценке тока по сравнению с измеренным среднеквадратичным током разряда [31, 32].

Частоту столкновений электронов с нейтральными частицами можно определить из следующего соотношения [3, 29, 30]:

$$\nu = n_e d_{col}^2 \left(\frac{8\pi k_B T_e}{m} \right)^{1/2},\tag{3}$$

где $n_e d_{col}^2$, k_B и T_e – сечение столкновений, постоянная Больцмана и температура электронов. Объемное сопротивление плазмы можно найти из соотношения

$$R_{bp} = \frac{\nu L_{bp}}{c_f},\tag{4}$$

где c_f — подгоночный параметр. Для разряда в аргоне при атмосферном давлении в [30] использовалось следующее выражение:

$$R_{bp} = \nu L_{bp}.$$
 (5)

Подгоночный параметр c_f необходим для описания разряда при низком давлении. Необходимость введения такого параметра возникает, в том числе, из-за эффекта плазменного резонанса.

(a) (б) В m напряжение, напряжение, 1 ∢ TOK, TOK, 100mA ản n v Ch1 200 Ch1 ch1 M40.0ns A Ch1 40.0ns **II→**▼ 0.00000 s **∏→▼**:0.00000 s время, нс время, нс

Рис. 3. Показания осциллографа для разряда в водороде (а) и в аргоне (б).

В модели однородного разряда емкость заряженного слоя *C*_s может быть представлена как

$$C_s = \frac{e n_e \omega_{pe} \varepsilon_0 A^2}{2I_{emp}}.$$
 (6)

Рассеиваемая разрядом мощность может быть определена через V_{rms} (среднеквадратичное на-пряжение), I_{rms} (среднеквадратичный ток) и φ (сдвиг фазы) и записана как

$$P = I_{rms} V_{rms} \cos \varphi. \tag{7}$$

Уравнения однородной модели для ВЧЕ-разряда также позволяют определить температуру электронов в плазме [3, 30].

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В этом разделе представлены экспериментальные зависимости тока и напряжения и полученные на их основе данные. Форма регистрируемых сигналов, среднеквадратичные величины тока и напряжения приведены на рис. 3. При проведении экспериментов по рекомендациям Соболевского [14] величина L_{bp} минимизировалась по-мещением зондов I_m и V_m как можно ближе к питающему электроду. Лисовский и др. [15] исследовали влияние геометрии разрядной камеры на форму кривых поглощения и режимы горения ВЧЕ-разряда. Было показано, что различные кривые поглощения и вольтамперные характеристики получаются для случая симметричных и несимметричных стенок. а также для случая бескамерного разряда. В работе [21] показано, что характеристики разряда зависят от потенциала плазмы, а потенциал приэлектродного слоя является достаточным для набора электронами энергии ионизации молекул газа. Также исследовался безэлектродный разряд, в котором электроды были изолированы от плазменного объема диэлектрическими стенками. Исследование такого типа разряда важно для понимания процессов, протекающих в безэлектродных разрядных лампах [25].

Осциллографирование проводилось в масштабе 500 В/дел для разряда в водороде (рис. 3а) и 200 В/дел для разряда в аргоне (рис. 3б). Чувствительность токового канала для обоих случаев составляла 100 мА/дел. Временной диапазон осциллографирования составлял 40 нс/дел. Масштабы на рисунках отличаются, чтобы графики укладывались в рамки рисунков.

В таблице 1 сведены данные по давлению газа для различных значений вкладываемой в разряд ВЧ-мощности и различных объемных расходов газа. Данные приведены для двух исследовавшихся газов — аргона и водорода.

На рис. 4 и 5 приведены зависимости плотности электронов от вводимой в разряд мощности при заданном объемном расходе газа. В основном плотность электронов возрастала при увеличении мощности разряда. Из рисунков видно, что в случае аргона и водорода характер роста плотности электронов в зависимости от мощности существенно различался. Увеличение скорости ионизации приводило к увеличению плотности электронов в аргоне при низких давлениях. Однако для разряда в водороде возникала несколько иная ситуация. Так как водород является электроотрицательным газом, прикладываемое ВЧ-поле может приводить к гибели электронов. Таким образом, плотность электронов уменьшалась, начиная с определенного значения прикладываемой ВЧ-мощности. Иными словами, увеличение мощности разряда приводило к уменьшению доли энергии, расходуемой на ионизацию газа.

Результаты, приведенные на рис. 6 и 7, были получены в диапазоне давлений от 22 до 1400 мТорр. Данные Годяка и др. [4] для 3, 10, 30 и 100 мТорр имеют сходный характер с результа-

	Аргон					Водород				
Расход (л/мин)	0.02	0.04	0.06	0.08	0.10	0.02	0.04	0.06	0.08	0.10
ВЧ-мощность	Давление (мТорр)					Давление (мТорр)				
30 Вт	187.52	307.53	450.04	592.55	742.56	397.53	712.56	1050.09	1425.12	1725.14
35 Вт	165.01	292.52	427.54	577.55	720.06	397.53	705.06	1050.09	1350.11	1725.14
40 Вт	157.51	285.02	412.53	555.05	705.06	397.53	697.56	1050.09	1350.11	1725.14
45 Вт	127.51	255.02	390.03	540.04	667.55	390.03	697.56	1050.09	1350.11	1725.14
50 Вт	112.51	232.52	375.03	517.54	652.55	390.03	697.56	1050.09	1350.11	1725.14

Таблица 1. Давление для случаев разряда в аргоне и водороде

тами данной работы. При сравнении зависимостей среднеквадратичных напряжений (рис. 6) и токов (рис. 7) можно заметить, что они имели схожую динамику: среднеквадратичное напряжение разряда в водороде выше, чем напряжение разряда в аргоне, а среднеквадратичный ток ниже при одинаковых значениях расхода газа. Среднеквадратичные значения напряжения и тока для разряда в аргоне при давлении 35 мТорр и для нескольких значений ВЧ-мощности приводились в [29]. В данной работе показано, что в аргоне среднеквадратичные величины напряжения ниже, а среднеквадратичные величины тока выше при давлении 750 мТорр.

Отдельно было проведено сравнение среднеквадратичных значений токов и напряжений для разряда в аргоне и в водороде при одинаковых объемных расходах газа (рис. 6 и рис. 7). Среднеквадратичные величины напряжений для разряда в аргоне составили 131.6 В (0.02 л/мин), 118.6 В (0.04 л/мин), 113.0 В (0.06 л/мин) и 112.1 в (0.08 л/мин) при 20 Вт ВЧ-мощности и 158.4 В (0.02 л/мин), 139.8 В (0.04 л/мин), 136.8 В (0.06 л/мин) и 134.5 В (0.08 л/мин) при 30 Вт. При

Рис. 4. Плотность электронов в водородной плазме при различной мощности разряда.

ФИЗИКА ПЛАЗМЫ том 45 № 5 2019

60 Вт ВЧ-мощности среднеквадратичные значения напряжения составляли 191.6 В (0.02 л/мин), 180.3 В (0.04 л/мин), 158.3 В (0.06 л/мин), 155.7 В (0.08 л/мин) и 150.9 В (0.10 л/мин).

Для разряда в водороде аналогичные значения были равны 163.9 В (0.02 л/мин), 163.7 В (0.04 л/мин), 170.9 В (0.06 л/мин), 188.8 В (0.08 л/мин) и 204.7 В (0.10 л/мин) при 20 Вт; 201.7 В (0.02 л/мин), 197.7 В (0.04 л/мин), 170.9 В (0.06 л/мин), 201.2 В (0.08 л/мин) и 215.7 В (0.10 л/мин) при 30 Вт; 306.0 В (0.02 л/мин), 278.3 В (0.04 л/мин), 245.6 В (0.06 л/мин), 262.9 В (0.08 л/мин) и 262.9 В (0.10 л/мин) при 60 Вт.

Также были получены среднеквадратичные значения токов для различных объемных расходов газа: 54.24 мА (0.02 л/мин), 33.98 мА (0.04 л/мин), 57.41 мА (0.06 л/мин), 46.59 мА (0.08 л/мин) и 44.91 мА (0.10 л/мин) при 20 Вт; 65.48 мА (0.02 л/мин), 45.17 мА (0.04 л/мин), 63.07 мА (0.06 л/мин), 64.51 мА (0.08 л/мин) и 78.79 мА (0.10 л/мин) при 30 Вт; 80.12 мА (0.02 л/мин), 82.81 мА (0.04 л/мин), 102.0 мА (0.06 л/мин), 81.2 мА (0.08 л/мин) и 82.81 мА (0.10 л/мин) при 60 Вт для разряда в аргоне.

Рис. 5. Плотность электронов в плазме аргона при различной мощности разряда.

Рис. 6. Среднеквадратичная величина напряжения разряда в зависимости от мощности при различных объемных расходах газа.

Токи для разряда в водороде для аналогичных условий составили: 36.24 мА (0.02 л/мин), 54.27 мА (0.04 л/мин), 34.66 мА (0.06 л/мин), 33.83 мА (0.08 л/мин) и 36.21 мА (0.10 л/мин) при 20 Вт; 45.11 мА (0.02 л/мин), 59.27 мА (0.04 л/мин), 34.66 мА (0.06 л/мин), 38.71 мА (0.08 л/мин) и 39.26 мА (0.10 л/мин) при 30 Вт; 72.66 мА (0.02 л/мин), 81.17 мА (0.04 л/мин), 67.13 мА (0.06 л/мин), 58.50 (0.08 л/мин) и 68.80 мА (0.10 л/мин) при 60 Вт.

Следовательно, среднеквадратичные потенциалы аргонового заряда меньше, чем водородного заряда для одинаковых мощностей и потоков. Однако среднеквадратичные величины выше в аргоновом заряде.

Из рис. 8 и 9 можно заметить, что среднеквадратичные величины напряжений и токов зависят от давления. На рис. 8 приведена полученная в данной работе зависимость среднеквадратичного напряжения от давления для разрядов в водороде и аргоне. В соответствии с графиком значения среднеквадратичного напряжения в случае разряда в аргоне составили 166.4, 149.2, 133.8 и 136.1 В для давлений 165.01, 292.52, 427.53 и 577.55 мТорр соответственно. Для давлений 397.53, 705.06, 1050.09 и 1425.12 мТорр, среднеквадратичные значения напряжений для разряда в водороде составили 224.1, 213.9, 217.1 и 214.2 В соответственно. Из приведенных данных следует, что среднеквадратичное напряжение обратно пропорционально давлению для разряда в аргоне. В то же время для водорода такой зависимости не наблюдалось – среднеквадратичное напряжение оставалось практически постоянным при изменении давления. Ситуация в корне менялась при анализе среднеквадратичных токов – наибольшую зависимость от давления показывал разряд в водороде, в то время как ток разряда в аргоне от давления практически не зависел (рис. 9). Значения токов разряда в аргоне составили 64.81, 62.31, 65.44 и 60.54 мА при давлениях 165.01, 292.52, 427.53 и 577.55 мТорр соответственно. Для разряда в водороде аналогичные значения составили 70.59, 52.64, 49.11 и 46.54 мА при давлениях 397.53, 705.06, 1050.09 и 1425.12 мТорр соответственно. При одинаковом давлении разряд в водороде имел большее напряжение, но меньший ток по сравнению с разрядом в аргоне. Исходя из дан-

Рис. 7. Среднеквадратичная величина тока разряда в зависимости от мощности при различных объемных расходах газа.

ных, приведенных на рис. 8 и 9 можно сделать выводы по поводу сопротивления разряда. В водороде при изменении давления напряжение разряда было постоянно, а ток уменьшался, что приводило к росту сопротивления плазмы. В аргоне, наоборот, ток разряда оставался постоянным, а напряжение разряда с ростом давления уменьшалось, что приводило к уменьшению сопротивления.

Зависимость среднеквадратичных значений тока и напряжения от давления можно объяснить тем, что при уменьшении давления снижалась частота столкновений. ВЧ-поле, приложенное к разрядному промежутку, влияло на дрейфовую скорость и определяло плотность электронов в плазме. С другой стороны, емкость заряженного слоя зависела от среднеквадратичной величины тока, который, в свою очередь, зависел от подводимой ВЧ-мощности. Зависимость емкости заряженного слоя от ВЧ-мощности, построенная в соответствии с уравнением (6), приведена на рис. 10.

ФИЗИКА ПЛАЗМЫ том 45 № 5 2019

В данной работе, в соответствии с однородной моделью разряда, емкость заряженного слоя обратно пропорциональна среднеквадратичной величине тока. Для значений ВЧ-мощности от 35 до 70 Вт емкость заряженного слоя в водороде составляла от 1100 до 1450 мкФ. С ростом подводимой ВЧ-мощности емкость заряженного слоя в водороде уменьшалась. В соответствии с рис. 10 разряд в водороде, в котором среднеквадратичный ток разряда меньше, чем аналогичный ток разряда в аргоне, также имел меньшую емкость заряженного слоя. Частота ионизации увеличивалась с ростом мощности, и одновременно увеличивалась толщина заряженного слоя, которая может быть оценена по величине среднеквадратичного тока разряда. Согласно полученным данным толщина заряженного слоя в аргоне больше, чем в водороде. В проведенных экспериментах с увеличением мощности разряда росла и толщина заряженного слоя. Было проанализировано изменение значений напряжения и тока разряда с течением времени (рис. 11 и 12). Из приведенных данных видно, что значения среднеквадратично-

Рис. 8. Среднеквадратичное значение напряжения разряда в зависимости от давления.

Рис. 9. Среднеквадратичное значение тока разряда в зависимости от давления.

Рис. 10. Емкость заряженного слоя в разряде с водородом и аргоном в зависимости от мощности разряда при объемном расходе газа 0.06 л/мин.

Рис. 11. Зависимость среднеквадратичных значений тока (а) и напряжения (б) от времени для разряда в аргоне при мощности разряда 35 Вт.

ФИЗИКА ПЛАЗМЫ том 45 № 5 2019

Рис. 12. Зависимость среднеквадратичных значений тока (а) и напряжения (б) от времени для разряда в водороде при мощности разряда 35 Вт.

го тока и напряжения оставались стабильными в течение всего времени наблюдения.

Сопротивление плазмы может быть выражено следующим соотношением (Р – мощность на входе):

$$R_p = \frac{P}{I_{rms}^2} = \frac{V_{rms}}{I_{rms}},$$
(8)

что согласуется с законом Ома [22]. Из рис. 13 видно, что сопротивление плазмы разряда в водороде, определенное из экспериментальных данных, было обратно пропорционально ВЧ-мощности, в то время как для плазмы разряда в аргоне такая зависимость носила характер прямой пропорциональности. Сопротивление плазмы обратно пропорционально среднеквадратичному значению тока разряда. Таким образом, уменьшение тока разряда с увеличением мощности приводило к увеличению сопротивления разрядной плазмы в аргоне. В то же время среднеквадратичное значение тока в водородном разряде при увеличении ВЧ-мощности оставалось постоянным, что, на-

ФИЗИКА ПЛАЗМЫ том 45 № 5 2019

сопротивление плазмы, Ом

Рис. 13. Сопротивление плазмы в зависимости от мощности разряда.

оборот, приводило к уменьшению сопротивления плазмы.

На рис. 14 представлены вольтамперные характеристики разрядов в аргоне и водороде с учетом изменения мошности для объемного расхода газа 0.04 л/мин. Из приведенных зависимостей можно сделать вывод об аномальном режиме тлеющего разряда: при увеличении напряжения значительно увеличивается ток разряда. Стоит отметить, что при мощности разряда 70 Вт происходил значительный нагрев электродов. Можно рассматривать вольтамперные характеристики с точки зрения форм тлеющего разряда. Как видно из рис. 14а, напряжение в водородном разряде непрерывно увеличивалось с ростом тока; это указывает на то, что разряд в водороде поддерживался в у-форме. Из рис. 146 можно видеть, что для разряда в аргоне при увеличении тока с 65 до 85 мА напряжение разряда практически не менялось. Скорее всего, это указывает на то, что разряд в аргоне находился в слаботочном режиме. При токах ниже 65 мА разряд в аргоне поддерживался в у-форме; однако при повышении тока разряд переходит в α-форму [33], что достаточно четко прослеживается на рис. 14б.

5. ЗАКЛЮЧЕНИЕ

Электрические измерения и метод эквивалентных цепей являются мощными методами исследования, как в прикладной области плазменной обработки поверхности, так и в области фундаментальных исследований. Аргон-водородная газовая смесь широко используется в технологии плазменной резки. Поэтому в данной работе отдельно исследовались свойства разряда в аргоне и водороде. В литературе описано несколько моделей, используемых для описания ВЧЕ-разряда и

Рис. 14. Вольтамперная характеристика разряда в водороде (а) и аргоне (б) для различных мощностей разряда при объемном расходе газа 0.04 л/мин.

получения параметров плазмы с использованием экспериментальных данных. В дополнение к этому из эквивалентной схемы разряда можно определить емкость заряженного слоя, которая зависит от плотности и температуры электронов. В данной работе использовалась модель однородного ВЧЕ-разряда, способная описывать разряды низкого и атмосферного давлений. Представлены полученные с использованием этой модели результаты для разрядов в водороде и аргоне при давлениях от 160 до 1400 мТорр. Стоит отметить, что в последнее время работ, посвященных исследованию ВЧЕ-разряда в водороде, проводится существенно меньше, чем работ, связанных с исследованием разряда в аргоне. Данная работа призвана частично восполнить этот недостаток.

В работе также было проведено сравнение измеренных электрических характеристик разрядов в аргоне и водороде. На основании экспериментальных данных с использованием модели однородного ВЧЕ-разряда была определена емкость заряженного слоя. Проведено сравнение данной величины для разрядов в аргоне и водороде. Было показано, что при увеличении ВЧ-мощности емкость заряженного слоя в водородном разряде уменьшается, а импеданс слоя увеличивается. Для одних и тех же разрядных условий можно считать, что емкость заряженного слоя в аргоне значительно превышает емкость заряженного слоя в водороде. Таким образом, можно утверждать, что импеданс заряженного слоя в аргоне ниже импеданса заряженного слоя в водороде. Величина падения напряжения на заряженном слое зависит от разрядного тока и толщины заряженного слоя. Было обнаружено, что величина емкости заряженного слоя в аргоне намного превосходит аналогичную величину в водороде. Также было показано, что емкости заряженных слоев в водороде и аргоне ведут себя противоположным образом. Кроме того, электронам требуется больше энергии для поддержания разряда в водороде. С помощью данной особенности можно объяснить высокое среднеквадратичное значение потенциала в водороде и относительно высокое среднеквадратичное значение тока в разряде с аргоном. При низком давлении плазма занимает весь объем плазменного реактора. С увеличением давления плазма концентрируется в межэлектродной области. Таким образом, из-за увеличения частоты столкновений длина свободного пробега уменьшается, и среднеквадратичные значения тока в разрядах с водородом и аргоном увеличиваются. Среднеквадратичное значение тока в разряде с аргоном обычно выше аналогичного значения в разряде с водородом.

Согласно наблюдениям для разряда в аргоне среднеквадратичное значение напряжения уменьшается с увеличением давления. Напряжение в разряде с водородом остается практически неизменным. При одинаковых объемных расходах газа в водородном разряде напряжение обычно выше, а разрядный ток ниже, чем в разряде с аргоном. Это указывает на то, что плазма разряда в аргоне имеет более высокую проводимость, чем плазма разряда в водороде. При использовании однородной модели ВЧЕ-разряда также можно показать, что использование аргона предпочтительнее для получения более высокой проводимости плазмы. Вольтамперные характеристики для разрядов в водороде и аргоне практически линейны в исследованном диапазоне ВЧ-напряжений. Показано, что с увеличением подводимой ВЧ-мощности при неизменном объемном расходе газа увеличение среднеквадратичного значения напряжения в аргоне меньше чем в водороде.

Обратная ситуация наблюдается для среднеквадратичных значений тока.

ВЧЕ-разряды в аргоне и водороде были описаны с помощью однородной модели в широком диапазоне давлений. Показано, что модифицированная однородная модель ВЧЕ-разряда может быть использована для описания разрядов низкого давления. Плазма водорода, кислорода и аргона может использоваться для осуществления различных процессов плазменного осаждения в твердотельных приложениях. Очевидно, что разряды в этих газах обладают различными электрическими свойствами.

СПИСОК ЛИТЕРАТУРЫ

- Radmilović-Radjenović M., Lee J.K. // Physics of Plasmas. 2005. V. 12. P. 063501.
- 2. Heil B.G., Czarnetzki U., Brinkman R.P., Mussenbrock T. // J. Phys. D: Appl. Phys. 2008. P. 41165202.
- Lieberman M.A., Lichtenberg A.J. Principles of Plasma Discharges and Materials Proc. / 2rd ed. New Jersey, John Wiley & Sons: 2005.
- Godyak V.A., Piejak R.B., Alexandrovich B.M. // IEEE Trannsactions on Plasma Science. 1991. P. 1960 (1991), all references therein.
- Schrittwieser R., Ionită C., Balan P.C., Varandas C.A.F., Figueiredo H.F.C., Stöckel J., Adámek J., Hron M., Ryszawy J., Tichý M. et al. // Rom. J. Phys. 2005. P. 50723.
- Raizer Y.R. Gas Discharge Physics. Berlin Heidelberg, Springer Verlag, 1991.
- Godyak V.A., Sternberg N. // Physical Review. 1990. P. A422299.
- 8. Surendra M., Graves B. // IEEE Transactions on Plasma Science. 1991. V. 19. P. 144.
- 9. *Lieberman M.A.* // IEEE Transactions on Plasma Science. 1989. P. 17338.
- 10. Moravej M., Yang X., Nowling G.R., Chang J.P., Hicks R.F. // J. Appl. Phys. 2004. P. 967011.
- 11. Laidani N., Bartali R., Tosi P., Anderle M. // J. Phys. D: Appl. Phys. 2004. V. 37. P. 2593.
- Marques L.S.A., Jolly J., Alves L.L. // Plasma Processes and Polymers. 2007. V. 4. P. 937.

- Ferreira C.M., Loureiro J. // J. Phys. D: Appl. Phys. 1984. V. 17. P. 1175.
- Soboloweski M.A. // IEEE Trans. Plasma Sci. 1995. V. 23. P. 1006.
- Lisovskiy V.A., Booth J.P., Landry K., Douai D., Cassagne V., Yegorenkov VD. // IEEE Trans. Plasma Sci. 2007. V. 35. P. 416.
- 16. Beneking C. J. Apply. // Phys. 1990. V. 68. P. 4461.
- Drop P.C., Polman J. // J. Phys. D: Appl. Phys. 1972.
 V. 5. P. 562.
- Popov O.A., Godyak V.A. // J. Appl. Phys. 1985. V. 57. P. 53.
- Lymberopoulos D.P., Economou D.J. // J. Appl. Phys. 1993. V. 73. P. 3668.
- 20. Bora B., Bhuyan H., Favre M., Wyndham E., Chuaqui H. // Appl. Phys. Lett. 2012. V. 100. P. 094103
- 21. Bletzinger P., Flemming M.J. // J. Appl. Phys. 1987. V. 62. P. 4688.
- 22. *Flamm D.L.* // Ind. Eng. Chem. Fundam. 1975. V. 14. P. 263.
- 23. Godyak V.A., Piejak R. B. // J. Appl. Phys. 683157 (1990)
- 24. Godyak V.A., Piejak R., Alexandrovich B.M. // Plasma Sources Sci. Technol. 1992. P. 136.
- 25. *Godyak V.A., Piejak R., Alexandrovich B.M.* // J. Appl. Phys. 1991. V. 69. P. 3455.
- Bora B., Bhuyan H., Favre M., Wyndham E., Chuaqui H., Wong C.S. // Current Applied Physics. 2013. V. 13. P. 1448.
- 27. Godyak V.A., Piejak R.B., Alexandrovich B.M. // Rev. Sci. Instrum. 1990. P. 612401, all references therein.
- Godyakand V.A., Demidov V.I. // J. Phys. 2011. V. D44. P. 233001.
- 29. *Bora B., Bhuyan H., Favre M., Wyndham E., Chuaqui H. //* Inter. J. Appl. Phys. and Math. 2011. V. 1 (2). P. 124, all references therein.
- Li S.Z., Lim J.P., Uhm H.S. // Physics Letter A. 2006.
 V. 360. P. 304
- Schulze J., Heil B.G., Luggenhölscher D., Mussenbrock T., Brinkmann R.P., Czarnetzki U. // J. Phys. D: Appl. Phys. 2008. P. 41042003
- Mussenbrock T., Brinkmann R.P., Lieberman M.A., Lichtenberg A.J., Kawamura E. // Phys. Rev. Lett. 2008. V. 101. P. 085004.
- Raizer Yu.P. Gas Discharge Physics. Berlin Heidelberg, Springer Verlag, 1991.