ПУЧКИ В ПЛАЗМЕ

УДК 621.3.628

МОДЕЛИРОВАНИЕ НАГРЕВА ЗАРЯЖЕННОЙ ЭЛЕКТРОННОЙ ПЛАЗМЫ ДОПОЛНИТЕЛЬНЫМ ЭЛЕКТРОННЫМ ПУЧКОМ

© 2020 г. А. Е. Дубинов^{а, b, *}, В. Д. Селемир^а, В. П. Тараканов^{с, d}

 ^а Российский федеральный ядерный центр — Всероссийский научно-исследовательский институт экспериментальной физики, Саров, Нижегородская обл., Россия
 ^b Саровский физико-технический институт, Саров, Нижегородская обл., Россия
 ^c Объединенный институт высоких температур РАН, Москва, Россия
 ^d Национальный исследовательский ядерный университет "МИФИ", Москва, Россия
 *e-mail: dubinov-ae@yandex.ru
 Поступила в редакцию 04.04.2020 г.

После доработки 03.05.2020 г. Принята к публикации 07.05.2020 г.

Численно исследовалось взаимодействие дополнительного электронного пучка с предварительно созданной заряженной электронной плазмой сжатого состояния двух встречных сверхпредельных электронных пучков в замкнутой эквипотенциальной полости. Продемонстрировано возникновение плазменно-пучковой неустойчивости в отсутствии ионов и квазилинейной релаксации. Установлено существенное уширение ФРЭ в область более высоких энергий электронов. Рассмотренный процесс может быть полезен, например, в электронных ловушках, работающих в режиме электронной струны и используемых для генерации высокозарядных ионов с последующей их инжекцией в ионные ускорители.

Ключевые слова: сверхпредельный электронный пучок, электронная плазма, плазменно-пучковая неустойчивость, квазилинейная релаксация

DOI: 10.31857/S0367292120110025

введение

При моделировании динамики электронов в СВЧ-генераторе на виртуальном катоде (ВК) – виркаторе в [1] было найдено, что в пучке устанавливается специфическое состояние, названное авторами сжатым состоянием пучка. Оно представляет собой заряженную электронную плазму с высокими электронными плотностью и температурой, а также с малыми энергиями направленного движения электронов [2]. Впоследствии сжатое состояние интенсивно исследовалось как экспериментально, так и помощью particle-in-cell моделирования (РіС-моделирования) применительно к мощным СВЧ-генераторам виркаторного [3-6], магнетронного [7] и плазменно-пучкового типа [8], к генераторам сверхкоротких импульсов тока [9, 10], к коллективным ускорителям ионов [11], а также к газоразрядным устройствам с пучково-плазменным разрядом [12] и др. Отметим, что сжатое состояние пучка разные авторы называют иногда по-разному: распределенный или протяженный (lengthy) виртуальный катод (ВК) [7, 11, 12], медленное состояние пучка (в противоположность быстрому двухпотоковому состоянию) [13], низкоэнергетичное состояние [14].

Сжатое состояние пучка может возникать и в сильноточных электронных ловушках [15–19], которое по предложению [15] часто называют состоянием электронной струны. Состояние струны, также представляет собой спокойную горячую электронную плазму, и, как оказалось, наиболее эффективно обеспечивает глубокую ионизацию инжектируемых в плазму атомов. Ловушки подобного типа серии "Крион" используются для генерации высокозарядных ионов с последующей их инжекцией в ионные ускорители. Одну из таких ловушек, работающих в режиме электронной струны, предполагается использовать в мегапроекте "NICA" в качестве источника ионов [20].

Однако режим электронной струны имеет существенное ограничение по глубине ионизации атомов, так как температура электронной плазмы в струне оказывается существенно меньше энергии инжектированных частиц, $T_e \ll E_b$: недаром сжатое состояние пучка часто называют низко-энергетичным состоянием. В связи с этим, возникает задача повышения температуры электро-

нов в струне, т.е. задача нагрева электронной плазмы для увеличения глубины ионизации атомов.

Нагрев электронной плазмы можно осуществить несколькими способами: например, с помощью СВЧ-волны в режиме ЭЦР, либо с помощью дополнительного электронного пучка со сравнительно небольшим током, но с бо́льшей энергией электронов по сравнению с энергией электронов в основном пучке, формирующих струну. Этот способ основан на использовании явления квазилинейной релаксации электронного пучка при плазменно-пучковой неустойчивости [21, 22].

Способ нагрева заряженной электронной плазмы с помощью дополнительного пучка является весьма нетипичным: в широко исследованной обычной плазменно-пучковой неустойчивости в нейтральной плазме всегда присутствуют ионы, которые создают возвращающую силу в продольных электронных осцилляциях [23, 24]. В электронной струне ионов первоначально нет, поэтому развитие плазменно-пучковой неустойчивости здесь неочевидно.

В недавней работе [8] была смоделирована плазменно-пучковая неустойчивость в отсутствии ионов при взаимодействии дополнительного электронного пучка с заряженной плазмой сжатого состояния в релятивистском магнитоизолированном виркаторе. Там же была рассчитана и эволюция функции распределения электронов по импульсам (ФРЭИ), демонстрирующая квазилинейную релаксацию.

Цель данной работы — исследование эволюции ФРЭ и демонстрация нагрева в низковольтной плазменно-пучковой неустойчивости в заряженной плазме сжатого состояния пучка в отсутствии ионов, с параметрами, близкими параметрам, реализованным в электронных ловушках в источниках многозарядных ионов.

1. ФИЗИЧЕСКАЯ ПОСТАНОВКА И ГЕОМЕТРИЯ ЗАДАЧИ

Исследование проводилось при помощи 2.5D PiC-моделирования. Для этого был применен PiC-код "KARAT" [25], самосогласованно решающий релятивистские уравнения движения заряженных частиц и уравнения Максвелла.

Для исследования были выбраны наиболее простые геометрия и физические параметры задачи, при которых формируется сжатое состояние пучка — эквипотенциальная цилиндрическая полость со встречной инжекцией двух сверхпредельных электронных пучков, т.е. таких пучков, у которых значение тока каждого превышает значение предельного вакуумного тока для данной

Рис. 1. Геометрия полости и электронных пучков.

полости. Тогда формирование сжатого состояния происходит наиболее быстро.

Рассматривалась цилиндрическая полость диаметром D = 20 см и длиной L = 100 см, ограниченная со всех сторон идеально приводящими стенками. Считалось, что на полость было наложено олноролное аксиальное магнитное поле $B_{z} = 10$ Тл. Сначала одновременно при t = 0 с обоих торцов в полость начинали инжектироваться два трубчатых электронных пучка. Оба пучка имели внутренний и внешний радиус $r_1 = 3$ и $r_2 = 4$ см соответственно, так что пучки проходили друг сквозь друга. Инжектированные пучки считались моноэнергетичными: электроны в них имели одинаковую энергию $E_b = 1$ кэВ (скорости электронов в плоскости инжекции $v_b = \pm 0.0625c$, где *с* – скорость света). Геометрия полости и пучков с указанием размеров показана на рис. 1.

Далее, после того как в полости установилось стационарное сжатое состояние, в полость с одного из торцов инжектировали дополнительный низкоэнергетичный трубчатый пучок электронов с энергией $E_a = 1.5$ кэВ (скорость электронов в плоскости инжекции $v_b = 0.0765c$). Геометрия дополнительного пучка совпадала с геометрией основных. Принималось, что его инжекция осуществлялась с левого торца полости.

Для исследования нагрева электронов вычислялась суммарная функция распределения электронов по скоростям (ФРЭС) трех пучков во всей полости.

2. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

2.1. Стадия формирования сжатого состояния

Моделировалась динамика электронных пучков при различных значениях тока. Здесь в качестве примера представлены результаты моделирования в случае равных значений тока $I_b = 1$ А основных пучков.

На рис. 2 показана эволюция фазового портрета основных электронных пучков с шагом 100 нс на протяжении 100–500 нс, т.е. на промежутке времени, пока изменения фазового портрета весьма значительны.

Рис. 2. Эволюция мгновенного фазового портрета пучков с 100 до 500 нс с шагом 100 нс на стадии установления сжатого состояния.

Прокомментируем основные фазы этой эволюции. Видно, что к моменту времени 100 нс оба основных пучка полностью прошли полость, и в каждом из них сформировались ВК вблизи торцов полости. Это подтверждает то, что выбор величин токов пучков сделан так, чтобы они были сверхпредельными.

Далее, в результате провисания электростатического потенциала и в результате нелинейной стадии двухпучковой неустойчивости по всей длине полости возникают несколько новых ВК. Эти виртуальные катоды отделяются друг от друга фазовыми вихрями (фазовыми пузырями), в которых электроны вращаются по часовой стрелке. С течением времени ВК расширяются в продольном направлении, вытесняя фазовые пузыри (200 нс и далее) до тех пор, пока в полости не останется лишь один долгоживущий фазовый пузырь (300 нс). При этом расширенные ВК представляют собой участки со сжатым состоянием пучка.

Последний фазовый пузырь постепенно уменьшается в размерах и дрейфует в сторону одного из торцов, где поглощается к моменту вре-

мени 1200 нс (в нашем примере – на левом торце полости).

В итоге, сжатое состояние пучка устанавливается в полости почти по всей ее длине (между ВК) к моменту времени 1200 нс. Отметим, что смоделированная динамика установления сжатого состояния через фазу чередующихся фазовых пузырей и распределенных ВК является весьма типичной для различных геометрий и параметров [5–7, 12, 17–19].

2.2. Стадия нагрева

По истечении 1200 нс в полость начинает инжектироваться дополнительный электронный пучок. Ниже представлены результаты расчетов при токе дополнительного пучка всего $I_a = 0.25$ A, т.е. меньшем в 4 раза тока каждого из основных пучков.

На рис. 3 показана эволюция фазового портрета дополнительного электронного пучка на фоне сжатого состояния с шагом 100 нс на протяжении 1200—1600 нс. Исходная спокойная заряженная плазма сжатого состояния показана на фазовом

Рис. 3. Эволюция мгновенного фазового портрета пучков с 1200 до 1600 нс с шагом 100 нс на стадии нагрева электронной плазмы.

портрете в момент времени 1200 нс. Далее, с момента времени 1300 нс видно, что в результате плазменно-пучковой неустойчивости дополнительный пучок, распространяющийся слева направо, возбуждает в полости интенсивные колебания, приводящие к фазовому перемешиванию электронов дополнительного пучка и заряженной плазмы сжатого состояния, к хаотическому рождению фазовых пузырей (на последующих фазовых портретах). При этом в системе присутствует заметное количество электронов с энергией, существенно превышающей энергию электронов в спокойном сжатом состоянии. Было найдено, что такое возбужденное состояние заряженной плазмы, которое можно было бы называть "фазовым кипением", в отличие от спокойного сжатого состояния не затухает со временем.

Было рассчитано полное число электронов *N* в полости с течением времени. На рис. 4 представ-

Рис. 4. Временной ход полного числа электронов в полости; стрелка указывает момент времени начала инжекции дополнительного электронного пучка, номера 1-4 указывают соответствующие интервалы времени (по тексту).

Рис. 5. Эволюция мгновенной ФРЭС всех частиц в полости с 100 до 2000 нс с шагом 100 нс; стрелки на первом графике показывают начальные скорости электронов основных и дополнительного пучков.

лена зависимость N(t) на протяжении 0-3000 нс. На ней можно выделить четыре характерных интервала времени:

1) быстрый рост, соответствующий заполнению основными пучками полости за время пролета электронами основных пучков полости по ее длине;

 затухающие колебания, за которые ответственно поглощение фазовых пузырей торцами полости;

 плато, соответствующее спокойной заряженной плазме сжатого состояния;

4) незатухающие колебания при плазменнопучковой неустойчивости.

Отметим, что среднее значение числа электронов на интервале времени 4 при плазменно-пучковой неустойчивости близко к значению N на интервале времени 3, соответствующему плато. Это говорит о том, что инжекция в полость дополнительного пучка со сравнительно небольшим током не приводит к существенному изменению числа частиц в полости, но существенно изменяет его динамику.

2.3. Расчет эволюции ФРЭС

Рассчитывались мгновенные ФРЭС, находящихся в полости. На рис. 5 представлены графики ФРЭС в различные моменты времени от 100 до 2000 нс с шагом 100 нс.

В момент времени 100 нс ФРЭС имеет вид, характерный для совокупности двух встречных электронных пучков. Максимумы ФРЭС приходятся на скорости электронов $v \approx \pm 0.03c$, что заметно меньше скоростей электронов в плоскостях инжекции (напомним, что $v_b = \pm 0.0625c$). Подобное снижение скоростей обязано провисанию электростатического потенциала в полости.

Далее, по мере установления сжатого состояния ФРЭС становится одногорбой. В момент времени 1200 нс, когда сжатое состояние полностью заполнит полость по ее длине, ФРЭС примет вид гладкого квазимаксвелловского распределения. Вычисления дают, что средняя энергия электронов составляет $\langle E \rangle \approx 40$ эВ, что соответствует средней скорости $\langle v \rangle \approx 0.0125c$. Ясно, что ионизационные способности такой электронной плазмы при инжекции в нее атомов невелики.

После начала инжекции дополнительного электронного пучка вид ФРЭС кардинально меняется. У ФРЭС появляется еще один максимум, лежащий вблизи v = 0.04c и соответствующий электронам дополнительного пучка (напомним, что скорость электронов дополнительного пучка вблизи плоскости его инжекции $v_b = 0.0765c$). Это падение скорости также обязано провисанию электростатического потенциала в полости.

ФИЗИКА ПЛАЗМЫ том 46 № 11 2020

Диапазон скоростей между основным и дополнительным максимумом ФРЭС постепенно заполняется электронами, что характерно для квазилинейной релаксации. Кроме того, появляется небольшая доля ускоренных электронов со скоростями, бо́льшими скорости электронов дополнительного пучка v = 0.04c. В итоге, ФРЭС существенно расширяется, и к моменту времени 2000 нс средняя энергия электронов достигает значения $\langle E \rangle \approx 180$ эВ (т.е. средняя скорость $\langle v \rangle \approx 0.0265c$), а ионизационная способность такой возбужденной электронной плазмы оказывается существенно выше, чем у спокойной плазмы сжатого состояния.

Поскольку ФРЭС имеет вид, существенно отличающийся от максвелловского распределения (в идеале при квазилинейной релаксации устанавливается ФРЭС, имеющая протяженный участок с плато [21]), то более важно не среднее значение, а значение максимальной скорости электронов. Возникает вопрос, что определяет энергию граничную энергию (или максимальную скорость) в ФРЭС. По-видимому, максимальная скорость основной группы электронов (т.е. без учета ускоренных электронов) близка скорости в невозмущенном дополнительном пучке с учетом неизбежного провисания потенциалов. Таким образом, устанавливая энергию электронов в дополнительном пучке, можно эффективно управлять максимальной скоростью в итоговой ФРЭС.

ЗАКЛЮЧЕНИЕ

С помощью РіС-моделирования исследовалось взаимодействие дополнительного электронного пучка с предварительно созданной заряженной электронной плазмой сжатого состояния двух встречных сверхпредельных электронных пучков в замкнутой эквипотенциальной полости. Продемонстрировано возникновение плазменно-пучковой неустойчивости в отсутствии ионов и квазилинейной релаксации. В результате расчетов установлено существенное уширение ФРЭС в область более высоких энергий электронов. Рассмотренный процесс может быть реализован, например, в электронных ловушках, работающих в режиме электронной струны и используемых для генерации высокозарядных ионов с последующей их инжекцией в ионные ускорители.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ignatov A.M., Tarakanov V.P. // Phys. Plasmas. 1994. V. 1. P. 741.
- 2. Девидсон Р. Теория заряженной плазмы. М.: Мир, 1978.
- 3. *Дубинов А.Е.* // Радиотехника и электроника. 2000. Т. 45. С. 875.

- 4. Егоров Е.Н., Короновский А.А., Куркин С.А., Храмов А.Е. // Физика плазмы. 2013. Т. 39. С. 1033.
- Dubinov A.E., Tarakanov V.P. // Laser Part. Beams. 2017. V. 35. P. 362.
- 6. Дубинов А.Е., Тараканов В.П. // ЖТФ. 2020. Т. 90. С. 1043.
- Fuks M.I., Prasad S., Schamiloglu E. // IEEE Trans. Plasma Sci. 2016. V. 44. P. 1298.
- Dubinov A.E., Petrik A.G., Kurkin S.A., Frolov N.S., Koronovskii A.A., Hramov A.E. // Phys. Plasmas. 2016. V. 23. P. 042105-1.
- 9. Dubinov A.E., Saikov S.K., Tarakanov V.P. // Phys. Wave Phenom. 2017. V. 25. P. 238.
- Leopold J.G., Bliokh Y.P., Siman-Tov M., Krasik Ya.E. // Phys. Plasmas. 2019. V. 26. P. 093107-1.
- 11. Дубинов А.Е., Селемир В.Д., Тараканов В.П. // Письма в ЖТФ. 2002. Т. 28. С. 71.
- Барабанов В.Н., Дубинов А.Е., Лойко М.В., Сайков С.К., Селемир В.Д., Тараканов В.П. // Физика плазмы. 2012. Т. 38. С. 189.
- Беломытцев С.Я., Гришков А.А., Кицанов С.А., Коровин С.Д., Полевин С.Д., Рыжов В.В., Ячный А.П. // Письма в ЖТФ. 2005. Т. 31. С. 74.
- 14. Fuks M.I., Andreev D., Kuskov A., Schamiloglu E. // Plasma. 2019. V. 2. P. 222.
- 15. Donets E. D. // Rev. Sci. Instruments. 2000. V. 71. P. 810.

- Bettega G., Cavaliere F., Cavenago M., Illiberi A., Pozzoli R., Romé M. // Phys. Plasmas. 2007. V. 14. P. 042104-1.
- Донец Е.Д., Донец Е.Е., Сыресин Е.М., Дубинов А.Е., Макаров И.В., Садовой С.А., Сайков С.К., Тараканов В.П. // Физика плазмы. 2009. Т. 35. С. 61.
- Донец Е.Д., Донец Е.Е., Сыресин Е.М., Дубинов А.Е., Макаров И.В., Садовой С.А., Сайков С.К., Тараканов В.П. // ЖТФ. 2011. Т. 81. С. 103.
- Дубинов А.Е., Макаров И.В., Садовой С.А., Сайков С.К., Тараканов В.П. // Письма в ЖТФ. 2011. Т. 37. С. 81.
- Технический проект ускорительного комплекса NICA / Под ред. Мешкова И.И., Трубникова Г.В. Дубна: ОИЯИ, 2015. Т. 1.
- Shapiro V.D., Shevchenko V.I. // Sov. Phys. JETP. 1968.
 V. 27. P. 635.
- 22. Brejzman B.N., Ryutov D.D. // Nucl. Fusion. 1974. V. 14. P. 873.
- Березин А.К., Файнберг Я.Б., Березина Г.П., Болотин Л.И., Ступак В.Г. // Атомная энергия. 1961. Т. 11. С. 493.
- 24. *Тараканов В.П., Шустин Е.Г. //* Физика плазмы. 2007. Т. 33. С. 151.
- 25. *Tarakanov V.P.* User's Manual for Code KARAT. Springfield: Berkley Res. Associates, 1992.